Package ‘healthyAddress’

January 9, 2025

Title Convert Addresses to Standard Inputs
Version 0.4.5

Description Efficient tools for parsing and standardizing Australian
addresses from textual data. It utilizes optimized algorithms to accurately identify and
extract components of addresses, such as street names, types, and postcodes, especially
for large batched data in contexts where sending addresses to internet services may be
slow or inappropriate. The core functionality is built on fast string processing techniques
to handle variations in address formats and abbreviations commonly found in Australian
address data. Designed for data scientists, urban planners, and logistics analysts, the
package facilitates the cleaning and normalization of address information, supporting
better data integration and analysis in urban studies, geography, and related fields.

License GPL-2
Encoding UTF-8

URL https://github.com/HughParsonage/healthyAddress

BugReports https://github.com/HughParsonage/healthyAddress/issues
RoxygenNote 7.2.0

Imports data.table, fastmatch, fst, hutils, hutilscpp, magrittr, gs,
utils

Suggests tinytest

Depends R (>=3.5.0)

NeedsCompilation yes

Author Hugh Parsonage [aut, cre]

Maintainer Hugh Parsonage <hugh.parsonage@gmail.com>
Repository CRAN

Date/Publication 2025-01-09 04:50:02 UTC

Contents

AIgit256 . . L e
permitted_street_type_ord Lo

https://github.com/HughParsonage/healthyAddress
https://github.com/HughParsonage/healthyAddress/issues

2 .digit256
compress_latlon e 3
download _latlon _data 4
extract_flatNumberFirstLast 5
extract_postcode L. e e e e e e 5
HashStreetName e e 6
match_StreetType L 6
match_word e 7
mutate_latlon L. L e 7
nany_lowercase e e 8
POStCOdE2Ste e e e e e e e e 9
read_ste_fSt L e 9
standardize_address e 10
toupper_basic L. e e e e 12
unique_Postcodes L L 13

Index 14

.digit256 Extract the n-th digit of a duocentehexaquinquagesimal number

Description

Extract the n-th digit of a duocentehexaquinquagesimal number

Usage

.digit256(x, d)

Arguments

X integer(n)

d integer (1) One of 0:3. Other integers silently return x.
Value

For b = 256 if

T = ag + a1b + axb? + asb®

then .digit(x, d) =a_d

.permitted_street_type_ord 3

.permitted_street_type_ord
Street types allowed.

Description

Street types allowed.

Usage

.permitted_street_type_ord()

Value

A character vector, the permitted street codes. In order of (approximate) occurrence; more common
street types appear in the head of the vector.

compress_latlon Compress latitude and longitude to a 32-bit integer

Description

Although lat and lon are represented by doubles, this is usually slightly wasteful. This function
allows you to represent coordinates as single integer, vastly reducing memory footprint.

Usage

compress_latlon(lat, lon, nThread = getOption("healthyAddress.nThread”, 1L))
decompress_latlon(x, nThread = getOption("healthyAddress.nThread”, 1L))

compress_latlon_general(

lat,

lon,

nThread = getOption("healthyAddress.nThread”, 1L)
)

decompress_latlon_general(x, nThread = getOption("healthyAddress.nThread”, 1L))

Arguments
lat, lon Coordinates to compress.
nThread Number of threads to use.

X An integer vector formed by one of the compression functions.

4 download_latlon_data

Value

The _general version of the compression/decompression use the observed range of the latitude
and longitude to form a 2'6 grid, while the bare versions use the known limits of Australian address
coordinates (including the overseas territories). Since, in the latter, the grid will be much less fine,
you should expect greater loss of information, possibly exceeding 100 metres.

compress_latlon An integer vector.

decompress_latlon The original lat, lon, with some information loss
compress_latlon_general An integer vector, with attributes minmaxLat and minmaxLon.

decompress_latlon_general The original lat, lon, with some information loss.

download_latlon_data Download latitude longitude data by address

Description

Download latitude longitude data by address

Usage

download_latlon_data(
.ste = c("NSW", "VIC", "QLD", "SA", "WA", "TAS", "NT", "ACT", "OT"),
data_dir = getOption("healthyAddress.data_dir"),
repo = "https://github.com/HughParsonage/PSMA-202311",
overwrite = NA

)
Arguments
.ste The jurisdiction to download. Default is to download all.
data_dir The directory for healthyAddress. Data will be downloaded into a subdirector
latlon thereof.
repo The repository from which data will be downloaded. Currently only the default
is supported, and "https://github.com/HughParsonage/PSMA-202405" are
supported.
overwrite logical(1) Applicable only if the file already exists prior to invoking the func-
tion. If FALSE, an error is raised. If NA, the default, the file is returned, with a
message. Set to TRUE if you wish to overwrite the files (possibly having changed
repo to reflect updated data).
Value

Called for its side effect (downloading the files), but returns the files downloaded.

extract_flatNumberFirstLast 5

extract_flatNumberFirstLast
Extract the flat number, number first/last from an address

Description

Extract the flat number, number first/last from an address

Usage

extract_flatNumberFirstLast(address)

Arguments

address A character vector from which the numbers are to be extracted.

Value

A data. table of three components: the flat number, the number first, and number last.

extract_postcode Extract the postcode from the suffix of a string

Description

Extract the postcode from the suffix of a string

Usage

extract_postcode(x)

Arguments

X A character vector.

Value

An integer vector the same length as x, giving the postcode as it appears in the last 3 or 4 characters
in each string. Returns NA_integer_ for other strings.

There is no guarantee made that the postcode is a real postcode.

Examples

extract_postcode("3000")
extract_postcode("Melbourne Vic 3000")

6 match_StreetType

HashStreetName Hash a street name quickly and accurately

Description

Hash a street name quickly and accurately

Usage

HashStreetName(x)

unHashStreetName (x)
Arguments

X A character vector of uppercase street names (without the street type).
Value

For HashStreetName, an integer vector the same length as x, a hash of the input; for unHashStreetName
the inverse operation.

If the original x does not contain a recognized street name, the result of unHashStreetName will be
NA.

Examples

HashStreetName ("FLINDERS")

match_StreetType Find the street type within an address

Description

Find the street type within an address

Usage

match_StreetType(address)

Arguments

address A character vector, every string an address.

match_word 7

Value

A list of two elements. The first element are the indices of street type in . permitted_street_type_ord()
that is found in the address. The second element are the corresponding string positions of the street
so identified.

Examples

cds <- .permitted_street_type_ord()

head(cds)

match_StreetType(”712 FLINDERS STREET MELBOURNE 3004")
012345678901234
match_StreetType(”712 FLINDERS ST MELBOURNE 3004")

match_word Find word within a sentence

Description

Find word within a sentence

Usage

match_word(x, tbl)

Arguments

X A character vector of uppercase sentences.

tbl A table of words. Long vectors are not permitted.
Value

An integer vector the same length as x, where the i-th entry is the integer position of the first word in
tbl detected in x[i]. Non-matches return NA. Words are strings of uppercase separated by spaces.

mutate_latlon Add latitude and longitude columns to a standard address

Description

Add latitude and longitude columns to a standard address

Usage
mutate_latlon(DT, data_dir = getOption("healthyAddress.data_dir"))

8 nany_lowercase

Arguments
DT A data.table from standardize_address
data_dir The directory in which the latitude longitude data has been downloaded. (See
download_latlon_data.)
Value

DT with the columns lat and lon added, by reference, the latitude and longitude of the address for
that row.

nany_lowercase Uppercase character vectors

Description

Ensures all elements of a character vector are uppercase; no lowercase characters.

Usage

nany_lowercase(x, nThread = getOption("healthyAddress.nThread”, 1L))

Arguments
X A character vector, of ASCII elements.
nThread Number of threads to use.

Value

nany_lowercase FALSE if any char in x is a lowercase letter.

Examples

nany_lowercase("ABC")
nany_lowercase("ABC 123 /--")
nany_lowercase("ABC 123 /-- z")

postcode2ste 9

postcode2ste In what states do postcodes lie?

Description

While for most postcodes, the state enclosing it is easy to evaluate (e.g. most postcodes in 2000-
2999 are in NSW), the general case is non-trivial. In particular, some postcodes straddle state

borders.
Usage
postcode2ste(Postcodes, result = c("integer”, "character"”))
Arguments
Postcodes An integer vector of postcodes.
result One of "integer” or "character”. If "character"” the abbreviated state
names(s) are returned.
Value

A vector, the minimal states that cover all postcodes given. For example, if all postcodes lie within
a single state a scalar integer/string of that state is returned.

Examples

vic_poa <- c(3021L, 3084L, 3013L, 3147L, 3030L,
3123L, 3070L, 3004L, 3250L, 3630L)

postcode2ste(vic_poa)

postcode2ste(vic_poa, result = "character")
postcode2ste(c(vic_poa, 2000L))
postcode2ste(3644L)
read_ste_fst Get internal data
Description

Get internal data

10 standardize_address

Usage

read_ste_fst(
ste = c("ACT”, "NSW", "NT”, "OT", "QLD", "SA”, "TAS", "VIC", "WA"),
columns = NULL,
data_env = getOption("healthyAddress.data_env"),
data_dir = getOption("healthyAddress.data_dir"”, tempfile()),

rbind = TRUE
)
Arguments
ste The abbreviated state name.
columns Character vector of columns to select. If NULL, all columns are selected.
data_env The environment in which objects are cached. Mainly for internal use.
data_dir The file directory into which the downloaded files should be stored. Defaults to a
temporary directory. It is recommended to set the option healthyAddress.data_dir
so that subsequent calls to this function do not result in unnecessary downloads.
rbind Whether or not to bind the list result should multiple states be requested.
Value

A data.table containing all the addresses in the given states.

standardize_address Standard address

Description

Standardize an address from a free text expression into its components as used in the PSMA (for-
merly, "Public Sector for Mapping Agencies") database.

Usage

standardize_address(

Address,

AddressLine2 = NULL,

return.type = c("data.table”, "integer"),

integer_StreetType = FALSE,

hash_StreetName = FALSE,

check = 1L,

nThread = getOption("healthyAddress.nThread”, 1L)
)

standard_address2(Address, nThread = getOption("healthyAddres.nThread”, 1L))

standard_address3(Linel, Line2, Postcode = NULL, KeepStreetName = FALSE)

standardize_address 11

Arguments

Address A character vector, either a full address or (if AddressLine2 is not NULL) the
first line of an Australian address.

AddressLine2 Either NULL (the default) or a character vector, the same length as Address giv-
ing the second line of the Address.

return. type Either "data.table” or "integer”. "data. table"” implies a table of columns
separating the address components. "integer"” means an integer vector creating
a bijection between the address and the PSMA internal id.

integer_StreetType
Should the street type be returned as an integer vector?

hash_StreetName
Should STREET_NAME be returned as an integer hash, as in HashStreetName?

check An integer, whether the inputs should be checked for possibly invalid addresses
or addresses that may not be parsed correctly.

nThread Number of threads to use.

Linel, Line2, Postcode
For addresses split by line. Linel is assumed to end with the street type. The
second line is only used to determine Postcode, and then only if it is NULL, the
default.

KeepStreetName Should an additional character vector be included in the result of the street
name?

Details
By convention observed in the PSMA, street names such as 'THE ESPLANADE’ have a street
name of 'THE ESPLANADE’ and an absent street type code.

Non-addresses passed have unspecified behaviour, though usually the numbers of the standard ad-
dress will be 0 or NA. Postcodes may be negative in some circumstances where a postcode is not
detected, though this should not be relied on.

For maximum performance, consider setting integer_StreetType and hash_StreetName to TRUE.
It has been observed that joining two tables together has been faster when using the hash of the
standardized street name, rather than the street name, even when taking into account the hashing
process.

For performance reasons, addresses with more than 32 words are not supported.

If a postcode-like number exists at the end of a Address, but is not in fact a postcode, then NA will
be in each field, except postcode, which will have the value -1.

Value
A data. table containing columns indicating the components of the standard address:
FLAT_NUMBER The flat or unit number. This includes things like SHOP number.

NUMBER_FIRST As used in the PSMA, this identified the first (or only) number in the address range.

NUMBER_LAST As used in the PSMA, if an address is marked as having a range of street numbers,
the last of the range.

12

toupper._basic

NUMBER_SUFFIX A raw vector. The suffix observed after the numbers. The PSMA technically has
multiple suffixes for each number component.

HO If hash_StreetName = TRUE, the DJB2 hash (as used in HashStreetName of the street name.).
Observed to have performance benefits.

STREET_NAME The (uppercase) of the street name. Streets such as "THE ESPLANADE’ or 'THE
AVENUE’ are treated as entirely made up of a street name and have a STREET_TYPE_CODE of
Zero.

STREET_TYPE_CODE An integer, the street type code marking the type of street such as ROAD,
STREET, AVENUE, etc. They code corresponds approximately to the rank of their frequency
in addresses.

STREET_TYPE If integer_StreetType = FALSE, then the (uppercase) standard name of the street
type.

POSTCODE An integer vector, the postcode observed.

toupper_basic Uppercase

Description

Uppercase

Usage

toupper_basic(x)

Arguments

X A character vector

Value

The same as toupper (x) for ASCII entries. For implementation reasons, strings wider than 32767
characters (bytes) will be ignored.

unique_Postcodes 13

unique_Postcodes Unique postcodes of

Description

Unique postcodes of

Usage

unique_Postcodes(x, strict = TRUE)

uniqueN_Postcodes(x, strict = TRUE)

Arguments
X An integer vector of postcodes.
strict (logical, default: TRUE) If TRUE, only postcodes (at time of package develop-
ment) with actual addresses are returned. Otherwise, any postcode in the range
1:8192 are returned.
Value

unique_Postcodes A (sorted) integer vector of the unique, non-NA values in x.

uniqueN_Postcodes The number of unique postcodes.

Index

.digit256, 2
.permitted_street_type_ord, 3

compress_latlon, 3
compress_latlon_general
(compress_latlon), 3

decompress_latlon (compress_latlon), 3

decompress_latlon_general
(compress_latlon), 3

download_latlon_data, 4, 8

extract_flatNumberFirstLast, 5
extract_postcode, 5

HashStreetName, 6, 11, 12

match_StreetType, 6
match_word, 7
mutate_latlon, 7

nany_lowercase, 8
postcode2ste, 9
read_ste_fst, 9

standard_address?2
(standardize_address), 10

standard_address3
(standardize_address), 10

standardize_address, 10

toupper_basic, 12

unHashStreetName (HashStreetName), 6
unique_Postcodes, 13
uniqueN_Postcodes (unique_Postcodes), 13

	.digit256
	.permitted_street_type_ord
	compress_latlon
	download_latlon_data
	extract_flatNumberFirstLast
	extract_postcode
	HashStreetName
	match_StreetType
	match_word
	mutate_latlon
	nany_lowercase
	postcode2ste
	read_ste_fst
	standardize_address
	toupper_basic
	unique_Postcodes
	Index

