Package ‘hdd’

August 25, 2023

Type Package

Title Easy Manipulation of Out of Memory Data Sets
Version 0.1.1

Imports fst, utils, readr, dreamerr

Depends data.table

Suggests knitr, rmarkdown

VignetteBuilder knitr

Description Hard drive data: Class of data allowing the easy importation/manipulation of out of mem-
ory data sets. The data sets are located on disk but look like in-memory, the syntax for manipula-
tion is similar to 'data.table’. Operations are performed ~*chunk-wise" behind the scene.

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Author Laurent Berge [aut, cre]

Maintainer Laurent Berge <laurent.berge@u-bordeaux.fr>
Repository CRAN

Date/Publication 2023-08-25 10:00:17 UTC

R topics documented:

hdd-package e e e 2
dimhdd 2
guess_COLtypeS e 3
guess_delim 5
hdd . . . 6
hdd_merge e e e e e 7
hdd_setkey e 9
hdd_slice e 11
names.hdd 13
OFIZIN o oot e 14

2 dim.hdd

PEEK . . e e e e e 15
printhdd e 16
readfSt e 18
setHdd_extract.cap e 19
summary.hdd 20
txt2hdd . . . e e e 22
write_hdd . .. 25
[hdd . . . o e 27
$hdd 29

Index 32

hdd-package Easy manipulation of out of memory data sets
Description

hdd offers a class of data, hard drive data, allowing the easy importation/manipulation of out of
memory data sets. The data sets are located on disk but look like in-memory, the syntax for manip-
ulation is similar to data. table. Operations are performed "chunk-wise" behind the scene.

Details

The functions for importations is txt2hdd. The loading of a hdd data set is done with hdd and the
data is extracted with sub-.hdd which has a data.table syntax. You can alternatively create a
hdd data set with hdd_slice. Other utilities include hdd_merge, or peek to have a quick look into
a text file containing data.

Author(s)

Laurent Berge

dim.hdd Dimension of a HDD object

Description

Gets the dimension of a hard drive data set (HDD).

Usage
S3 method for class 'hdd'
dim(x)

Arguments

X A HDD object.

guess_col_types 3

Value

It returns a vector of length 2 containing the number of rows and the number of columns of the
HDD object.

Author(s)

Laurent Berge

Examples

Toy example with iris data
iris_path = tempfile()
fwrite(iris, iris_path)

destination path
hdd_path = tempfile()

reading the text file with 50 rows chunks:
txt2hdd(iris_path, dirDest = hdd_path, rowsPerChunk = 50)

creating a HDD object
base_hdd = hdd(hdd_path)

Summary information on the whole data set
summary (base_hdd)

Looking at it like a regular data.frame
print(base_hdd)

dim(base_hdd)

names (base_hdd)

guess_col_types Guesses the columns types of a file

Description
This function is a facility to guess the column types of a text document. It returns columns formatted
a la readr.

Usage

guess_col_types(dt_or_path, col_names, n = 10000)

4 guess_col_types

Arguments
dt_or_path Either a data frame or a path.
col_names Optional: the vector of names of the columns, if not contained in the file. Must
match the number of columns in the file.
n Number of observations used to make the guess. By default, n = 100000.
Details

The guessing of the column types is based on the 10,000 (set with argument n) first rows.

Note that by default, columns that are found to be integers are imported as double (in want of
integer64 type in readr). Note that for large data sets, sometimes integer-like identifiers can be
larger than 16 digits: in these case you must import them as character not to lose information.

Value

It returns a cols object a la readr.

Author(s)

Laurent Berge

See Also

See peek to have a convenient look at the first lines of a text file. See guess_delim to guess the
delimiter of a text data set. See guess_col_types to guess the column types of a text data set.

See hdd, sub-.hdd and cash-.hdd for the extraction and manipulation of out of memory data. For
importation of HDD data sets from text files: see txt2hdd.

Examples

Example with the iris data set
iris_path = tempfile()
fwrite(iris, iris_path)

returns a readr columns set:
guess_col_types(iris_path)

guess_delim 5

guess_delim Guesses the delimiter of a text file

Description

This function uses fread to guess the delimiter of a text file.

Usage

guess_delim(path)

Arguments

path The path to a text file containing a rectangular data set.

Value

It returns a character string of length 1: the delimiter.

Author(s)

Laurent Berge

See Also

See peek to have a convenient look at the first lines of a text file. See guess_delim to guess the
delimiter of a text data set. See guess_col_types to guess the column types of a text data set.

See hdd, sub-.hdd and cash-.hdd for the extraction and manipulation of out of memory data. For
importation of HDD data sets from text files: see txt2hdd.

Examples

Example with the iris data set
iris_path = tempfile()
fwrite(iris, iris_path)

guess_delim(iris_path)

6 hdd

hdd Hard drive data set

Description

This function connects to a hard drive data set (HDD). You can access the hard drive data in a
similar way to a data. table.

Usage
hdd(dir)

Arguments

dir The directory where the hard drive data set is.

Details

HDD has been created to deal with out of memory data sets. The data set exists in the hard drive,
split in multiple files — each file being workable in memory.

You can perform extraction and manipulation operations as with a regular data set with sub-. hdd.
Each operation is performed chunk-by-chunk behind the scene.

In terms of performance, working with complete data sets in memory will always be faster. This
is because read/write operations on disk are order of magnitude slower than read/write in memory.
However, this might be the only way to deal with out of memory data.

Value

This function returns an object of class hdd which is linked to a folder on disk containing the data.
The data is not loaded in R.

This object is not intended to be interacted with directly as a regular list. Please use the methods
sub-.hdd and cash-.hdd to extract the data.

Author(s)

Laurent Berge

See Also

See hdd, sub-.hdd and cash-.hdd for the extraction and manipulation of out of memory data. For
importation of HDD data sets from text files: see txt2hdd.

See hdd_slice to apply functions to chunks of data (and create HDD objects) and hdd_merge to
merge large files.

To create/reshape HDD objects from memory or from other HDD objects, see write_hdd.

To display general information from HDD objects: origin, summary.hdd, print.hdd, dim.hdd
and names. hdd.

hdd_merge

Examples

Toy example with iris data
iris_path = tempfile()
fwrite(iris, iris_path)

destination path
hdd_path = tempfile()

reading the text file with 50 rows chunks:
txt2hdd(iris_path, dirDest = hdd_path, rowsPerChunk = 50)

creating a HDD object
base_hdd = hdd(hdd_path)

Summary information on the whole data set
summary (base_hdd)

Looking at it like a regular data.frame
print(base_hdd)

dim(base_hdd)

names (base_hdd)

hdd_merge Merges data to a HDD file

Description

This function merges in-memory/HDD data to a HDD file.

Usage

hdd_merge(
X)
Y,
newfile,
chunkMB,
rowsPerChunk,
all = FALSE,
all.x = all,
all.y = all,
allow.cartesian = FALSE,
replace = FALSE,
verbose

Arguments

X

y
newfile

chunkMB

rowsPerChunk

all
all.x
all.y

allow.cartesian

replace

verbose

Details

hdd_merge

A HDD object or a data. frame.
A data set either a data.frame of a HDD object.
Destination of the result, i.e., a destination folder that will receive the HDD data.

Numeric, default is missing. If provided, the data ’x’ is split in chunks of
’chunkMB’ MB and the merge is applied chunkwise.

Integer, default is missing. If provided, the data ’x’ is split in chunks of "rowsPer-
Chunk’ rows and the merge is applied chunkwise.

Default is FALSE.
Default is all.
Default is all.

Logical: whether to allow cartesian merge. Defaults to FALSE.
Default is FALSE: if the destination folder already contains data, whether to re-
place it.

Numeric. Whether information on the advancement should be displayed. If
equal to 0, nothing is displayed. By default it is equal to 1 if the size of x is
greater than 1GB.

If x (resp y) is a HDD object, then the merging will be operated chunkwise, with the original
chunks of the objects. To change the size of the chunks for x: you can use the argument chunkMB

or rowsPerChunk.

To change the chunk size of y, you can rewrite y with a new chunk size using write_hdd.

Note that the merging operation could also be achieved with hdd_slice (although it would require
setting up an ad hoc function).

Value

This function does not return anything. It applies the merging between two potentially large (out of
memory) data set and saves them on disk at the location of newfile, the destination folder which
will be populated with .fst files representing chunks of the resulting merge.

To interact with the data (on disk) newly created, use the function hdd().

Author(s)

Laurent Berge

See Also

See hdd, sub-.hdd and cash-.hdd for the extraction and manipulation of out of memory data. For
importation of HDD data sets from text files: see txt2hdd.

See hdd_slice to apply functions to chunks of data (and create HDD objects) and hdd_merge to

merge large files.

hdd_setkey

To create/reshape HDD objects from memory or from other HDD objects, see write_hdd.

To display general
and names. hdd.

Examples

information from HDD objects: origin, summary.hdd, print.hdd, dim.hdd

Toy example with iris data

Cartesian merge
iris_bis = iris
names(iris_bis) =

example

c(paste@("x_", 1:4), "species_bis")

We must have a common key on which to merge
iris_bis$id = iris$id = 1

merge, we chunk

[}

x' by 50 rows

hdd_path = tempfile()
hdd_merge(iris, iris_bis, newfile = hdd_path,
rowsPerChunk = 50, allow.cartesian = TRUE)

base_merged = hdd

(hdd_path)

summary (base_merged)

print(base_merged

)

hdd_setkey

Sorts HDD objects

Description

This function sets a key to a HDD file. It creates a copy of the HDD file sorted by the key. Note
that the sorting process is very time consuming.

Usage

hdd_setkey(x, key, newfile, chunkMB = 500, replace = FALSE, verbose = 1)

Arguments

X

key
newfile
chunkMB

replace

verbose

A hdd file.
A character vector of the keys.
Destination of the result, i.e., a destination folder that will receive the HDD data.

The size of chunks used to sort the data. Default is SOOMB. The bigger this
number the faster the sorting is (depends on your memory available though).
Default is FALSE: if the destination folder already contains data, whether to re-
place it.

Numeric, default is 1. Whether to display information on the advancement of
the algorithm. If equal to 0, nothing is displayed.

10 hdd_setkey

Details

This function is provided for convenience reason: it does the job of sorting the data and ensuring
consistency across files, but it is very slow since it involves copying several times the entire data
set. To be used parsimoniously.

Value

This functions does not return anything in R, instead its result is a new folder populated with .fst
files which represent a data set that can be loaded with the function hdd ().

Author(s)

Laurent Berge

See Also

See hdd, sub-.hdd and cash-.hdd for the extraction and manipulation of out of memory data. For
importation of HDD data sets from text files: see txt2hdd.

See hdd_slice to apply functions to chunks of data (and create HDD objects) and hdd_merge to
merge large files.

To create/reshape HDD objects from memory or from other HDD objects, see write_hdd.

To display general information from HDD objects: origin, summary.hdd, print.hdd, dim.hdd
and names. hdd.

Examples

Toy example with iris data

Creating HDD data to be sorted

hdd_path = tempfile() # => folder where the data will be saved
write_hdd(iris, hdd_path)

Let's add data to it

for(i in 1:5) write_hdd(iris, hdd_path, add = TRUE)

base_hdd = hdd(hdd_path)
summary (base_hdd)

Sorting by Sepal.Width
hdd_sorted = tempfile()
we use a very small chunkMB to show how the function works
hdd_setkey(base_hdd, key = "Sepal.Width",
newfile = hdd_sorted, chunkMB = 0.010)

base_hdd_sorted = hdd(hdd_sorted)
summary (base_hdd_sorted) # => additional line "Sorted by:"
print(base_hdd_sorted)

Sort with two keys:

hdd_slice

hdd_sorted = tempfile()

we use a very small chunkMB to show how the function works

hdd_setkey(base_hdd, key = c("Species"”, "Sepal.Width"),
newfile = hdd_sorted, chunkMB = 0.010)

base_hdd_sorted = hdd(hdd_sorted)
summary (base_hdd_sorted)
print(base_hdd_sorted)

hdd_slice Applies a function to slices of data to create a HDD data set

Description

This function is useful to apply complex R functions to large data sets (out of memory). It slices
the input data, applies the function, then saves each chunk into a hard drive folder. This can then be

a HDD data set.

Usage

hdd_slice(
X,
fun,
dir,
chunkMB = 500,
rowsPerChunk,
replace = FALSE,
verbose = 1,

)
Arguments

X A data set (data.frame, HDD).

fun A function to be applied to slices of the data set. The function must return a data
frame like object.

dir The destination directory where the data is saved.

chunkMB The size of the slices, default is SOOMB. That is: the function fun is applied to
each 500Mb of data x. If the function creates a lot of additional information, you
may want this number to go down. On the other hand, if the function reduces
the information you may want this number to go up. In the end it will depend
on the amount of memory available.

rowsPerChunk Integer, default is missing. Alternative to the argument chunkMB. If provided,

the functions will be applied to chunks of rowsPerChunk of x.

12 hdd_slice

replace Whether all information on the destination directory should be erased before-
hand. Default is FALSE.

verbose Integer, defaults to 1. If greater than O then the progress is displayed.

Other parameters to be passed to fun.

Details
This function splits the original data into several slices and then apply a function to each of them,
saving the results into a HDD data set.

You can perform merging operations with hdd_slice, but for regular merges not that you have the
function hdd_merge that may prove more convenient (not need to write a ad hoc function).

Value

It doesn’t return anything, the output is a "hard drive data" saved in the hard drive.

Author(s)

Laurent Berge

See Also

See hdd, sub-.hdd and cash-.hdd for the extraction and manipulation of out of memory data. For
importation of HDD data sets from text files: see txt2hdd.

See hdd_slice to apply functions to chunks of data (and create HDD objects) and hdd_merge to
merge large files.

To create/reshape HDD objects from memory or from other HDD objects, see write_hdd.

To display general information from HDD objects: origin, summary.hdd, print.hdd, dim.hdd
and names. hdd.

Examples

Toy example with iris data.

Say you want to perform a cartesian merge

If the results of the function is out of memory

you can use hdd_slice (not the case for this example)

preparing the cartesian merge
iris_bis = iris
names(iris_bis) = c(paste@("x_", 1:4), "species_bis")

fun_cartesian = function(x){

Note that x is treated as a data.table
=> we need the argument allow.cartesian
merge(x, iris_bis, allow.cartesian = TRUE)

}

names.hdd 13

hdd_result = tempfile() # => folder where results are saved
hdd_slice(iris, fun_cartesian, dir = hdd_result, rowsPerChunk = 30)

Let's look at the result
base_hdd = hdd(hdd_result)
summary (base_hdd)
head(base_hdd)

names.hdd Variables names of a HDD object

Description

Gets the variable names of a hard drive data set (HDD).

Usage

S3 method for class 'hdd'
names(x)

Arguments

X A HDD object.

Value

A character vector.

Author(s)

Laurent Berge

See Also

See hdd, sub-.hdd and cash-.hdd for the extraction and manipulation of out of memory data. For
importation of HDD data sets from text files: see txt2hdd.

See hdd_slice to apply functions to chunks of data (and create HDD objects) and hdd_merge to
merge large files.

To create/reshape HDD objects from memory or from other HDD objects, see write_hdd.

To display general information from HDD objects: origin, summary.hdd, print.hdd, dim.hdd
and names. hdd.

14 origin
Examples

Toy example with iris data
iris_path = tempfile()
fwrite(iris, iris_path)

destination path
hdd_path = tempfile()

reading the text file with 50 rows chunks:
txt2hdd(iris_path, dirDest = hdd_path, rowsPerChunk = 50)

creating a HDD object
base_hdd = hdd(hdd_path)

Summary information on the whole data set
summary (base_hdd)

Looking at it like a regular data.frame
print(base_hdd)

dim(base_hdd)

names (base_hdd)

origin Extracts the origin of a HDD object

Description

Use this function to extract the information on how the HDD data set was created.

Usage

origin(x)

Arguments

X A HDD object.

Details
Each HDD lives on disk and a “_hdd.txt” is always present in the folder containing summary infor-
mation. The function origin extracts the log from this information file.

Value

A character vector, if the HDD data set has been created with several instances of write_hdd its
length will be greater than 1.

peek 15

See Also

See hdd, sub-.hdd and cash-.hdd for the extraction and manipulation of out of memory data. For
importation of HDD data sets from text files: see txt2hdd.

See hdd_slice to apply functions to chunks of data (and create HDD objects) and hdd_merge to
merge large files.

To create/reshape HDD objects from memory or from other HDD objects, see write_hdd.

To display general information from HDD objects: origin, summary.hdd, print.hdd, dim.hdd
and names. hdd.

Examples

Toy example with iris data

hdd_path = tempfile()
write_hdd(iris, hdd_path, rowsPerChunk = 20)

base_hdd = hdd(hdd_path)
origin(base_hdd)

Let's add something
write_hdd(head(iris), hdd_path, add = TRUE)
write_hdd(iris, hdd_path, add = TRUE, rowsPerChunk = 50)

base_hdd = hdd(hdd_path)
origin(base_hdd)

peek Peek into a text file

Description

This function looks at the first elements of a file, format it into a data frame and displays it. It can
also just show the first lines of the file without formatting into a DF.

Usage

peek(path, onlylLines = FALSE, n, view = TRUE)

Arguments
path Path linking to the text file.
onlylLines Default is FALSE. If TRUE, then the first n lines are directly displayed without

formatting.

16 print.hdd
n Integer. The number of lines to extract from the file. Default is 100 or 5 if
onlylLine = TRUE.
view Logical, default it TRUE: whether the data should be displayed on the viewer.
Only when onlylLines = FALSE.
Value

Returns the data invisibly.

Author(s)

Laurent Berge

See Also

See peek to have a convenient look at the first lines of a text file. See guess_delim to guess the
delimiter of a text data set. See guess_col_types to guess the column types of a text data set.

See hdd, sub-.hdd and cash-.hdd for the extraction and manipulation of out of memory data. For
importation of HDD data sets from text files: see txt2hdd.

Examples

Example with the iris data set
iris_path = tempfile()
fwrite(iris, iris_path)

The first lines of the text file on viewer
peek(iris_path)

displaying the first lines:
peek(iris_path, onlylLines = TRUE)

only getting the data from the first observations
base = peek(iris_path, view = FALSE)
head(base)

print.hdd Print method for HDD objects

Description

This functions displays the first and last lines of a hard drive data set (HDD).

Usage

S3 method for class 'hdd'
print(x, ...)

print.hdd 17

Arguments
X A HDD object.
Not currently used.
Details

Returns the first and last 3 lines of a HDD object. Also formats the values displayed on screen
(typically: add commas to increase the readability of large integers).

Value

Nothing is returned.

Author(s)

Laurent Berge

See Also

See hdd, sub-.hdd and cash-.hdd for the extraction and manipulation of out of memory data. For
importation of HDD data sets from text files: see txt2hdd.

See hdd_slice to apply functions to chunks of data (and create HDD objects) and hdd_merge to
merge large files.

To create/reshape HDD objects from memory or from other HDD objects, see write_hdd.

To display general information from HDD objects: origin, summary.hdd, print.hdd, dim.hdd
and names. hdd.

Examples

Toy example with iris data
iris_path = tempfile()
fwrite(iris, iris_path)

destination path
hdd_path = tempfile()

reading the text file with 50 rows chunks:
txt2hdd(iris_path, dirDest = hdd_path, rowsPerChunk = 50)

creating a HDD object
base_hdd = hdd(hdd_path)

Summary information on the whole data set
summary (base_hdd)

Looking at it like a regular data.frame
print(base_hdd)
dim(base_hdd)

18 readfst

names (base_hdd)

readfst Read fst or HDD files as DT

Description

This is the function read_fst but with automatic conversion to data.table. It also allows to read
hdd data.

Usage

readfst(path, columns = NULL, from = 1, to = NULL, confirm = FALSE)

Arguments
path Path to fst file — or path to hdd data. For hdd files, there is a
columns Column names to read. The default is to read all columns. Ignored for hdd files.
from Read data starting from this row number. Ignored for hdd files.
to Read data up until this row number. The default is to read to the last row of the
stored data set. Ignored for hdd files.
confirm If the HDD file is larger than ten times the variable getHdd_extract.cap(),
then by default an error is raised. To anyway read the data, use confirm = TRUE.
You can set the data cap with the function setHdd_extract. cap.
Details

This function reads one or several . fst files and place them in a single data table.

Value
This function returns a data table located in memory. It allows to read in memory the hdd data saved
on disk.

Author(s)

Laurent Berge

setHdd_extract.cap 19

See Also
See hdd, sub-.hdd and cash-.hdd for the extraction and manipulation of out of memory data. For
importation of HDD data sets from text files: see txt2hdd.

See hdd_slice to apply functions to chunks of data (and create HDD objects) and hdd_merge to
merge large files.

To create/reshape HDD objects from memory or from other HDD objects, see write_hdd.

To display general information from HDD objects: origin, summary.hdd, print.hdd, dim.hdd
and names. hdd.

Examples

Toy example with the iris data set

writing a hdd file
hdd_path = tempfile()
write_hdd(iris, hdd_path, rowsPerChunk = 30)

reading the full data in memory
base_mem = readfst(hdd_path)

is equivalent to:
base_hdd = hdd(hdd_path)
base_mem_bis = base_hdd[]

setHdd_extract.cap Sets/gets the size cap when extracting hdd data

Description

Sets/gets the default size cap when extracting HDD variables with cash-.hdd or when importing
full HDD data sets with readfst.

Usage
setHdd_extract.cap(sizeMB = 3000)

getHdd_extract.cap

Arguments

sizeMB Size cap in MB. Default is 3000.

Format

An object of class function of length 1.

20 summary.hdd

Details

In readfst, if the expected size of the data set exceeds the cap then, in interactive mode, a confir-
mation is asked. When not in interactive mode, no confirmation is asked. This can also be bypassed
by using the argument confirm.

Value

The size cap, a numeric scalar.

Examples

Toy example with iris data

We first create a hdd dataset with approx. 100KB

hdd_path = tempfile() # => folder where the data will be saved
write_hdd(iris, hdd_path)

for(i in 1:10) write_hdd(iris, hdd_path, add = TRUE)

base_hdd = hdd(hdd_path)
summary (base_hdd) # => 11 files

we can extract the data from the 11 files with '$':
pl = base_hdd$Sepal.Length

#

ETS

Illustration of the protection mechanism:

**

By default when extracting a variable with '$'

and the size exceeds the cap (default is greater than 3GB)
a confirmation is needed.

You can set the cap with setHdd_extract.cap.

Following code asks a confirmation:
setHdd_extract.cap(sizeMB = 0.005) # new cap of 5KB
try(pl <- base_hdd$Sepal.Length)

To extract the variable without changing the cap:
pl = base_hdd[, Sepal.Length] # => no size control is performed

Resetting the default cap
setHdd_extract.cap()

summary . hdd Summary information for HDD objects

summary.hdd 21

Description

Provides summary information — i.e. dimension, size on disk, path, number of slices — of hard drive
data sets (HDD).

Usage
S3 method for class 'hdd'
summary (object, ...)
Arguments
object A HDD object.

Not currently used.

Details

Displays concisely general information on the HDD object: its size on disk, the number of files it is
made of, its location on disk and the number of rows and columns.

Note that each HDD object contain the text file “_hdd.txt” in their folder also containing this infor-
mation.

To obtain how the HDD object was constructed, use function origin.

Value

This function does not return anything. It only prints general information on the data set in the
console.

Author(s)

Laurent Berge

See Also
See hdd, sub-.hdd and cash-.hdd for the extraction and manipulation of out of memory data. For
importation of HDD data sets from text files: see txt2hdd.

See hdd_slice to apply functions to chunks of data (and create HDD objects) and hdd_merge to
merge large files.

To create/reshape HDD objects from memory or from other HDD objects, see write_hdd.

To display general information from HDD objects: origin, summary.hdd, print.hdd, dim.hdd
and names. hdd.

Examples

Toy example with iris data
iris_path = tempfile()
fwrite(iris, iris_path)

22 txt2hdd

destination path
hdd_path = tempfile()

reading the text file with 50 rows chunks:
txt2hdd(iris_path, dirDest = hdd_path, rowsPerChunk = 50)

creating a HDD object
base_hdd = hdd(hdd_path)

Summary information on the whole data set
summary (base_hdd)

Looking at it like a regular data.frame
print(base_hdd)

dim(base_hdd)

names (base_hdd)

txt2hdd Transforms text data into a HDD file

Description

Imports text data and saves it into a HDD file. It uses read_delim_chunked to extract the data. It
also allows to preprocess the data.

Usage

txt2hdd(
path,
dirDest,
chunkMB = 500,
rowsPerChunk,
col_names,
col_types,
nb_skip,
delim,
preprocessfun,
replace = FALSE,
encoding = "UTF-8",
verbose = 0,
locale = NULL,

txt2hdd

Arguments

path

dirDest
chunkMB

rowsPerChunk

col_names

col_types

nb_skip

delim

preprocessfun

replace

encoding

verbose

locale

Details

23

Character vector that represents the path to the data. Note that it can be equal to
patterns if multiple files with the same name are to be imported (if so it must be
a fixed pattern, NOT a regular expression).

The destination directory, where the new HDD data should be saved.

The chunk sizes in MB, defaults to S00MB. Instead of using this argument,
you can alternatively use the argument rowsPerChunk which decides the size of
chunks in terms of lines.

Number of rows per chunk. By default it is missing: its value is deduced from
argument chunkMB and the size of the file. If provided, replaces any value pro-
vided in chunkMB.

The column names, by default is uses the ones of the data set. If the data set
lacks column names, you must provide them.

The column types, in the readr fashion. You can use guess_col_types to find
them.

Number of lines to skip.

The delimiter. By default the function tries to find the delimiter, but sometimes
it fails.

A function that is applied to the data before saving. Default is missing. Note
that if a function is provided, it MUST return a data.frame, anything other than
data.frame is ignored.

If the destination directory already exists, you need to set the argument replace=TRUE

to overwrite all the HDD files in it.

Character scalar containing the encoding of the file to be read. By default
it is "UTF-8" and is passed to the readr function locale which is used in
read_delim_chunked (the reading function). A common encoding in Western
Europe is "ISO-8859-1" (simply use "file filename" in a non-Windows console
to get the encoding).

Note that this argument is ignored if the argument locale is not NULL.

Logical scalar or NULL (default). If TRUE, then the evolution of the importing
process as well as the time to import are reported. If NULL, it becomes TRUE
when the data to import is greater than SGB or there are more than one chunk.

Either NULL (default), either an object created with locale. This object will be
passed to the reading function read_delim_chunked and handles how the data
is imported.

nn

Other arguments to be passed to read_delim_chunked, quote = "" can be in-

teresting sometimes.

This function uses read_delim_chunked from readr to read a large text file per chunk, and gener-
ate a HDD data set.

Since the main function for importation uses readr, the column specification must also be in readr’s
style (namely cols or cols_only).

24 txt2hdd

By default a guess of the column types is made on the first 10,000 rows. The guess is the application
of guess_col_types on these rows.

Note that by default, columns that are found to be integers are imported as double (in want of
integer64 type in readr). Note that for large data sets, sometimes integer-like identifiers can be
larger than 16 digits: in these case you must import them as character not to lose information.

The delimiter is found with the function guess_delim, which uses the guessing from fread. Note
that fixed width delimited files are not supported.

Value

This function does not return anything in R. Instead it creates a folder on disk containing . fst files.
These files represent the data that has been imported and converted to the hdd format.

You can then read the created data with the function hdd().

Author(s)

Laurent Berge

See Also

See hdd, sub-.hdd and cash-.hdd for the extraction and manipulation of out of memory data. For
importation of HDD data sets from text files: see txt2hdd.

See hdd_slice to apply functions to chunks of data (and create HDD objects) and hdd_merge to
merge large files.

To create/reshape HDD objects from memory or from other HDD objects, see write_hdd.

To display general information from HDD objects: origin, summary.hdd, print.hdd, dim.hdd
and names. hdd.

Examples

Toy example with iris data

we create a text file on disk
iris_path = tempfile()
fwrite(iris, iris_path)

destination path

hdd_path = tempfile()

reading the text file with HDD, with approx. 50 rows per chunk:
txt2hdd(iris_path, dirDest = hdd_path, rowsPerChunk = 50)

base_hdd = hdd(hdd_path)
summary (base_hdd)

Same example with preprocessing

sl_keep = sort(unique(sample(iris$Sepal.Length, 40)))
fun = function(x){

we keep only some observations & vars + renaming

write_hdd

25

res = x[Sepal.Length %in% sl_keep, .(sl = Sepal.Length, Species)]
we create some variables
res[, sl2 := slx*x2]

res

}

reading with preprocessing
hdd_path_preprocess = tempfile()
txt2hdd(iris_path, hdd_path_preprocess,
preprocessfun = fun, rowsPerChunk = 50)

base_hdd_preprocess = hdd(hdd_path_preprocess)
summary (base_hdd_preprocess)

write_hdd

Saves or appends a data set into a HDD file

Description

This function saves in-memory/HDD data sets into HDD repositories. Useful to append several

data sets.

Usage

write_hdd(
X’
dir,

chunkMB = Inf,

rowsPerChunk,

compress = 50,

add = FALSE,

replace = FALSE,

showWarning,

Arguments
X
dir
chunkMB

rowsPerChunk

compress
add

A data set.
The HDD repository, i.e. the directory where the HDD data is.
If the data has to be split in several files of chunkMB sizes. Default is Inf.

Integer, default is missing. Alternative to the argument chunkMB. If provided,
the data will be split in several files of rowsPerChunk rows.

Compression rate to be applied by write_fst. Default is 50.
Should the file be added to the existing repository? Default is FALSE.

26 write_hdd
replace If add = FALSE, should any existing document be replaced? Default is FALSE.
showWarning If the data x has no observation, then a warning is raised if showWarning = TRUE.

By default, it occurs only if write_hdd is NOT called within a function.
Not currently used.
Details

Creating a HDD data set with this function always create an additional file named “_hdd.txt” in the
HDD folder. This file contains summary information on the data: the number of rows, the number
of variables, the first five lines and a log of how the HDD data set has been created. To access the
log directly from R, use the function origin.

Value

This function does not return anything in R. Instead it creates a folder on disk containing . fst files.
These files represent the data that has been converted to the hdd format.

You can then read the created data with the function hdd().

Author(s)

Laurent Berge

See Also

See hdd, sub-.hdd and cash-.hdd for the extraction and manipulation of out of memory data. For
importation of HDD data sets from text files: see txt2hdd.

See hdd_slice to apply functions to chunks of data (and create HDD objects) and hdd_merge to
merge large files.

To create/reshape HDD objects from memory or from other HDD objects, see write_hdd.

To display general information from HDD objects: origin, summary.hdd, print.hdd, dim.hdd
and names. hdd.

Examples

Toy example with iris data

Let's create a HDD data set from iris data

hdd_path = tempfile() # => folder where the data will be saved
write_hdd(iris, hdd_path)

Let's add data to it

for(i in 1:10) write_hdd(iris, hdd_path, add = TRUE)

base_hdd = hdd(hdd_path)
summary (base_hdd) # => 11 files, 1650 lines, 48.7KB on disk

Let's save the iris data by chunks of 1KB
we use replace = TRUE to delete the previous data
write_hdd(iris, hdd_path, chunkMB = 0.001, replace = TRUE)

[-.hdd

27

base_hdd = hdd(hdd_path)
summary (base_hdd) # => 8 files, 150 lines, 10.2KB on disk

[.hdd

Extraction of HDD data

Description

This function extract data from HDD files, in a similar fashion as data.table but with more argu-

ments.

Usage

S3 method for class 'hdd'

x[index,

Arguments

X

index
file
newfile

replace

all.vars

Details

., file, newfile, replace = FALSE, all.vars = FALSE]

A hdd file.
An index, you can use .N and variable names, like in data.table.
Other components of the extraction to be passed to data. table.

Which file to extract from? (Remember hdd data is split in several files.) You
can use .N.

A destination directory. Default is missing. Should be result of the query be
saved into a new HDD directory? Otherwise, it is put in memory.

Only used if argument newfile is not missing: default is FALSE. If the newfile
points to an existing HDD data, then to replace it you must have replace =
TRUE.

Logical, default is FALSE. By default, if the first argument of . . . is provided (i.e.
argument j) then only variables appearing in all ... plus the variable names
found in index are extracted. If TRUE all variables are extracted before any
selection is done. (This can be useful when the algorithm getting the variable
names gets confused in case of complex queries.)

The extraction of variables look like a regular data. table extraction but in fact all operations are
made chunk-by-chunk behind the scene.

The extra arguments file, newfile and replace are added to a regular data.table call. Ar-
gument file is used to select the chunks, you can use the special variable .N to identify the last

chunk.

By default, the operation loads the data in memory. But if the expected size is still too large, you
can use the argument newfile to create a new HDD data set without size restriction. If a HDD data
set already exists in the newfile destination, you can use the argument replace=TRUE to override

it.

28 [-.hdd

Value

Returns a data.table extracted from a HDD file (except if newwfile is not missing).

Author(s)

Laurent Berge

See Also

See hdd, sub-.hdd and cash-.hdd for the extraction and manipulation of out of memory data. For
importation of HDD data sets from text files: see txt2hdd.

See hdd_slice to apply functions to chunks of data (and create HDD objects) and hdd_merge to
merge large files.

To create/reshape HDD objects from memory or from other HDD objects, see write_hdd.

To display general information from HDD objects: origin, summary.hdd, print.hdd, dim.hdd
and names. hdd.

Examples

Toy example with iris data

First we create a hdd data set to run the example
hdd_path = tempfile()
write_hdd(iris, hdd_path, rowsPerChunk = 40)

your data set is in the hard drive, in hdd format already.
data_hdd = hdd(hdd_path)

summary information on the whole file:
summary (data_hdd)

You can use the argument 'file' to subselect slices.
Let's have some descriptive statistics of the first slice of HDD
summary (data_hdd[, file = 1])

It extract the data from the first HDD slice and
returns a data.table in memory, we then apply summary to it
You can use the special argument .N, as in data.table.

the following query shows the first and last lines of
each slice of the HDD data set:
data_hdd[c(1, .N), file = 1:.N]

Extraction of observations for which the variable
Petal.Width is lower than 0.1
data_hdd[Petal.Width < 0.2,]

You can apply data.table syntax:
data_hdd[, .(pl = Petal.Length)]

$.hdd 29

and create variables
data_hdd[, pl2 := Petal.Lengthx*2]

You can use the by clause, but then
the by is applied slice by slice, NOT on the full data set:
data_hdd[, .(mean_pl = mean(Petal.Length)), by = Species]

If the data you extract does not fit into memory,

you can create a new HDD file with the argument 'newfile':
hdd_path_new = tempfile()

data_hdd[, pl2 := Petal.Lengthx*2, newfile = hdd_path_new]
check the result:

data_hdd_bis = hdd(hdd_path_new)

summary(data_hdd_bis)

print(data_hdd_bis)

$.hdd Extracts a single variable from a HDD object

Description

This method extracts a single variable from a hard drive data set (HDD). There is an automatic pro-
tection to avoid extracting too large data into memory. The bound is set by the function setHdd_extract. cap.

Usage
S3 method for class 'hdd'
x$name
Arguments
X A HDD object.
name The variable name to be extracted.Note that there is an automatic protection for
not trying to import data that would not fit into memory. The extraction cap is
set with the function setHdd_extract. cap.
Details

By default if the expected size of the variable to extract is greater than the value given by getHdd_extract.cap
an error is raised. For numeric variables, the expected size is exact. For non-numeric data, the ex-

pected size is a guess that considers all the non-numeric variables being of the same size. This may

lead to an over or under estimation depending on the cases. In any case, if your variable is large

and you don’t want to change the extraction cap (setHdd_extract.cap), you can still extract the

variable with sub-. hdd for which there is no such protection.

Note that you cannot create variables with $, e.g. like base_hdd$x_new <- something. To create
variables, use the [instead (see sub-.hdd).

30 $.hdd

Value

It returns a vector.

Author(s)

Laurent Berge

See Also

See hdd, sub-.hdd and cash-.hdd for the extraction and manipulation of out of memory data. For
importation of HDD data sets from text files: see txt2hdd.

See hdd_slice to apply functions to chunks of data (and create HDD objects) and hdd_merge to
merge large files.

To create/reshape HDD objects from memory or from other HDD objects, see write_hdd.

To display general information from HDD objects: origin, summary.hdd, print.hdd, dim.hdd
and names. hdd.

Examples

Toy example with iris data

We first create a hdd dataset with approx. 100KB

hdd_path = tempfile() # => folder where the data will be saved
write_hdd(iris, hdd_path)

for(i in 1:10) write_hdd(iris, hdd_path, add = TRUE)

base_hdd = hdd(hdd_path)
summary (base_hdd) # => 11 files

we can extract the data from the 11 files with '$':
pl = base_hdd$Sepal.Length

#
Illustration of the protection mechanism:
#

By default when extracting a variable with '$'

and the size exceeds the cap (default is greater than 3GB)
a confirmation is needed.

You can set the cap with setHdd_extract.cap.

Following asks for confirmation in interactive mode:
setHdd_extract.cap(sizeMB = 0.005) # new cap of 5KB

pl = base_hdd$Sepal.Length

To extract the variable without changing the cap:
pl = base_hdd[, Sepal.Length] # => no size control is performed

Resetting the default cap
setHdd_extract.cap()

$.hdd

31

Index

* datasets
setHdd_extract.cap, 19

[.hdd, 27

$.hdd, 29

PACKAGE (hdd-package), 2

cols, 4, 23
cols_only, 23

data.table, 2, 27
dim.hdd, 2,6, 9, 10,12, 13,15,17,19, 21, 24,
26, 28, 30

fread, 5, 24

getHdd_extract.cap, 29
getHdd_extract.cap
(setHdd_extract.cap), 19
guess_col_types, 3,4, 5, 16, 23, 24
guess_delim, 4, 5, 5, 16, 24

hdd, 2,4-6,6, 8, 10, 12, 13, 15-17, 19, 21, 24,
26, 28, 30

hdd(), 8, 10, 24, 26

hdd-package, 2

hdd_merge, 2,6,7,8, 10, 12, 13, 15, 17, 19,
21, 24, 26, 28, 30

hdd_setkey, 9

hdd_slice, 2,6, 8, 10,11, 12, 13,15, 17, 19,
21,24, 26, 28, 30

locale, 23

names.hdd, 6, 9, 10, 12, 13,13, 15, 17, 19, 21,
24, 26, 28, 30

origin, 6,9, 10,12, 13,14, 15,17, 19, 21, 24,
26, 28, 30

peek, 2,4, 5, 15, 16
print.hdd, 6,9, 10, 12, 13, 15,16, 17, 19, 21,
24, 26, 28, 30

32

read_delim_chunked, 22, 23
read_fst, I8
readfst, 18, 19, 20

setHdd_extract.cap, 18, 19, 29
summary.hdd, 6, 9, 10, 12, 13, 15, 17, 19, 20,
21,24, 26, 28, 30

txt2hdd, 2,4-6, 8, 10, 12, 13, 15-17, 19, 21,
22,24, 26, 28, 30

write_fst, 25
write_hdd, 6, 8-10, 12-15, 17, 19, 21, 24, 25,
26, 28, 30

	hdd-package
	dim.hdd
	guess_col_types
	guess_delim
	hdd
	hdd_merge
	hdd_setkey
	hdd_slice
	names.hdd
	origin
	peek
	print.hdd
	readfst
	setHdd_extract.cap
	summary.hdd
	txt2hdd
	write_hdd
	[.hdd
	$.hdd
	Index

