Package 'hdImpute'

August 7, 2023

Type Package

Title A Batch Process for High Dimensional Imputation

Version 0.2.1

BugReports https://github.com/pdwaggoner/hdImpute/issues

Maintainer Philip Waggoner <philip.waggoner@gmail.com>

Description A correlation-based batch process for fast, accurate imputation for high dimensional missing data problems via chained random forests. See Waggoner (2023) <doi:10.1007/s00180-023-01325-9> for more on 'hdImpute', Stekhoven and Bühlmann (2012) <doi:10.1093/bioinformatics/btr597> for more on 'missForest', and Mayer (2022) <https://github.com/mayer79/missRanger> for more on 'missRanger'.

License MIT + file LICENSE

Encoding UTF-8

Imports missRanger, plyr, purrr, magrittr, tibble, dplyr, tidyselect, tidyr, cli

Suggests testthat (>= 3.0.0), knitr, rmarkdown, usethis, missForest, tidyverse

VignetteBuilder knitr

RoxygenNote 7.2.3

Config/testthat/edition 3

URL https://github.com/pdwaggoner/hdImpute

NeedsCompilation no

Author Philip Waggoner [aut, cre]

Repository CRAN

Date/Publication 2023-08-07 21:20:02 UTC

R topics documented:

check_feature_na		•		•	•			•		•		•		•		•				•		•	•	•	•		•		2
check_row_na		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2

ture_cor	3
tten_mat	4
Impute	4
pute_batches	5
d	6
	- 8

Index

check_feature_na Find features with (specified amount of) missingness

Description

Find features with (specified amount of) missingness

Usage

```
check_feature_na(data, threshold)
```

Arguments

data	A data frame or tibble.
threshold	Missingness threshold in a given column/feature as a proportion bounded be- tween 0 and 1. Default set to sensitive level at 1e-04.

Value

A vector of column/feature names that contain missingness greater than threshold.

Examples

```
## Not run:
check_feature_na(data = any_data_frame, threshold = 1e-04)
## End(Not run)
```

Description

Find number of and which rows contain any missingness

Usage

check_row_na(data, which)

feature_cor

Arguments

data	A data frame or tibble.
which	Logical. Should a list be returned with the row numbers corresponding to each
	row with missingness? Default set to FALSE.

Value

Either an integer value corresponding to the number of rows in data with any missingness (if which = FALSE), or a tibble containing: 1) number of rows in data with any missingness, and 2) a list of which rows/row numbers contain missingness (if which = TRUE).

Examples

```
## Not run:
check_row_na(data = any_data_frame, which = FALSE)
## End(Not run)
```

feature_	cor
----------	-----

High dimensional imputation via batch processed chained random forests Build correlation matrix

Description

High dimensional imputation via batch processed chained random forests Build correlation matrix

Usage

```
feature_cor(data, return_cor)
```

. .

~

Arguments

data	A data frame or tibble.
return_cor	Logical. Should the correlation matrix be printed? Default set to FALSE.

.. . .

Value

A cross-feature correlation matrix

References

Waggoner, P. D. (2023). A batch process for high dimensional imputation. Computational Statistics, 1-22. doi: <10.1007/s00180-023-01325-9>

van Buuren S, Groothuis-Oudshoorn K (2011). "mice: Multivariate Imputation by Chained Equations in R." Journal of Statistical Software, 45(3), 1-67. doi: <10.18637/jss.v045.i03>

Examples

```
## Not run:
feature_cor(data = data, return_cor = FALSE)
```

End(Not run)

flatten_mat

Flatten and arrange cor matrix to be df

Description

Flatten and arrange cor matrix to be df

Usage

flatten_mat(cor_mat, return_mat)

Arguments

cor_mat	A correlation matrix output from running feature_cor()
return_mat	Logical. Should the flattened matrix be printed? Default set to FALSE.

Value

A vector of correlation-based ranked features

Examples

```
## Not run:
flatten_mat(cor_mat = cor_mat, return_mat = FALSE)
```

End(Not run)

hdImpute	Complete hdImpute process: correlation matrix, flatten, rank, create
	batches, impute, join

Description

Complete hdImpute process: correlation matrix, flatten, rank, create batches, impute, join

Usage

```
hdImpute(data, batch, pmm_k, n_trees, seed, save)
```

4

impute_batches

Arguments

data	Original data frame or tibble (with missing values)
batch	Numeric. Batch size.
pmm_k	Integer. Number of neighbors considered in imputation. Default set at 5.
n_trees	Integer. Number of trees used in imputation. Default set at 15.
seed	Integer. Seed to be set for reproducibility.
save	Should the list of individual imputed batches be saved as .rds file to working directory? Default set to FALSE.

Details

Step 1. group data by dividing the row_number() by batch size (batch, number of batches set by user) using integer division. Step 2. pass through group_split() to return a list. Step 3. impute each batch individually and time. Step 4. generate completed (unlisted/joined) imputed data frame

Value

A completed, imputed data set

References

Waggoner, P. D. (2023). A batch process for high dimensional imputation. Computational Statistics, 1-22. doi: <10.1007/s00180-023-01325-9>

Stekhoven, D. J., & Bühlmann, P. (2012). MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112-118. doi: <10.1093/bioinformatics/btr597>

Examples

```
## Not run:
impute_batches(data = data,
batch = 2, pmm_k = 5, n_trees = 15,
seed = 123, save = FALSE)
```

End(Not run)

impute_batches Impute batches and return completed data frame

Description

Impute batches and return completed data frame

Usage

```
impute_batches(data, features, batch, pmm_k, n_trees, seed, save)
```

Arguments

data	Original data frame or tibble (with missing values)
features	Correlation-based vector of ranked features output from running flatten_mat()
batch	Numeric. Batch size.
pmm_k	Integer. Number of neighbors considered in imputation. Default at 5.
n_trees	Integer. Number of trees used in imputation. Default at 15.
seed	Integer. Seed to be set for reproducibility.
save	Should the list of individual imputed batches be saved as .rds file to working directory? Default set to FALSE.

Details

Step 1. group data by dividing the row_number() by batch size (batch, number of batches set by user) using integer division. Step 2. pass through group_split() to return a list. Step 3. impute each batch individually and time. Step 4. generate completed (unlisted/joined) imputed data frame

Value

A completed, imputed data set

References

Waggoner, P. D. (2023). A batch process for high dimensional imputation. Computational Statistics, 1-22. doi: <10.1007/s00180-023-01325-9>

Stekhoven, D. J., & Bühlmann, P. (2012). MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112-118. doi: <10.1093/bioinformatics/btr597>

Examples

```
## Not run:
impute_batches(data = data, features = flat_mat,
batch = 2, pmm_k = 5, n_trees = 15, seed = 123,
save = FALSE)
```

End(Not run)

Compute	variable-wise	mean	absolute	differences	(MAD)	between
original a	and imputed da	tafram	es.			

Description

mad

Compute variable-wise mean absolute differences (MAD) between original and imputed dataframes.

mad

Usage

mad(original, imputed, round)

Arguments

original	A data frame or tibble with original values.
imputed	A data frame or tibble that has been imputed/completed.
round	Integer. Number of places to round MAD scores. Default set to 3.

Value

'mad_scores' as 'p' x 2 tibble. One row for each variable in original, from 1 to 'p'. Two columns: first is variable names ('var') and second is associated MAD score ('mad') as percentages for each variable.

Examples

```
## Not run:
mad(original = original_data, imputed = imputed_data, round = 3)
## End(Not run)
```

Index

check_feature_na, 2
check_row_na, 2

feature_cor, 3
flatten_mat, 4

hdImpute, 4

 $impute_batches, 5$

mad, <mark>6</mark>