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Abstract

The R package gsbDesign provides functions to evaluate the operating characteristics
of Bayesian group sequential clinical trial designs. More specifically, we consider clinical
trials with interim analyses, which compare a treatment with a control, and where the
endpoint is normally distributed. Prior information can either be specified for the dif-
ference of treatment and control, or separately for the effects in the treatment and the
control groups. At each interim analysis, the decision to stop or continue the trial is
based on the posterior distribution of the difference between treatment and control. The
decision at the final analysis is also based on this posterior distribution. Multiple success
and/or futility criteria can be specified to reflect adequately medical decision-making.
We describe methods to evaluate the operating characteristics of such designs for scenar-
ios corresponding to different true treatment and control effects. The characteristics of
main interest are the probabilities of success and futility at each interim analysis, and the
expected sample size. We illustrate the use of gsbDesign with a detailed case study.
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1. Introduction

In traditional clinical trials, patients are randomized to a treatment or a control (e.g., placebo)
arm. At the end of the trial the data are analyzed, comparing the two arms. Extensions of
this setting are group sequential clinical trials (Jennison and Turnbull 1999). These adaptive
designs have one or more interim analyses, where decisions are made on whether to stop or
continue the trial. The advantage of a group sequential design is that futile trials can be
stopped early, if the treatment is ineffective. In that case, useless treatment is avoided and
money saved. On the other hand, studies can be stopped early for success, which may result
in faster access to the new treatment.
The critical aspect of a group sequential design is the decision at each interim analysis on
whether to stop or continue the trial. Because Bayesian approaches are particularly well
suited to support decision-making, several authors proposed these for the monitoring of group
sequential clinical trials; for a review and references see for example the books by Spiegelhalter,
Abrams, and Myles (2004) and by Berry, Carlin, Lee, and Müller (2010).
The Bayesian framework also facilitates the incorporation of external information through
informative priors. For example, historical trials often contain relevant information on the
control arm that can be quantified by priors. Hence, fewer patients may then be randomized
to the control arm, which reduces the cost and duration of the clinical trial (Pocock 1976;
Neuenschwander, Capkun-Niggli, Branson, and Spiegelhalter 2010; Schmidli, Gsteiger, Roy-
choudhury, O’Hagan, Spiegelhalter, and Neuenschwander 2014). Furthermore, meta-analytic
approaches can be used to include information on both the treatment and the control arms
(Spiegelhalter et al. 2004; Schmidli, Wandel, and Neuenschwander 2013).
We consider group sequential Bayesian trial designs that incorporate decision making based
on the posterior distribution of the difference between the treatment and the control arms.
The posterior distribution contains the information from the ongoing clinical trial and the
external information captured in the prior distribution.
In order to reflect medical decision-making, several stopping criteria based on this posterior
distribution may be combined. Such a combination of multiple criteria goes beyond the
significance testing framework of classical group sequential designs, and can, for example,
include requirements on the observed effect size. The traditional sole focus on significance
testing has also been criticized from a frequentist perspective (Armitage 1989; Kieser and
Hauschke 2005; Carroll 2009; Chuang-Stein, Kirby, Hirsch, and Atkinson 2011b; Chuang-
Stein, Kirby, French, Kowalski, Marshall, Smith, Bycott, and Beltangady 2011a).
The described approach is well suited to clinical trials conducted in the learning phases of
drug development. Here, quantitative decision criteria based on the probability of achieving
a clinically meaningful treatment effect may justify further investment in a novel compound
(Cartwright, Cohen, Fleishaker, Madani, McLeod, Musser, and Williams 2010; Gsteiger,
Neuenschwander, Mercier, and Schmidli 2013; Fisch, Jones, Jones, Kerman, Rosenkranz,
and Schmidli 2015).
Once stopping criteria have been defined to correspond with clinical decision-making, it is
important to evaluate the operating characteristics of the Bayesian group sequential design.
To do so, some true effects of the treatment and control arms are assumed and the probability
of stopping for success or futility, as well as the expected sample size, are calculated (Emerson,
Kittelson, and Gillen 2007a,b).
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In this article, we propose the R (R Core Team 2016) package gsbDesign (Gerber and Gsponer
2016) to evaluate the operating characteristics of such group sequential Bayesian designs avail-
able from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/
package=gsbDesign. It supports designs with two arms, normal endpoints, and known stan-
dard deviations of the effects in the treatment and control arms. As shown by Spiegelhalter
et al. (2004), this setting can be extended to many other types of outcome data by forming
an appropriate approximate normalized likelihood; see Gsponer, Gerber, Bornkamp, Ohlssen,
Vandemeulebroecke, and Schmidli (2014) for some examples. We consider the case where the
number of patients per interim analysis is known at the beginning of the trial, although a
more flexible approach has been proposed in a classical framework by Burington and Emerson
(2003).
Several software packages exist that evaluate group sequential clinical designs, e.g., S+SeqTrial
(Insightful Corporation 2002), PEST (The MPS Research Unit 2000), ADDPLAN (Wassmer
and Eisebitt 2005), East (Cytel Software Corporation 2014), and FACTS (LLC Consultants
2014). However, to the best of our knowledge, gsbDesign is the only package that can both
incorporate prior information and also allows the user to specify multiple decision criteria.
This article provides a detailed description on how to compute the operating characteristics
for Bayesian group sequential designs, and how to use the gsbDesign package in practice. We
structured the paper as follows: In Section 2, the general setup of Bayesian group sequential
designs is presented. In Section 3, the evaluation of their operating characteristics is described,
first for the case where prior information on the difference between treatment and control is
available, and then for the case where prior information on the treatment and control arms
is available. In Section 4, the use of the R package gsbDesign is explained in detail. Finally,
in Section 5, a case study is presented, followed by a short conclusion.

2. General setup of the Bayesian design
Two-arm trials with zero, one, or more interim analyses are considered. At each analysis, the
success and futility criteria are evaluated to decide if the trial should be stopped. The model-
ing framework assumes continuous outcome data with normally distributed errors. However,
as shown by Spiegelhalter et al. (2004), by forming an appropriate approximate normalized
likelihood, many other types of outcome data with corresponding sampling models (e.g., count
data with an assumed Poisson distribution) can be approximated with this setup.
The criteria are based on the posterior distribution of the treatment effect δ, where δ is
specified in terms of improvement over the control treatment (i.e., positive values are used to
express the benefit of the experimental treatment over the control).
An arbitrary number of success and futility criteria can be specified at each analysis. The
success criteria have the form P{δ > s | data} ≥ p and the futility criteria have the form
P{δ < f | data} ≥ q. Here, s and f are user-specified effect thresholds, p and q are user-
specified probability thresholds.
Prior information can either be available for the treatment difference δ, or for the effect in the
control arm, µ1, and the treatment arm, µ2. gsbDesign supports only normally distributed
prior information. The variances of the prior distributions for control and treatment arms
have the form σ2

1/n10 and σ2
2/n20, respectively. Here, n10 and n20 correspond to the prior

information in terms of number of patients in the control and the treatment arms, respectively.

https://CRAN.R-project.org/package=gsbDesign
https://CRAN.R-project.org/package=gsbDesign
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It is assumed that single observations in the two arms have variances σ2
1 and σ2

2.
Thus, the full specification of the design requires:

• σk, k = 1, 2: standard deviations for control arm (k = 1) and treatment arm (k = 2);

• nk0, k = 1, 2: quantification of prior information per arm;

• ηk0, k = 1, 2: prior expected response per arm;

• I: the number of interim analyses including final analysis;

• nki, i = 1, . . . , I: the added number of patients per arm and interim. Hence, the total
number of patients in arm k at interim i is Nki =

∑i
j=1 nkj ;

• sir, i = 1, . . . , I, r = 1, . . . , Rsi: effect thresholds for each success criterion at each
interim. Rsi being the number of success criteria at interim i;

• pir, i = 1, . . . , I, r = 1, . . . , Rsi: probability thresholds for each success criterion at each
interim;

• fir, i = 1, . . . , I, r = 1, . . . , Rfi: effect thresholds for each futility criterion at each
interim. Rfi being the number of futility criteria at interim i;

• qir, i = 1, . . . , I, r = 1, . . . , Rfi: probability thresholds for each futility criterion at each
interim.

All Rfi futility criteria have to be fulfilled to stop for futility at an interim or the final
analysis i. Similarly, all Rsi success criteria have to be fulfilled to stop for success. If the trial
is neither stopped for success nor for futility, the trial continues (unless the last analysis i = I
has been reached).

3. Operating characteristics
Given a set of scenarios for the true value of δ and a set of design parameters, the operating
characteristics of main interest are the probabilities of success and futility at each interim
analysis, and the expected sample size. For example, if the true treatment effect was small,
we could examine whether the design would lead to a high probability of early stopping for
futility. On the other hand, if the true treatment effect was large, we could examine whether
the design would lead to a high probability of early stopping for success.
We consider simulation and numerical integration for computing the operating characteristics.
The former simulates a large number of trials given some true treatment effects of interest.
At each interim analysis, we compute the posterior distribution of the treatment effect given
the data and evaluate the stopping criteria based on the trials not stopped at the previous
interim analysis. The latter translates the criteria from the posterior distribution of the
treatment effect to the distribution of the observed treatment effect. The precision related to
the treatment effect estimates at each interim analysis can be calculated analytically (which is
a consequence of assuming a known standard deviation associated with each treatment group
in the design setup). Under the assumption of non-informative priors (nk0 = 0, k = 1, 2),
this approach yields boundaries on the treatment effect scale that can be translated into a
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number of standard frequentist criteria such as conditional probabilities and p values. We
then use the R package gsDesign (Anderson 2016) for numerical integration as described by
Jennison and Turnbull (1999).

3.1. Prior information on the treatment effect

Let Ykij ∼ N(µk, σ2
k) denote the observations for treatment k = 1, 2 at interim i = 1, . . . , I

for subject j = 1, . . . , nki.
The aggregated treatment effect at interim i is Di = Ȳ2i−Ȳ1i with Ȳki = (Nki)−1 ∑i

l=1
∑nl

j=1 Yklj

and Nki = nk1 + · · · + nki. Thus, Di ∼ N(δ, σ2
1/N1i + σ2

2/N2i) with δ = µ2 − µ1.
Assume prior information is available for the treatment effect: δ ∼ N(α0, σ2

1/n10 + σ2
2/n20).

This prior reflects information on the treatment effect as if n10 and n20 patients had been
treated with the control and the test treatment, respectively.
For Bayesian updating, it is convenient to parametrize the normal distribution not in terms
of variances but in terms of precisions. The precision is the inverse of the variance. The
prior precision is denoted by β0 = n10n20/(n10σ2

2 + n20σ2
1) and the precision of the observed

treatment effect at interim i is denoted by Bi = N1iN2i/(N1iσ
2
2 +N2iσ

2
1). Normal distributions

that are parametrized with the precision are denoted by NP ( · , · ).
The posterior is proportional to the likelihood times the prior. Here, the likelihood and the
prior are Di | δ ∼ NP (δ, Bi) and δ ∼ NP (α0, β0), respectively.
A normal likelihood with a normal prior leads to a conjugate analysis, and hence a normally
distributed posterior. More precisely, the posterior expectation is a weighted average of the
prior expectation and the sample mean, and the posterior precision is the sum of the prior
and sample precisions. Thus, a sequential update yields the normal posterior distribution at
interim i with expectation αi = ωiα0 +(1−ωi)Di with ωi = β0/βi and precision βi = β0 +Bi.
To characterize the distribution of Di, we use the fact that the sequence Z1 = D1

√
B1, . . . , ZI =

DI

√
BI is multivariate normal with E{Zi} = δ

√
Bi, i = 1, . . . , I and COV{Zi, Zj} =

√
Bi/Bj ,

1 ≤ i ≤ j ≤ I. Jennison and Turnbull (1999) call this the canonical joint distribution for the
parameter δ with information levels B1, . . . , BI .
This formulation is convenient for both approaches, simulation and numerical integration.

Simulation

When evaluating the operating characteristics of a design, a range of true treatment effect
values or scenarios, denoted by δu, u = 1, . . . , U , is considered. In the case of the simulation
approach, a complete set of interim treatment effects, Di, i = 1, . . . , I, is generated for a large
number of trials (T0) and each of the scenarios. To simulate the Di, we use the canonical
joint distribution for δ.
At each interim analysis, the posterior distribution is updated and the decision criteria are
applied. The operating characteristics are then derived by computing the proportion of trials
for which the success and/or futility criteria are fulfilled. Note that the denominator for the
computation of the proportion is not the same at each interim, because, at interim i + 1,
we only have to consider the trials that continued from the previous analysis i. Therefore,
T0 must be large enough to ensure that enough simulated trials are continued to the final
analysis.
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The simulation is summarized in the following pseudo-algorithm.

For a large T0 and each δu do

For each i = 1, . . . , I do

1. Simulate D
(t)
i , t = 1, . . . , Ti−1 with Ti−1 the number of trials not stopped at

interim i − 1.
2. Recursively compute the Bayesian update of the posterior distribution:

βi = β0 + Bi, α
(t)
i = wiα0 + (1 − wi)D(t)

i .

3. Compute T S
i , the number of trials fulfilling all success criteria at interim i.

4. Compute probability of success at stage i as T S
i /Ti−1.

5. Compute T F
i , the number of trials fulfilling all futility criteria at interim i.

6. Compute probability of futility at stage i as T F
i /Ti−1.

7. Set Ti = Ti−1 − T S
i − T F

i .
End loop for i.

End loop for δu.

Numerical integration

The decision criteria are formulated in terms of the posterior distribution of the treatment
effect δ. These criteria can be transformed and formulated in terms of the distribution of the
observed treatment effects Di.
The success criteria are fulfilled if (sir − αi)

√
βi ≤ QN (1 − pir), where QN (ε) denotes the

ε×100% quantile of a standard normal distribution. Solving for Di yields the success criterion
that r is fulfilled if Di ≥ Sir = {sir − ωiα0 − β

−1/2
i QN (1 − pir)}/(1 − ωi). The trial will be

stopped if all success criteria at interim analysis i are fulfilled, i.e., if Di ≥ maxr Sir = Si.
Similarly, all futility criteria at interim analysis i are fulfilled if Di ≤ minr Fir = Fi, where
Fir = {fir − ωiα0 − β

−1/2
i QN (qir)}/(1 − ωi).

We now have for each interim analysis a lower and an upper bound. If the observed treatment
effect Di at interim i is beyond these bounds, the trial is stopped. This situation is similar
to the setting of classical group sequential designs, where at each interim a decision is taken
to stop the trial if a certain standardized test statistic exceeds some threshold.
Thus, our group sequential Bayesian design yields a sequence of test statistics {D1, . . . , DI},
which is the same as for a classical group sequential design with different variances and unequal
numbers of patients in the two treatment arms. Jennison and Turnbull (1999) provide efficient
numerical integration techniques for computing probabilities of crossing thresholds based on
the canonical joint distribution of δ with information levels {B1, . . . , BI}.
To derive the operating characteristics, we therefore need to compute P[{(Zi ≥ ui) or (Zi ≤
li)} and lj < Zj < uj ∀j < i], where ui = Si

√
Bi and li = Fi

√
Bi. The function gsProbability

from the R package gsDesign (Anderson 2016) implements the numerical integration tech-
niques for computing these probabilities.
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3.2. Prior information on both treatment arms

We consider the aggregated arm-wise treatment response at interim i, which is given by
Ȳki = (Nki)−1 ∑i

l=1
∑nl

j=1 Yklj and Nki = nk1 + · · · + nki.
Assume that there is prior information available for both the control and treatment arms:
µk ∼ NP (ηk0, γk0), with γk0 = nk0/σ2

k. In this case, the prior to posterior updating is done
per arm: µk | Ȳki ∼ NP (ηki, γki) with ηki = ωkiηk0 + (1 − ωki)Ȳik and γki = γk0 + Nki/σ2

k.
The posterior for the treatment effect is then δ | Ȳ1i, Ȳ2i ∼ NP (α̃i, β̃i), where α̃i = η2i − η1i

and β̃i = (1/γ1i + 1/γ2i)−1.
When conducting the simulation approach, we generate the observed stagewise average treat-
ment response, i.e., Ỹki = (nki)−1 ∑nki

j=1 Ykij , i = 1, . . . , I, for a large number of trials (T0),
under a series of different true average treatment responses µk0, k = 1, 2. The aggregated
arm-wise treatment response is then (nkiỸki + Nk,i−1Ȳk,i−1)/(nki + Nk,i−1).
At each interim analysis the posterior distribution is updated arm-wise and transformed to
the treatment effect. The decision criteria are then applied to the posterior distribution of
the treatment effect. The operating characteristics are derived by computing the proportion
of trials that fulfill the success and/or futility criteria. Note that the denominator for the
computation of the proportion is not the same at each interim, because at interim i + 1 we
have to consider only the trials not stopped at interim i.
The simulation is summarized in the following pseudo-algorithm.

For a large T0 and each plausible µ10 and µ20 do

For each i = 1, . . . , I do

1. Simulate Ỹ
(t)

ki , t = 1, . . . , Ti−1, k = 1, 2, with Ti−1 the number of trials not
stopped at interim i − 1.

2. Compute Ȳki = (nkiỸki + Nk,i−1Ȳk,i−1)/(nki + Nk,i−1).
3. Recursively compute the Bayesian update for the posterior distribution per

arm:

γki = γk0 + Nki/σ2
k, η

(t)
ki = wkiηk0 + (1 − wki)Ȳ

(t)
ki .

4. Transform arm-wise posterior distributions to posterior distribution of treat-
ment effect:

α̃
(t)
i = η

(t)
2i − η

(t)
1i , β̃

(t)
i = (1/γ1i + 1/γ2i)−1.

5. Compute T S
i , the number of trials fulfilling all success criteria at interim i.

6. Compute probability of success at stage i as T S
i /Ti−1.

7. Compute T F
i , the number of trials fulfilling all futility criteria at interim i.

8. Compute probability of futility at stage i as T F
i /Ti−1.

9. Set Ti = Ti−1 − T S
i − T F

i .
End loop for i.

End loop for µ10 and µ20.
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3.3. Expected sample size

The expected sample size in a group sequential design is computed as
∑I

i=1(n1i + n2i)πi,
where πi denotes the probability of stopping at interim i. Once the probabilities of stopping
for futility and stopping for success are available, the expected sample size is straightforward
to compute.

4. Using gsbDesign
Here, we illustrate how to use the R package gsbDesign. After installation, the package can
be loaded by

R> library("gsbDesign")

There are three main functions needed for the computation of the operating characteristics:

• gsbDesign fully specifies the design, i.e., all required parameters described in Section 2.
The function returns an object of class ‘gsbDesign’.

• gsbSimulation specifies the methods for computing the operating characteristics, i.e.,
whether to use simulation or numerical integration, whether to update per arm or on
the treatment effect. The function returns an object of class ‘gsbSimulation’.

• gsb calculates the operating characteristics and takes as arguments an object of class
‘gsbDesign’ and an object of class ‘gsbSimulation’. The function returns an object of
class ‘gsbMainOut’.

For objects of class ‘gsbDesign’, ‘gsbSimulation’, and ‘gsbMainOut’, there exist print meth-
ods. For the class ‘gsbMainOut’, there further exist summary and plot methods. More infor-
mation on specific functions and methods are given in the reference manual of the package.

4.1. Specifying the design

The full specification of a group sequential Bayesian design requires the number of interim
analyses (including final analysis), the standard deviation of individual observations per arm
(σk), prior specification potentially per arm (nk0), number of patients per arm and stage
(nki), and success and futility criteria per stage (sir, pir, fir, qir).
The minimum requirement for the function gsbDesign is the specification for one stage. In
this situation the specification will be the same in all later stages and the final analysis.

Prior information on treatment effect

The following code shows how to specify such a design with nr.stages = 4 analyses (interim
plus final) when prior information is available for the treatment effect.

R> design1 <- gsbDesign(nr.stages = 4, patients = c(10, 20),
+ sigma = c(7, 7), criteria.success = c(0, 0.8, 7, 0.5),
+ criteria.futility = c(2, 0.8), prior.difference = c(3, 5, 2))
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The argument patients specifies the number of patients (nki) per arm and stage. If patients
is a single number, the same number of patients is used for all stages and both arms. If it is a
vector of length 2, the first element of the vector gives the number of patients for the control
arm in each stage and the second element gives the number of patients for the treatment
arm in each stage. Finally, if the number of patients changes across stages, the argument
patients must be a matrix with nr.stages rows and 2 columns.
The argument sigma specifies the standard deviations (σk) per arm. If sigma is a single
number, the standard deviation is the same for both arms. If it is a vector of length 2 the
first element of the vector gives the standard deviation for the control arm and the second
element gives the standard deviation for the treatment arm.
In the example above, there are n11 = 10 patients in each of the stages in the control arm
with standard deviation σ1 = 7. In the treatment arm there are n21 = 20 patients in each
stage with standard deviation σ2 = 7.
The argument criteria.success specifies the success criteria in terms of the posterior dis-
tribution. The first two elements of the vector correspond to effect and probability thresh-
olds for the first success criterion, and the second two elements to effect and probability
thresholds for the second success criterion. In the example, the specification corresponds to
P{δ > 0 | data} ≥ 0.8 and P{δ > 7 | data} ≥ 0.5. The success criteria are the same for all
analyses.
Similarly, the argument criteria.futility specifies the futility criteria. In the example,
there is only one futility criterion corresponding to P{δ < 2 | data} ≥ 0.8. The futility criterion
is the same for all analyses.
If success and/or futility criteria change with stages, the corresponding arguments must be
matrices that have the same number of rows as there are stages in the design.
The argument prior.difference specifies the prior distribution and must be a vector of
length 3. The first element gives the prior treatment effect. The second and third elements
indicate the number of hypothetical patients in the control (n10) and treatment (n20) arms,
respectively. The default is no prior information corresponding to n10 = n20 = 0, i.e., zero
precision and is specified as "non-informative".
The prior in the example can be interpreted as if n10 = 5 patients in the control and n20 = 2
patients in the treatment arm were added to the new trial, with an observed treatment
difference of 3.
The object design1 is of class ‘gsbDesign’ and contains the following information.

R> names(design1)

[1] "nr.stages" "patients" "sigma"
[4] "criteria" "prior.difference" "prior.control"
[7] "prior.treatment"

Prior information on both arms

The following code shows how to specify such a design with nr.stages= 4 analyses (interim
plus final) when prior information is available for the treatment response in both arms.
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In this case, the arguments prior.control and prior.treatment must be specified. Both
arguments are vectors of length 2, where the first element is the arm specific effect and the
second element is the number of hypothetical patients in each arm.
The other design specifications are identical to the previous design.

R> design2 <- gsbDesign(nr.stages = 4, patients = c(10, 20), sigma = c(7, 7),
+ criteria.success = c(0, 0.8, 7, 0.5), criteria.futility = c(2, 0.8),
+ prior.control = c(3, 5), prior.treatment = c(6, 2))

4.2. Specifying methods for the computation of operating characteristics

The methods for computing the operating characteristics depend on the availability of prior
information. If prior information is available on the treatment effect, the numerical integration
approach described in Section 3.1 is used by default. If prior information is available on both,
the control and the treatment arm, the simulation approach described in Section 3.2 is used.

Prior information on treatment effect
For the design1 defined above with prior information on the treatment effect, we can choose
between the numerical integration and the simulation method to derive the operating charac-
teristics. The numerical integration method, as well as an appropriate set of true treatment
effects, are specified with the following command.

R> simulation1 <- gsbSimulation(truth = c(-10, 20, 60),
+ type.update = "treatment effect", method = "numerical integration")

The argument truth is a vector of length 3. The first two elements of this vector define
the range of true treatment effects (δ0) over which the operating characteristics are to be
evaluated. The third element of the vector specifies the number of distinct values to consider.
The argument type.update indicates that the posterior updating is performed on the treat-
ment effect.
The argument method indicates that numerical integration is used.
Alternatively, the operating characteristics can be computed based on the simulation approach
described in Section 3.1. In this case, the function gsbSimulation takes a few additional
arguments.

R> simulation1a <- gsbSimulation(truth = c(-10, 20, 60),
+ type.update = "treatment effect", method = "simulation",
+ nr.sim = 50000, warnings.sensitivity = 100, seed = "generate")

The argument nr.sim indicates the number of simulated trials to run.
With the simulation approach, the operating characteristics are computed as the number
of successful/futile trials at a given stage divided by the number of trials not stopped yet.
Hence, if nr.sim is not large enough, this leads to unstable results. Therefore, the argument
warnings.sensitivity forces R to print a warning when the number of trials not stopped
prior to a given stage is less than 100 in this example.
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The argument seed ensures reproducibility. In the example, the argument specifies that the
random seed is automatically generated.
To compare the results of numerical integration and simulation, the argument method can be
set to "both", in which case the subsequent call to gsb will generate results for both methods.

Prior information on both arms
For the design2 defined above, an appropriate specification of the methods is achieved with
the following command.

R> simulation2 <- gsbSimulation(truth = list(seq(-5, 5, 3), seq(0, 5, 3)),
+ type.update = "per arm", method = "simulation", grid.type = "table",
+ nr.sim = 10000, warnings.sensitivity = 500, seed = "generate")

Depending on the value of the argument grid.type, the argument truth has to be specified
differently. If grid.type = "table" as in the example above, the argument truth must be
a list with two elements, the first containing the true responses for the control arm (µ10)
and the second containing the true responses for the treatment arm (µ20). Alternatively, if
grid.type = "manually", the argument truth must be a matrix with two columns and as
many rows as true values. If grid.type = "plot", the argument truth must be a vector of
length 5. The first two elements give the range of true values for the control arm and the
second two elements give the range of true values for the treatment arm. The fifth element
indicates the number of grid points that are used to produce the graphic.
The argument type.update indicates that the posterior updating is performed per arm.
The argument method indicates that simulation is used to compute the operating character-
istics.

4.3. Computing operating characteristics

Prior on treatment effect
The following command is used to compute the operating characteristics for design1 via
numerical integration.

R> oc1 <- gsb(design1, simulation1)

The object oc1 is of class ‘gsbMainOut’ and contains the following elements.

R> names(oc1)

[1] "OC" "boundary" "design" "simulation"
[5] "system.time"

The element OC contains the operating characteristics, i.e., probabilities of stopping for success
and/or futility, and expected sample size. The other elements contain the decision boundaries
on the D-scale, design, computational methods, and computing time.
The summary-method produces a concise summary of the operating characteristics.
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R> summary(oc1, atDelta = c(0, 2, 7))

*** Group Sequential Bayesian Design ***

Analysis N1 N2 S F std.S std.F
Prior 5 2 NA NA NA NA

1 10 20 7.86 -0.729 2.90 -0.269
2 10 20 7.43 0.195 3.88 0.102
3 10 20 7.29 0.565 4.65 0.361
4 10 20 7.21 0.775 5.32 0.572

sigma treatment: 7 sigma control: 7

stopping for success:
delta stage 1 stage 2 stage 3 stage 4 total E{N}

0 0.0019 0.0000 0.0000 0.0000 0.0020 68.1
2 0.0157 0.0012 0.0001 0.0000 0.0170 97.6
7 0.3764 0.1384 0.0745 0.0479 0.6372 75.4

stopping for futility:
delta stage 1 stage 2 stage 3 stage 4 total

0 0.3944 0.2095 0.1218 0.0777 0.8035
2 0.1581 0.0848 0.0537 0.0383 0.3349
7 0.0023 0.0001 0.0000 0.0000 0.0024

The argument atDelta allows the specification of values for δ0, at which the operating char-
acteristics are summarized. If the operating characteristics are not evaluated at the specified
values, they are approximated by a linear interpolation of the nearest evaluated characteris-
tics.
The first part of the summary output above summarizes the design. The columns N1 and N2
give the sample sizes of the prior and each stage, respectively. Columns S and F give success
and futility boundaries for the observed treatment effect, respectively. Similarly, std.S and
std.F give the standardized boundaries. If and only if the observed treatment effect is within
F and S (or equivalently, the standardized treatment effect is within std.S and std.F), is the
trial continued.
For example, if the observed treatment effect at the third interim analysis is between 7.29
and 0.56, the trial is continued. The corresponding standardized effect must be between 4.65
and 0.36 in order to continue the trial.
The second part summarizes the operating characteristics by providing the probabilities of
success and futility, as well as the expected sample size, for each interim analysis and different
true treatment effects (delta).
In the example above, the total probability of stopping for futility, if there is no treatment
effect (delta = 0), is 80%. If the true treatment effect is 7, this probability is 0.24%. Similarly,
the total probability of stopping for success if there is no treatment effect is 0.2% and if the
true treatment effect is 7 this probability is 63.7%. The expected sample size is between 69
and 98.
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The plot method allows one to display the operating characteristics graphically. The fol-
lowing code produces Figure 1, which shows the cumulative probabilities of success, futility,
and an indeterminate decision. An indeterminate decision means that further information is
needed to decide in favor of success or futility.

R> plot(oc1, what = "cumulative all")

Cumulative Operating Characteristics

delta = treatment − control
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Figure 1: The operating characteristics are shown as cumulative probabilities of success,
futility, and an indeterminate decision.

The argument what in the plot function in the previous code chunk can take the following
values:

R> c("all", "cumulative all", "both", "cumulative both", "sample size",
+ "success", "futility", "success or futility", "indeterminate",
+ "cumulative success", "cumulative futility",
+ "cumulative success or futility", "cumulative indeterminate",
+ "boundary", "std.boundary", "delta.grid", "patients")

The following code produces the expected sample size and the decision boundaries that are
depicted in Figure 2.

R> plot(oc1, what = "sample size")
R> plot(oc1, what = "boundary")

The function tab allows the extraction of operating characteristics from the gsbMainOut
object in spreadsheet form.

R> tab(oc1, what = "cumulative success", atDelta = c(0, 2, 7), digits = 4,
+ export = FALSE)
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Expected Sample Size
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Figure 2: Illustration of the expected sample size (left panel) and the decision boundaries
(right panel).

stage 1 stage 2 stage 3 stage 4
1 0 0.0019 0.0020 0.0020 0.0020
2 2 0.0157 0.0169 0.0170 0.0170
3 7 0.3764 0.5148 0.5893 0.6372

The listing above shows the cumulative success probabilities at each interim analysis for true
treatment effects of 0, 2, and 7. For example, for a true treatment effect of 7, the cumulative
probability of success at interim analysis 4 is 63.72%.
The argument what of the tab function can take the following values:

R> c("all", "cumulative all", "success", "futility", "indeterminate",
+ "success or futility", "cumulative success", "cumulative futility",
+ "cumulative indeterminate", "cumulative success or futility",
+ "sample size")

With the argument atDelta, we can specify at which values of the true treatment effect
the operating characteristics are reported. If the selected values are not part of the values
specified for the computation, we interpolate linearly.
The argument export allows one to export the tables into a CSV file.

Prior on both treatment arms

For our second example, the code for computing the operating characteristics is the same.

R> oc2 <- gsb(design2, simulation2)
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The same utilities as presented above can be used to summarize and display the operating
characteristics in this situation. However, the complete output is somewhat long and not
presented here.
To extract the expected sample size, we can use the following command.

R> tab(oc2, what = "sample size", digits = 0)

control treatment delta stage1 stage2 stage3 stage4
1 -5 0 5 30 57 83 109
2 -2 0 2 30 51 68 83
3 1 0 -1 30 40 43 45
4 4 0 -4 30 32 33 33
5 -5 3 8 30 53 69 82
6 -2 3 5 30 58 84 110
7 1 3 2 30 54 74 93
8 4 3 -1 30 43 48 51

In this table, each row corresponds to one combination of true responses in the control and
treatment arms. For example, the expected sample sizes for a true effect difference of delta
= 2 is calculated for two combinations of true control and treatment arm values, see rows 2
and 7 in the table above. The corresponding expected numbers of patients in stage 4 are 83
and 93.
It is also possible to create graphical output in this situation. Because the operating charac-
teristics depend now on both the true response in the treatment and the control arms, they
are presented as contour plots. Figure 3 shows the cumulative probabilities of success or
futility.
Further graphics and summaries can be produced when working directly on the data frame
oc2$OC.

5. Case Study: Design of a PoC trial in Crohn’s disease
Crohn’s disease is an inflammatory bowel disease with diverse symptoms, mainly in the gas-
trointestinal tract. We consider the case where a new test treatment is believed to be poten-
tially beneficial to patients with Crohn’s disease; for more details see Gsponer et al. (2014).
To investigate this, an initial small clinical trial with patients is planned. Such clinical trials
are often called proof-of-concept (PoC) trials or pilot studies. If the PoC trial is successful,
it is followed by larger clinical trials to explore more fully the efficacy and safety of the test
treatment. The PoC study should be designed in such a way that, at its end, a decision on
whether to continue or abandon further exploration of the test treatment can be made.
In the Crohn’s disease case study, a parallel-group, double-blind, randomized clinical trial
was planned. In such a design, patients are randomly allocated to two groups: one group
receiving control treatment, and the other receiving the test treatment. Neither the patients
nor their doctors know which of the two treatments they receive. After six weeks of treatment,
the change in the disease activity from baseline (i.e., start of treatment) would be evaluated.
To measure disease activity, the Crohn’s disease activity index (CDAI) can be used; the
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Operating Characteristics
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Figure 3: Contour plots of the operating characteristics when prior information is specified
per arm. The cumulative probabilities of success or futility are shown.

CDAI is a score for which low values correspond to low activity. As the efficacy measure, the
negative of the change from baseline to week six in the CDAI score is used, such that large
values of this measure correspond to an improvement. The efficacy measure is approximately
normally distributed with a standard deviation of about σ = 88, based on information from
past studies with Crohn’s disease patients. If n1 patients have been allocated to the control,
and n2 patients to the test treatment, then the average efficacy measure in the two treatment
groups is Ȳ1 ∼ N(µ1, σ2/n1) and Ȳ2 ∼ N(µ2, σ2/n2), respectively. The true treatment effect
is then δ = µ2 − µ1.
At this stage of the planning, one can quantify when a PoC trial can be considered a success.
The PoC trial should first provide clear evidence that the test treatment is better than the
control, and then give some indication that the test treatment is at least similarly effective
as available treatments for Crohn’s disease.
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Available treatments for Crohn’s disease have shown a difference to placebo in the efficacy
measure of about 50 units. Hence, the results from the PoC trial would be considered positive
by the clinician if the observed treatment effect is 50 units or more, and the treatment is very
likely to be better than the placebo. To be competitive, the test treatment would actually
have to be better by considerably more than 50 units.
In the following, we consider how the design of such a PoC trial may be developed, starting
from a simple design with no interim analysis and no prior information, moving then to a
design with one interim analysis (and no prior information), and finally also including prior
information.

Simple design with no prior information and no interim analysis
The trial statistician, asked to come up quickly with a sample size for the PoC trial, may
be tempted to formulate the requirements by the clinician as a conventional testing problem.
For example, a one-sided test H0 : δ ≤ 0 vs. H1 : δ > 0 with type I error of 5%. Then, to get
a sample size, he might interpret the treatment difference of 50 units as the alternative and
require a power of 80% at this alternative. For a design with no interim analysis, approxi-
mately 40 patients per treatment arm would be needed. In gsbDesign this design is specified
with the following code.

R> desPoC1 <- gsbDesign(nr.stages = 1, patients = c(40, 40),
+ sigma = c(88, 88), criteria.success = c(0, 0.95),
+ criteria.futility = c(NA, NA))
R> simPoC1 <- gsbSimulation(truth = c(-50, 100, 60),
+ type.update = "treatment effect", method = "numerical integration")
R> ocPoC1 <- gsb(desPoC1, simPoC1)
R> summary(ocPoC1, atDelta = c(0, 50))

*** Group Sequential Bayesian Design ***

Analysis N1 N2 S F std.S std.F
Prior 0 0 NA NA NA NA

1 40 40 32.4 NA 1.64 NA

sigma treatment: 88 sigma control: 88

stopping for success:
delta stage 1 E{N}

0 0.0503 80
50 0.8145 80

stopping for futility:
delta stage 1

0 0
50 0

However, with this design, the result will be statistically significant when we observe a treat-
ment effect of 32.4 units, which is much smaller than the 50 units observed in other studies. A
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PoC study with a treatment effect of only 32.4 units, although statistically significantly better
than the placebo at a one-sided significance level of 5%, would not be considered a success
by clinicians, and the decision would probably be to discontinue further development. Hence,
there is a need to formulate success criteria that better match the actual decision-making on
whether to stop or continue further development.
Formally, these two success criteria can be expressed as:

(S1) P{ δ > 0 | data } ≥ 0.95,

(S2) P{ δ > 50 | data } ≥ 0.50.

Here, s1 = 0 and s2 = 50, are the effect thresholds for the two success criteria, and the
corresponding probability thresholds are p1 = 0.95 and p2 = 0.50.
Translated to a frequentist framework (Kieser and Hauschke 2005), these two criteria corre-
spond approximately to the requirement that the test treatment is statistically significantly
better than the placebo, and that the observed treatment difference is at least 50 units (when
non-informative priors are used).
A futility criterion may also be specified to indicate when the test treatment is clearly inad-
equate. In this case, the futility criterion is expressed as:

(F1) P{ δ < 40 | data } ≥ 0.90.

Here, f1 = 40 and q1 = 0.9 are the effect threshold and the probability threshold for the
futility criterion. Again, these should reflect medical decision-making.
With these changed success and futility criteria, the trial statistician may reconsider the
choice of an appropriate sample size. For example, he may choose the sample size such that
the success criteria (S1) and (S2) are equivalent. Translating this to a frequentist framework,
we may like to choose the sample size such that if the test treatment is statistically significantly
better than the placebo, then the observed treatment difference is at least 50 units, and vice
versa. Technically, this is achieved when the power is 50% at the observed difference of 50
units. Hence, a sample size of about 20 patients per group may be appropriate. It should be
noted that the difference of 50 units is not the alternative hypothesis; see Neuenschwander,
Rouyrre, Hollaender, Zuber, and Branson (2011) for a related discussion.
Using gsbDesign, the operating characteristics of the design with these success and futility
criteria can now be evaluated.

R> desPoC2 <- gsbDesign(nr.stages = 1, patients = c(20, 20),
+ sigma = c(88, 88), criteria.success = c(0, 0.975, 50, 0.5),
+ criteria.futility = c(40, 0.9))
R> simPoC2 <- gsbSimulation(truth = c(0, 70, 60),
+ type.update = "treatment effect", method = "numerical integration")
R> ocPoC2 <- gsb(desPoC2, simPoC2)
R> summary(ocPoC2, atDelta = c(0, 40, 50, 60))

*** Group Sequential Bayesian Design ***

Analysis N1 N2 S F std.S std.F
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Prior 0 0 NA NA NA NA
1 20 20 54.5 4.34 1.96 0.156

sigma treatment: 88 sigma control: 88

stopping for success:
delta stage 1 E{N}

0 0.0250 40
40 0.3007 40
50 0.4352 40
60 0.5777 40

stopping for futility:
delta stage 1

0 0.5619
40 0.1000
50 0.0504
60 0.0228

The clinical team may think that the probability of success when the true treatment difference
is 60 (a promising test treatment) is somewhat too low. Rather than now change the success
criteria, the better option seems to be to expand the trial design to a two-stage design.

Design with no prior information and one interim analysis

Now consider a group sequential design with no prior information and one interim analysis.
In both stages, we assign 20 patients to each treatment arm.

R> desPoC4 <- gsbDesign(nr.stages = 2, patients = c(20, 20),
+ sigma = c(88, 88), criteria.success = c(0, 0.975, 50, 0.5),
+ criteria.futility = c(40, 0.9))
R> simPoC4 <- gsbSimulation(truth = c(0, 70, 60),
+ type.update = "treatment effect", method = "numerical integration")
R> ocPoC4 <- gsb(desPoC4, simPoC4)
R> summary(ocPoC4, atDelta = c(0, 40, 50, 60, 70))

*** Group Sequential Bayesian Design ***

Analysis N1 N2 S F std.S std.F
Prior 0 0 NA NA NA NA

1 20 20 54.5 4.34 1.96 0.156
2 20 20 50.0 14.78 2.54 0.751

sigma treatment: 88 sigma control: 88

stopping for success:
delta stage 1 stage 2 total E{N}
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0 0.0250 0.0026 0.0276 56.5
40 0.3007 0.1102 0.4109 64.0
50 0.4352 0.1582 0.5934 60.6
60 0.5777 0.1828 0.7605 56.0
70 0.7107 0.1718 0.8825 51.2

stopping for futility:
delta stage 1 stage 2 total

0 0.5619 0.2447 0.8066
40 0.1000 0.0517 0.1518
50 0.0504 0.0200 0.0704
60 0.0228 0.0061 0.0288
70 0.0091 0.0015 0.0106

With this design, if the treatment is placebo-like, there is a 2.8% probability of declaring the
PoC successful and an 80.7% probability of declaring it futile. If the true treatment effect is
δ = 60, the success and futility probabilities are 76% and 2.9% respectively. The expected
sample size varies between 52 and 64 patients.

Design with prior information for placebo and one interim analysis

An informative prior for the true treatment effect (η10) in the placebo group was derived
from six historical trials in patients with Crohn’s disease, using a meta-analytic-predictive
approach (Neuenschwander et al. 2010). More precisely, µ1 ∼ N(49, σ2/20) was used as prior
information; for details, see Gsponer et al. (2014). Thus, prior information on the placebo is
worth 20 patients.

R> desPoC5 <- gsbDesign(nr.stages = 2, patients = c(10, 20),
+ sigma = c(88, 88), criteria.success = c(0, 0.975, 50, 0.5),
+ criteria.futility = c(40, 0.9), prior.control = c(49, 20))
R> simPoC5 <- gsbSimulation(truth = cbind(rep(c(30, 50, 70), each = 5),
+ c(30, 70, 80, 90, 100, 50, 90, 100, 110, 120, 70, 110, 120, 130, 140)),
+ nr.sim = 20000, type.update = "per arm", method = "simulation",
+ grid.type = "manually")
R> ocPoC5 <- gsb(desPoC5, simPoC5)

The resulting operating characteristics of this simulation are summarized in Table 1. If the
test treatment is placebo-like, then the PoC will be declared to be successful in only 1.3% of
the cases, i.e., the type I error is low. If the experimental treatment is borderline effective
(δ = 50) or similar to competitors (δ = 60), then a successful PoC is expected in 65% and 82%
of cases, respectively. The expected sample size is typically between 36 and 49, depending on
the true effect size.

6. Conclusion
In this paper, we have presented the R package gsbDesign. The package provides utilities to
study operating characteristics of group sequential Bayesian designs. When prior information
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δ Interim success Interim futility Final success Final futility Expected N
0 0.012 0.627 0.013 0.840 41
40 0.333 0.062 0.423 0.100 49
50 0.514 0.024 0.646 0.036 44
60 0.690 0.007 0.820 0.009 40
70 0.830 0.002 0.931 0.002 36

Table 1: Operating characteristics of the two stage design.

is available on the treatment effect, the package uses the efficient numerical integration meth-
ods from Jennison and Turnbull (1999) that are implemented in the R package gsDesign. If
the amount of information is not the same for the treatment and control groups, gsbDesign
uses simulation to compute the operating characteristics.
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