gsaot: Compute Global Sensitivity Analysis Indices Using Optimal
Transport
Computing Global Sensitivity Indices from given data using Optimal Transport, as defined in Borgonovo et al (2024) <doi:10.1287/mnsc.2023.01796>. You provide an input sample, an output sample, decide the algorithm, and compute the indices.
| Version: | 1.1.1 | 
| Imports: | boot, ggplot2, patchwork (≥ 1.2.0), Rcpp, RcppEigen (≥
0.3.4.0.0), Rdpack (≥ 2.4), stats, transport (≥ 0.15.0) | 
| LinkingTo: | Rcpp, RcppEigen | 
| Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0) | 
| Published: | 2025-09-17 | 
| DOI: | 10.32614/CRAN.package.gsaot | 
| Author: | Leonardo Chiani  [aut, cre, cph],
  Emanuele Borgonovo [rev],
  Elmar Plischke [rev],
  Massimo Tavoni [rev] | 
| Maintainer: | Leonardo Chiani  <leonardo.chiani at polimi.it> | 
| BugReports: | https://github.com/pietrocipolla/gsaot/issues | 
| License: | GPL (≥ 3) | 
| URL: | https://github.com/pietrocipolla/gsaot,
https://pietrocipolla.github.io/gsaot/ | 
| NeedsCompilation: | yes | 
| Citation: | gsaot citation info | 
| Materials: | README, NEWS | 
| CRAN checks: | gsaot results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=gsaot
to link to this page.