Package ‘groupTesting’

August 17, 2024

Title Simulating and Modeling Group (Pooled) Testing Data

Version 1.3.0

Date 2024-08-01

Maintainer Md S. Warasi <msarker@radford. edu>

Description Provides an expectation-maximization (EM) algorithm using the approach intro-
duced in Warasi (2023) <doi:10.1080/03610918.2021.2009867>. The EM algo-
rithm can be used to estimate the prevalence (overall proportion) of a disease and to esti-
mate a binary regression model from among the class of generalized linear mod-
els based on group testing data. The estimation framework we consider offers a flexible and gen-
eral approach; i.e., its application is not limited to any specific group testing protocol. Conse-
quently, the EM algorithm can model data arising from simple pooling as well as advanced pool-
ing such as hierarchical testing, array testing, and quality control pooling. Also, pro-
vided are functions that can be used to conduct the Wald tests de-
scribed in Buse (1982) <doi:10.1080/00031305.1982.10482817> and to simulate the group test-
ing data described in Kim et al. (2007) <doi:10.1111/j.1541-0420.2007.00817.x>. We of-

fer a function to compute relative efficiency measures, which can be used to optimize the maxi-
mum likelihood estimator of disease prevalence.

License GPL-3

Depends R(>=3.5.0)

Imports binGroup2, pracma, stats, parallel
NeedsCompilation yes

Encoding UTF-8

RoxygenNote 7.3.1

Author Md S. Warasi [aut, cre]

Repository CRAN

Date/Publication 2024-08-17 15:20:02 UTC

Contents
array.gt.simulation L e 2
glm.gt . . . e 5

https://doi.org/10.1080/03610918.2021.2009867
https://doi.org/10.1080/00031305.1982.10482817
https://doi.org/10.1111/j.1541-0420.2007.00817.x

2 array.gt.simulation
glmLink L e e 12
hier.gt.simulation 13
mle.prop.eff 16
PIOP-EL . o o o e e e e 20
waldTest 25

Index 27

array.gt.simulation Simulating Array-Based Group Testing Data

Description

This function simulates two-dimensional array-based group testing data.
Usage
array.gt.simulation(
N,
p=20.1,
protocol = c("A2", "A2M"),
n ’
Se,
Sp,
assaylID,
Yt = NULL
)
Arguments
N The number of individuals to be tested.
p A vector of length N consisting of individual disease probabilities.
protocol Either "A2" or "A2M", where "A2" ("A2M") refers to the two-dimensional array
without (with) testing the members of an array as a single pooled sample.
n The row (or column) size of the arrays.
Se A vector of assay sensitivities.
Sp A vector of assay specificities.
assayID A vector of assay identification numbers.

Yt

A vector of individual true disease statuses.

array.gt.simulation 3

Details

We consider the array testing protocol outlined in Kim et al. (2007). Under this protocol, N
individuals are assigned to m non-overlapping n-by-n matrices such that N = mn?. From each
matrix, n pools are formed using the row specimens and another n pools are formed using the
column specimens. In stage 1, the 2n pools are tested. In stage 2, individual testing is used for case
identification according to the strategy described in Kim et al. (2007). This is a 2-stage protocol
called Square Array without Master Pool Testing and denoted by A2(n : 1) in Kim et al. (2007).
A variant (3-stage protocol) is also presented in Kim et al. (2007) which employs testing the n?
array members together as an initial pooled unit before implementing the 2-stage array. If the initial
pooled test is negative, the procedure stops (i.e., the 2-stage array is not needed). However, if the
pooled test is positive, the 2-stage protocol is used as before. This 3-stage approach is called Square
Array with Master Pool Testing and is denoted by A2(n? : n : 1). See Kim et al. (2007) for more
details.

N should be divisible by the array size n2. When not divisible, the remainder individuals are tested
one by one (i.e., individual testing).

p is a vector of individual disease probabilities. When all individuals have the same probability of
disease, say, 0.10, p can be specified as rep(0.10, N) or p=0.10.

For "A2" and "A2M", the pool sizes used are c(n, 1) and c(n*2, n, 1), respectively.

For "A2", Seis c(Sel, Se2), where Se1 is the sensitivity of the assay used for both row and column
pools, and Se?2 is the sensitivity of the assay used for individual testing. For "A2M", Se is c(SeT,
Se2, Se3), where Se1 is for the initial array pool, Se2 is for the row and column pools, and Se3 is
for individual testing. Sp is specified in the same manner.

For "A2", assayIDis c(1, 1) when the same assay is used for row/column pool testing as well as
for individual testing, and assayID is c(1, 2) when assay 1 is used for row/column pool testing and
assay 2 is used for individual testing. In the same manner, assayID is specified for "A2M" as c(1,
1, 1),c(1, 2, 3), and in many other ways.

When available, the individual true disease statuses (1 for positive and O for negative) can be used in
simulating the group testing data through argument Yt. When an input is entered for Yt, argument
p will be ignored.

Value

A list with components:

gtData The simulated group testing data.
testsExp The number of tests expended in the simulation.
References

Kim HY, Hudgens M, Dreyfuss J, Westreich D, and Pilcher C (2007). Comparison of Group Testing
Algorithms for Case Identification in the Presence of Testing Error. Biometrics, 63(4), 1152—-1163.

See Also

hier.gt.simulation for simulation of the hierarchical group testing data.

4 array.gt.simulation

Examples

library(groupTesting)

Example 1: Square Array without Master Pool Testing (i.e., 2-Stage Array)
N <- 48 # Sample size

protocol <- "A2" # 2-stage array

n <-4 # Row/column size

Se <- ¢(0.95, 0.95) # Sensitivities in stages 1-2

Sp <- c(0.98, 0.98) # Specificities in stages 1-2

assayID <- c(1, 1) # The same assay in both stages

(a) Homogeneous population
pHom <- 0.10 # Overall prevalence
array.gt.simulation(N=N, p=pHom,protocol=protocol,n=n,Se=Se, Sp=Sp,assayID=assayID)

Alternatively, the individual true statuses can be used as:
yt <- rbinom(N, size=1, prob=0.1)
array.gt.simulation(N=N,protocol=protocol,n=n,Se=Se, Sp=Sp, assayID=assayID,Yt=yt)

(b) Heterogeneous population (regression)

param <- c(-3,2,1)

x1 <= rnorm(N, mean=0, sd=.75)

x2 <- rbinom(N, size=1, prob=0.5)

X <- cbind(1, x1, x2)

pReg <- exp(X%*%param)/(1+exp(X%*%param)) # Logit

array.gt.simulation(N=N, p=pReg,protocol=protocol,n=n,Se=Se, Sp=Sp,assayID=assayID)

The above examples with different assays

Se <- ¢(0.95, 0.98)

Sp <- ¢(0.97, 0.99)

assayID <- c(1, 2)
array.gt.simulation(N,pHom,protocol,n,Se,Sp,assayID)
array.gt.simulation(N,pReg,protocol,n,Se,Sp,assayID)

Example 2: Square Array with Master Pool Testing (i.e., 3-Stage Array)

N <- 48
protocol <- "A2M"
n <-4

Se <- ¢(0.95, 0.95, 0.95)
Sp <- ¢(0.98, 0.98, 0.98)
assayID <- c(1, 1, 1) # The same assay in 3 stages

(a) Homogeneous population
pHom <- 0.10
array.gt.simulation(N,pHom,protocol,n,Se,Sp,assayID)

(b) Heterogeneous population (regression)

param <- c(-3,2,1)

x1 <= rnorm(N, mean=0, sd=.75)

x2 <= rbinom(N, size=1, prob=0.5)

X <= cbind(1, x1, x2)

pReg <- exp(X%*x%param)/(1+exp(X%*%param)) # Logit

glm.gt 5

array.gt.simulation(N,pReg,protocol,n,Se,Sp,assayID)

The above examples with different assays:

Se <- ¢(0.95, 0.98, 0.98)

Sp <- ¢(0.97, 0.98, 0.92)

assayID <- 1:3
array.gt.simulation(N,pHom,protocol,n,Se,Sp,assayID)
array.gt.simulation(N,pReg,protocol,n,Se,Sp,assayID)

glm.gt EM Algorithm for Fitting Regression Models to Group Testing Data

Description

This function implements an expectation-maximization (EM) algorithm to fit regression models to
group testing data, where pooled responses are related to individual covariates through a link func-
tion in the generalized linear model (GLM) family. The EM algorithm, which is outlined in Warasi
(2023), finds the maximum likelihood estimate (MLE) for the vector of regression coefficients,
beta. The EM algorithm can model pooling data observed from any group testing protocol used in
practice, including hierarchical and array testing (Kim et al., 2007).

Usage

glm.gt(
betao,
gtData,
X,
g,
dg = NULL,
d2g = NULL,
grdMethod = c("central”, "forward”, "backward"),
covariance = FALSE,

nburn = 2000,
ngit = 5000,
maxit = 200,
tol = 0.001,

tracing = TRUE,
conf.level = 0.95,

)
Arguments
beta@ An initial value for the regression coefficients.
gtData A matrix or data.frame consisting of the pooled test outcomes and other infor-

mation from a group testing application. Needs to be specified as shown in the
example below.

6 glm.gt

X The design matrix.

g An inverse link function in the GLM family.

dg The first derivate of g. When NULL, a finite-difference approximation will be
used.

d2g The second derivate of g. When NULL, a finite-difference approximation will
be used.

grdMethod The finite-difference approximation method to be used for dg and d2g. See
"Details’.

covariance When TRUE, the covariance matrix is calculated at the MLE.

nburn The number of initial Gibbs iterates to be discarded.

ngit The number of Gibbs iterates to be used in the E-step after discarding nburn
iterates as a burn-in period.

maxit The maximum number of EM steps (iterations) allowed in the EM algorithm.

tol Convergence tolerance used in the EM algorithm.

tracing When TRUE, progress in the EM algorithm is displayed.

conf.level Confidence level to be used for the Wald confidence interval.

Further arguments to be passed to optim. See ’Details’.

Details

gtData must be specified as follows. Columns 1-5 consist of the pooled test outcomes (0 for nega-
tive and 1 for positive), pool sizes, pool-specific sensitivities, pool-specific specificities, and assay
identification (ID) numbers, respectively. From column 6 onward, the pool member ID numbers
need to be specified. Note that the ID numbers must start with 1 and increase consecutively up to
N, the total number of individuals tested. For smaller pools, incomplete ID numbers must be
filled out by -9 or any non-positive numbers as shown in the example below. The design matrix
X consists of invidual covariate information, such as age, sex, and symptoms, of the pool members
located in column 6 onward.

Z psz Se Sp Assay Meml Mem2 Mem3 Mem4 Mem5 Memb
Pool:1 1 6 090 092 1 1 2 3 4 5 6
Pool:2 0 6 090 092 1 7 8 9 10 11 12
Pool:3 1 2 095 096 2 1 2 -9 -9 -9 -9
Pool:4 0 2 095 0.96 2 3 4 -9 -9 -9 -9
Pool:5 1 2 095 096 2 5 6 -9 -9 -9 -9
Pooll6 0 1 092 090 3 1 -9 -9 -9 -9 -9
Pool:7 1 1 092 090 3 2 -9 -9 -9 -9 -9
Pool:8 0 1 092 0.90 3 5 -9 -9 -9 -9 -9
Pool9 0 1 092 0.90 3 6 -9 -9 -9 -9 -9

This is an example of gtData, where 12 individuals are assigned to 2 non-overlapping initial pools
and then tested based on the 3-stage hierarchical protocol. The test outcomes, Z, from 9 pools are
in column 1. In three stages, different pool sizes (6, 2, and 1), sensitivities, specificities, and assays
are used. The ID numbers of the pool members are shown in columns 6-11. The row names and

glm.gt 7

column names are not required. Note that the EM algorithm can accommodate any group testing
data including those described in Kim et al. (2007). For individual testing data, the pool size in
column 2 is 1 for all pools.

X is an Nxk design matrix, where each column represents a vector of individual covariate values.
For an intercept model, the first column values must be 1. The column (covariate) names of X, such
as ’age’ and ’sex’, will be displayed in the estimation summary. When column names are missing
(NULL), the names that will be displayed by default are ’Intercept’, *x1°, ’x2’, and so on.

The EM algorithm implements a Gibbs sampler to approximate the expectation in the E-step. Under
each EM iteration, ngit Gibbs samples are retained for these purposes after discarding the initial
nburn samples.

g relates the pooled responses Z (column 1 in gtData) to X. dg and d2g can be specified analo-
gously. These characteristics can be obtained from glmLink for the common links: logit, probit,
and complementary log-log.

grdMethod is used only when dg and d2g are NULL, where a finite-difference approximation is
implemented by the function fderiv from the package *pracma’.

The optimization routine optim is used to complete the M-step with the default method *Nelder-
Mead’. The argument ... allows the user to change the default method as well as other arguments in
optim.

The covariance matrix is calculated by an appeal to the missing data principle and the method
outlined in Louis (1982).

Value

A list with components:

param The MLE of the regression coefficients.
covariance Estimated covariance matrix for the regression coefficients.
iterUsed The number of EM iterations needed for convergence.
convergence 0 if the EM algorithm converges successfully and 1 if the iteration limit maxit
has been reached.
summary Estimation summary with Wald confidence interval.
References

Kim HY, Hudgens M, Dreyfuss J, Westreich D, and Pilcher C. (2007). Comparison of Group Testing
Algorithms for Case Identification in the Presence of Testing Error. Biometrics, 63:1152-1163.

Louis T. (1982). Finding the Observed Information Matrix when Using the EM algorithm. Journal
of the Royal Statistical Society: Series B, 44:226-233.

Vansteelandt S, Goetghebeur E, and Verstraeten T. (2000). Regression Models for Disease Preva-
lence with Diagnostic Tests on Pools of Serum Samples. Biometrics, 56:1126-1133.

Warasi M. (2023). groupTesting: An R Package for Group Testing Estimation. Communications in
Statistics-Simulation and Computation, 52:6210-6224.

See Also

hier.gt.simulation and array.gt.simulation for group testing data simulation, and prop.gt
for estimation of a disease prevalence from group testing data.

8 glm.gt

Examples

library(groupTesting)

To illustrate 'glm.gt', we use data simulated
by the functions 'hier.gt.simulation' and 'array.gt.simulation'.

Note: The simulated data-structures are consistent
with the data-structure required for 'gtData'.

Example 1: MLE from 3-stage hierarchical group testing data.
The data used is simulated by 'hier.gt.simulation'.

N <- 200 # Sample size

S <=3 # 3-stage hierarchical testing

psz <- c(6,2,1) # Pool sizes used in stages 1-3

Se <- ¢(.95,.95,.98) # Sensitivities in stages 1-3

Sp <- ¢(.95,.98,.96) # Specificities in stages 1-3
assayID <- c¢(1,2,3) # Assays used in stages 1-3

param.t <- c(-3,2,1) # The TRUE parameter to be estimated

Simulating covariates:

set.seed(123)

x1 <= rnorm(N, mean=0, sd=0.75)

x2 <- rbinom(N, size=1, prob=0.5)

X <= cbind(1, x1, x2)

colnames(X) <- c("Intercept”, "Predictor 1", "Predictor 2")

Note: Because the 1st column of X is 1, intercept model will be fit.

Specifying logit inverse link:
g <- function(t){exp(t)/(1+exp(t))}
pReg <- g(X%*%param.t)

Simulating test responses:
gtOut <- hier.gt.simulation(N,pReg,S,psz,Se,Sp,assayID)$gtData

Fitting the model (with intercept):

param@ <- param.t + 0.2 # Initial value

res <- glm.gt(beta@=param@,gtData=gtOut, X=X,
g=g,dg=NULL,d2g=NULL,
grdMethod="central", covariance=TRUE,
nburn=2000,ngit=5000,maxit=200,
tol=1e-03, tracing=TRUE, conf.level=0.95)

Note: Because dg and d2g are NULL (i.e., the exact derivatives
are not given), numerical derivatives are used.

Estimation results:
> res

$param
[1] -2.840802 1.992916 0.677176

glm.gt

$covariance

[,1] [,2] [,3]
[1,] ©.2134439 -0.10147555 -0.16693776
[2,] -0.1014756 ©.16855122 ©.02997113
[3,] -0.1669378 ©.02997113 0.26324589

% ¥ o

ETS

$iterUsed
[1] 10

$convergence
[1]1 o

ES

$summary

Estimate Std.Err 95%lower 95%upper
Intercept -2.841 0.462 -3.746 -1.935
Predictor 1 1.993 0.411 1.188 2.798
Predictor 2 0.677 ©.513 -0.328 1.683

Example 2: MLE from two-dimensional array testing data.
The data used is simulated by 'array.gt.simulation'.

N <- 200 # Sample size
protocol <- "A2" # 2-stage array without testing initial master pool
n<-5 # Row/column size

Se <- ¢(0.95, 0.95) # Sensitivities

Sp <- c(0.98, 0.98) # Specificities

assayID <- c(1, 1) # The same assay in both stages
param <- c(-4,1,1) # The TRUE parameter to be estimated

Simulating data:

set.seed(123)

x1 <= runif(N)

x2 <= rnorm(N, mean=0, sd=0.5)

x3 <- rbinom(N, size=1, prob=0.5)

X <= cbind(x1, x2, x3)

Note: Because the 1st column of X is not 1,

the model without intercept will be fit.

Finding g, dg, and d2g from the function 'glmLink':
res@ <- glmLink(fn.name="logit")

g <- resosg # Logit inverse link g()
dg <- res@$dg # The exact first derivate of g
d2g <- res@$d2g # The exact second derivate of g

pReg <- g(X%*%param) # Individual probabilities
gtOut <- array.gt.simulation(N,pReg,protocol,n,Se,Sp,assayID)$gtData

Fitting the model (without intercept):

param@ <- param + 0.2

res <- glm.gt(beta@=param@,gtData=gtOut,X=X, g=g,
dg=dg,d2g=d2g, covariance=TRUE,
nburn=2000,ngit=5000,maxit=200,
tol=1e-03, tracing=TRUE, conf.level=0.95)

print(res)

10

Example 3: MLE from non-overlapping initial pooled responses.

The data used is simulated by 'hier.gt.simulation'.

Note: With initial pooled responses, our MLE is equivalent
to the MLE in Vansteelandt et al. (2000).

N <- 1000 # Sample size

psz <- 5 # Pool size

S <-1 # 1-stage testing

Se <- 0.95 # Sensitivity

Sp <- 0.99 # Specificity

assayID <- 1 # Assay used for all pools

param <- c(-3,2,1) # The TRUE parameter to be estimated

Simulating data:

set.seed(123)

x1 <= rnorm(N, mean=0, sd=0.75)
x2 <- rbinom(N, size=1, prob=0.5)
X <= cbind(1, x1, x2)

Finding g, dg, and d2g by the function 'glmLink':

res@ <- glmLink(fn.name="probit") # Probit link

g <- resos$g

dg <- res0$dg

d2g <- res@$d2g

pReg <- g(X%*%param)

gtOut <- hier.gt.simulation(N,pReg,S,psz,Se,Sp,assayID)$gtData

Fitting the model:

param@ <- param + 0.2

res <- glm.gt(beta®=paramo,gtData=gtOut, X=X, g=g,
dg=dg,d2g=d2g, covariance=TRUE,
nburn=2000,ngit=5000,maxit=200,
tol=1e-03, tracing=TRUE, conf.level=0.95)

print(res)

Example 4: MLE from individual (one-by-one) testing data.
The data used is simulated by 'hier.gt.simulation'.

N <- 1000 # Sample size

psz <- 1 # Pool size 1 (i.e., individual testing)
S <=1 # 1-stage testing

Se <- 0.95 # Sensitivity

Sp <- 0.99 # Specificity

assaylID <- 1 # Assay used for all pools

param <- c¢(-3,2,1) # The TRUE parameter to be estimated

Simulating data:

set.seed(123)

x1 <= rnorm(N, mean=0, sd=0.75)
x2 <- rbinom(N, size=1, prob=0.5)

glm.gt

glm.gt

X <= cbind(1, x1, x2)

g <- function(t){exp(t)/(1+exp(t))} # Inverse logit

pReg <- g(X%*%param)

gtOut <- hier.gt.simulation(N,pReg,S,psz,Se,Sp,assayID)$gtData

Fitting the model:

param@ <- param + 0.2

res <- glm.gt(betad=paramo,gtData=gtOut,
X=X, g=g,dg=NULL,d2g=NULL,
grdMethod="central”, covariance=TRUE,
nburn=2000,ngit=5000,maxit=200,
tol=1e-03, tracing=TRUE, conf.level=0.95)

print(res)

Example 5: Using pooled testing data.

Pooled test outcomes:
Z<-c(1, 0,1, 0,1,0, 1, 0, 0)

Design matrix, X:

x1 <- ¢(0.8,1.2,0.4,1.5,1.8,1.8,0.1,1.6,0.2,0.2,1.8,0.2)
x2 <- c¢(31,56,45,64,26,47,22,60,35,41,32,41)

X <= cbind(x1, x2)

Pool sizes used:
psz <- c(6, 6, 2, 2, 2, 1, 1, 1, 1)

Pool-specific Se & Sp:
Se <- ¢(.90, .90, .95, .95, .95, .92, .92, .92, .92)
Sp <- ¢(.92, .92, .96, .96, .96, .90, .90, .90, .90)

Assays used:
Assay <- c(1, 1, 2, 2, 2, 3, 3, 3, 3)

Pool members:
Memb <- rbind(
c(1, 2, 3, 4, 5, 6),
c(7, 8, 9, 10, 11, 12),
c(1, 2, -9, -9, -9, -9),
c(3, 4, -9, -9, -9, -9),
c(5, 6, -9, -9, -9, -9),
c(1,-9, -9, -9, -9, -9,
c(2,-9, -9, -9, -9, -9),
c(5,-9, -9, -9, -9, -9,
c(6,-9, -9, -9, -9, -9
)
The data-structure suited for 'gtData':
gtOut <- cbind(Z, psz, Se, Sp, Assay, Memb)

Fitting the model with logit link:

g <- function(t){exp(t)/(1+exp(t))}

param@ <- c(0, 0)

res <- glm.gt(betad=paramo,gtData=gtOut, X=X,

12 glmLink

g=g,dg=NULL, d2g=NULL,

grdMethod="central"”, covariance=TRUE,

nburn=2000,ngit=5000,maxit=200,

tol=1e-03, tracing=TRUE, conf.level=0.95)
print(res)

glmLink Link Functions in the Class of Generalized Linear Models

Description

This function provides characteristics of common link functions (logit, probit, and comlementary
log-log). Specifically, based on the link name, the function with its inverse, first derivative, and
second derivative is provided.

Usage

glmLink(fn.name = c("logit”, "probit”, "cloglog"))

Arguments

fn.name One of the three: "logit", "probit", and "cloglog".

Value

A list with components:

g The link function corresponding to "logit", "probit", or "cloglog".
dg The first derivative of g.
d2g The second derivative of g.
glnv The inverse of g.
Examples

library(groupTesting)

Try:
glmLink("logit")

hier.gt.simulation 13

hier.gt.simulation Simulating Hierarchical Group Testing Data

Description

This function simulates hierarchical group testing data with any number of hierarchical stages.

Usage

hier.gt.simulation(N, p = 0.1, S, psz, Se, Sp, assayID, Yt = NULL)

Arguments
N The number of individuals to be tested.
p A vector of length N consisting of individual disease probabilities.
S The number of stages used in testing, where S >= 1.
psz A vector of pool sizes in stages 1-S.
Se A vector of assay sensitivities in stages 1-S.
Sp A vector of assay specificities in stages 1-S.
assayID A vector of the identification numbers of the assays used in stages 1-S.
Yt A vector of individual true disease statuses.
Details

We consider the S-stage hierarchical testing protocol outlined in Kim et al. (2007). Under this
protocol, N individual specimens are first assigned to m non-overlapping pools, where each initial
pool size is c; i.e., N = mec. The initial pools are tested in stage 1. If a pooled test is negative,
all members in the pool are diagnosed as negative. However, if a pooled test is positive, the pool
members are split into non-overlapping subpools to be tested in the next stage. This procedure is
continued. Note that individual testing is used in the final stage, S, for case identification.

S is a positive integer, S >= 1. When S=1, only the non-overlapping initial pools are tested in stage
1.

If N is not divisible by the initial pool size ¢, we implement the following policy to test the remainder
individuals: (1) when S=1, simply test the remainder pool once as a pooled sample; (2) when S>1,
test the remainder pool based on 2-stage hierarchical testing.

p is a vector of individual disease probabilities. When all individuals have the same probability of
disease, say, 0.10, p can be specified as p=rep(0.10, N) or p=0.10.

psz is a vector of length S, where the first element is the stage-1 pool size, the second element is
the stage-2 pool size, and so on. Pool size at any stage must be divisible by the pool size used at the
next stage. For example, psz can be specified as c(12,3,1) butnotas c(12,5,1).

When psz is a vector of length 1, test responses are simulated only from the initial pools.

Se is a vector of length S, where the first element is the sensitivity of the assay used in stage 1, the
second element is sensitivity of the assay in stage 2, and so on.

14 hier.gt.simulation

Sp is a vector of length S, where the first element is the specificity of the assay used in stage 1, the
second element is specificity of the assay in stage 2, and so on.

assaylID is a vector of length S, where the first element is the ID of the assay in stage 1, the second
element is the ID of the assay in stage 2, and so on.

When available, the individual true disease statuses (1 for positive and O for negative) can be used in
simulating the group testing data through argument Yt. When an input is entered for Yt, argument
p will be ignored.

Value

A list with components:

gtData The simulated group testing data.
testsExp The number of tests expended.
References

Kim HY, Hudgens M, Dreyfuss J, Westreich D, and Pilcher C (2007). Comparison of Group Testing
Algorithms for Case Identification in the Presence of Testing Error. Biometrics, 63(4), 1152—-1163.

See Also

array.gt.simulation for simulation of the array-based group testing data.

Examples

library(groupTesting)

Example 1: Two-stage hierarchical (Dorfman) testing

N <- 50 # Sample size
psz <- c(5, 1) # Pool sizes used in stages 1 and 2
S <-2 # The number of stages

Se <- ¢(0.95, 0.95) # Sensitivities in stages 1-2
Sp <- c(0.98, 0.98) # Specificities in stages 1-2
assayID <- c¢(1, 1) # The same assay in both stages

(a) Homogeneous population
pHom <- 0.10 # Overall prevalence
hier.gt.simulation(N=N,p=pHom, S=S, psz=psz,Se=Se, Sp=Sp, assayID=assayID)

Alternatively, the individual true statuses can be used as:
yt <- rbinom(N, size=1, prob=0.1)
hier.gt.simulation(N=N,S=S,psz=psz,Se=Se, Sp=Sp, assayIlD=assaylD,Yt=yt)

(b) Heterogeneous population (regression)

param <- c(-3,2,1)

x1 <= rnorm(N, mean=0, sd=.75)

x2 <- rbinom(N, size=1, prob=0.5)

X <= cbind(1, x1, x2)

pReg <- exp(X%*%param)/(1+exp(X%*%param)) # Logit
hier.gt.simulation(N=N,p=pReg, S=S, psz=psz,Se=Se, Sp=Sp, assayID=assayID)

hier.gt.simulation

Example 2: Initial (1-stage) pooled testing data
N <- 50

S <=1

Se <- 0.95

Sp <- 0.98

assayID <- 1

(a) Homogeneous population
pHom <- 0.1@ # Overall prevalence

a(i) Pooled testing
psz <- 5 # pool size
hier.gt.simulation(N,pHom,S, psz,Se,Sp,assayID)

a(ii) Inidividual testing
psz <- 1 # pool size
hier.gt.simulation(N,pHom,S,psz,Se,Sp,assaylD)

(b) Heterogeneous population (regression)

param <- c(-3,2,1)

x1 <= rnorm(N, mean=0, sd=.75)

x2 <- rbinom(N, size=1, prob=0.5)

X <= cbind(1, x1, x2)

pReg <- exp(X%*%param)/(1+exp(X%*%param)) # Logit

b(i) Pooled testing
psz <- 5
hier.gt.simulation(N,pReg,S,psz,Se, Sp,assaylD)

b(ii) Individual testing
psz <- 1
hier.gt.simulation(N,pReg,S,psz,Se,Sp,assaylD)

Example 3: Data with other configurations
N <- 48

p <-0.10

Se <- c¢(.90, .95, .92, .90, .99)

Sp <- ¢(.96, .96, .90, .92, .95)

Assay <- 1:5

Initial pooled testing, using the first element of Se, Sp & Assay
pszH1 <- 4
hier.gt.simulation(N=N,p=p,S=1,psz=pszH1,Se=Se, Sp=Sp, assayID=Assay)

pszH2 <- c(4,1) # Two-stage, using first 2 elements of Se, Sp & Assay
hier.gt.simulation(N=N, p=p,S=2,psz=pszH2,Se=Se, Sp=Sp, assayID=Assay)

pszH4 <- c¢(16,8,2,1) # Four-stage, using first 4 elements of Se, Sp & Assay
hier.gt.simulation(N=N, p=p, S=4,psz=pszH4,Se=Se, Sp=Sp, assayID=Assay)

pszH3 <- ¢(12,2,1) # Three-stage, using first 3 elements of Se, Sp & Assay
Assay3 <- ¢(2,1,3) # Array ID numbers do not need to be in order

16 mle.prop.eff

hier.gt.simulation(N=N,p=p,S=3,psz=pszH3, Se=Se, Sp=Sp, assayID=Assay3)

Works with a remainder pool of 2 individuals

N <- 50

psz <- ¢c(12,2,1)
hier.gt.simulation(N=N,p=p,S=3,psz=psz,Se=Se, Sp=Sp, assayID=Assay)

mle.prop.eff Efficiency of the Proportion Estimator Calculated from Group Testing
Data

Description

This function provides relative efficiency results for the maximum likelihood estimator of disease
prevalence (proportion), p. The estimator, p, is calculated using test responses from commonly
used group testing protocols. The relative efficiency values measure how effective group testing
is for estimating the prevalence when compared to individual testing. The function also calculates
expected testing and estimation costs. Please refer to Warasi and Das (2024), where the statistical
methods were introduced.

Usage

mle.prop.eff(
P,
Se,
Sp,
initial.psz,
protocol = c("MPT", "H2", "H3", "H4", "A2", "A2M"),
criterion = c("RTE", "REE", "RCE"),

N = 800,

ngit = 3000,

maxit = 200,

tol = 0.001,

nrep = 3000,

seed = NULL,

ncore = 1
)

Arguments

p Proportion of individuals truly positive for a disease (i.e., disease prevalence).
Se Assay sensitivity, a scalar value.
Sp Assay specificity, a scalar value.
initial.psz A vector of initial pool sizes.

protocol One of the six group testing protocols, where "MPT" is the default.

mle.prop.eff 17

criterion One of the three optimization criteria, where 'RTE’ is the default.

N Number of individuals to be tested using group testing (i.e., sample size).

ngit Number of Gibbs iterates used in the EM algorithm.

maxit Maximum number of iterates in the EM algorithm.

tol Convergence tolerance for the EM algorithm.

nrep Number of repetitions used in the proposed computation algorithm.

seed A single seed value, an integer.

ncore Number of CPU cores to be used in computing, where ncore => 1.
Details

The function mle.prop.eff computes three measures of efficiency: relative testing efficiency
(RTE), relative estimation efficiency (REE), and relative cost efficiency (RCE). These measures
can be calculated for six common group testing protocols: master pool testing (MPT), hierarchical
testing with two, three, and four stages (H2, H3, and H4), and array testing without and with master
pool testing (A2 and A2M). For more information on these protocols, refer to Kim et al. (2007). We
use the term ’relative efficiency’ because these measures compare group testing (numerator) with
the usual one-at-a-time, i.e., individual testing (denominator).

In the paper, we defined 'RTE’ and discussed how it can be calculated for both common and more
complex group testing protocols. For the five multistage protocols (H2, H3, H4, A2, and A2M),
our function provides RTE values based on the analytic expressions of Kim et al. (2007). These
expressions have been coded by Hitt et al. (2023) in their R package *binGroup2’. We developed
R code to restructure the output obtained from binGroup2, so it is consistent with our proposed
method.

Based on the expressions in our article, we analytically calculate REE for MPT and H2 and also
compute RCE for MPT. For other scenarios, we determine REE and RCE based on our proposed
computation algorithm.

The expected costs, E[T], E[(p — p)?], and E[T(p — p)?], are calculated for a given N, the number
of individuals to be tested. The "MPT’ and "H2’ protocols require that N is completely divisible by
the initial pool size k. If this is not the case, the integer that is closest to N and divisible by & will
be used. It is worth noting that IV is also used in the computation algorithm, where a large-sample
assumption is made. We found that N = 800 may be sufficient in most scenarios for the validity of
this assumption, although we used N = 1200 in the article; for more information, refer to Warasi
and Das (2024).

Arguments ’ngit’, 'maxit’, and ’tol’ are used in the EM algorithm. We found that ’ngit = 3000’
Gibbs iterates are generally sufficient, but using a bigger 'ngit’ may be more reliable. The default
choices for *maxit’ and "tol’ are also reasonable.

Argument 'nrep’ is necessary for the validity of the law of large numbers in the computation al-
gorithm. While a larger choice of ’nrep’ is generally preferable, our paper suggests that 5000
repetitions may be sufficient in most scenarios. Note that 'nrep = 3000’ or so may also provide
reasonable approximations.

Execution of 'RCE’ for multistage protocols (H2, H3, H4, A2, and A2M) is quite slow because it
uses Gibbs samplers in the computation algorithm. For the same reason, execution of "REE’ for
H3, H4, A2, and A2M is also slow. To overcome this limitation, we included the ncore argument,

18 mle.prop.eff

which enables users to perform the computing tasks using parallel CPUs through the parallel
package. The program works with ncore = 1 or with any larger choice of ncore.

Specifying a ’seed’ ensures reproducibility of the results produced by our function, whether one
uses a single core or multiple cores. Note that the seed value is used only when the computation
algorithm is implemented.

Value

non non

A list with three matrix objects labeled as "efficiency", "expected_cost", "iterations":

» "efficiency'': A matrix that reports the relative efficiency results: RTE, REE, and RCE.

* "expected_cost": A matrix reporting the expected costs: E[T], E[(p—p)?], and E[T(p—p)?],
corresponding to the criteria RTE, REE, and RCE, respectively.

* "iterations'': A matrix that provides the cumulative running average of the estimates (sample
means) of E[(p — p)?] and E[T(p — p)?] when the computation algorithm is used. These
running estimates can be useful for verification of the ’law of large numbers’, as demonstrated
in the Web Appendix of the article Warasi and Das (2024). In each row of the matrix, the first
1, 2, or 3 columns are for pool size(s) and the remaining 'nrep’ columns provide the running
averages; see the examples.

These results are provided for all possible pooling configurations within the specified range of initial
pool sizes. The stage-specific pool sizes are also included in the results.

References

* Kim HY, Hudgens M, Dreyfuss J, Westreich D, and Pilcher C. (2007). Comparison of Group
Testing Algorithms for Case Identification in the Presence of Testing Error. Biometrics,
63:1152-1163.

e Zhang W, Liu A, Li Q, Albert P. (2020). Incorporating Retesting Outcomes for Estimation of
Disease Prevalence. Statistics in Medicine, 39:687-697.

* Warasi and Das (2024). Optimizing Disease Surveillance Through Pooled Testing with Appli-
cation to Infectious Diseases. Journal of Agricultural, Biological and Environmental Statis-
tics. In press.

Examples

library(groupTesting)

Gonorrhea data information:

po <- 0.041 # True prevalence

Se <- 0.913 # Assay sensitivity

Sp <- 0.993 # Assay specificity

psz <- 2:6 # A range of initial pool sizes

Example 1: Two-stage hierarchical testing (H2)

REE (using closed-form expressions)
res <- mle.prop.eff(p=p@, Se=Se, Sp=Sp, initial.psz=psz, protocol="H2", criterion="REE")

mle.prop.eff

Output

> res

$efficiency

PSZ.S1 PSZ.S2 REE
[1,] 2 1 0.8920
#[2,] 3 1 0.8932
[3,] 4 1 0.8975
[4,] 5 1 0.9034
[5,] 6 1 0.9104

$expected_cost

PSZ.S1 PSZ.S2 E[(phat-p)*2]
#01,] 2 1 5.731668e-05
[2,] 3 1 5.732655e-05
[3,] 4 1 5.767260e-05
[4,] 5 1 5.805423e-05
[5,] 6 1 5.864758e-05

$iterations
NULL

RTE (using closed-form expressions)
mle.prop.eff(p=p0, Se=Se, Sp=Sp, initial.psz=psz, protocol="H2", criterion="RTE")

RCE (using the computation algorithm)
res <- mle.prop.eff(p=p@, Se=Se, Sp=Sp, initial.psz=psz, protocol="H2", seed=123,
criterion="RCE"”, N=800, ngit=3000, maxit=200, to0l=0.001, nrep=3000, ncore=4)

Note: For 'H2' protocol, get cumulative running averages as:
res2 <- res$iterations[,-(1:2)]
Now, plot each row; for example: plot(res2[1,], type='l")

Execution of 'RCE' for H2 is slow, as discussed in the 'details' section.
The computing challenge can be overcome using multiple CPU cores as shown above.

Example 2: Three-stage hierarchical testing (H3)

REE (using the computation algorithm)

res <- mle.prop.eff(p=p@, Se=Se, Sp=Sp, initial.psz=psz, protocol="H3", seed=123,
criterion="REE"”, N=800, ngit=3000, maxit=200, to0l=0.001, nrep=3000, ncore=4)

#

Note: For 'H3' protocol, get cumulative running averages as:

res2 <- res$iterations[,-(1:3)] # Now, plot each row: plot(res2[1,], type='l")

RTE (using closed-form expressions)
res <- mle.prop.eff(p=p@, Se=Se, Sp=Sp, initial.psz=psz, protocol="H3",
criterion="RTE"”, N=800, ngit=3000, maxit=200, to0l=0.001, nrep=3000, ncore=4)

RCE (using the computation algorithm)

20 prop.gt

res <- mle.prop.eff(p=p0, Se=Se, Sp=Sp, initial.psz=psz, protocol="H3", seed=123,
criterion="RCE"”, N=800, ngit=3000, maxit=200, to0l=0.001, nrep=3000, ncore=4)

prop.gt EM Algorithm to Estimate the Prevalence of a Disease from Group
Testing Data

Description

This function implements an expectation-maximization (EM) algorithm to find the maximum like-
lihood estimate (MLE) of a disease prevalence, p, based on group testing data. The EM algorithm,
which is outlined in Warasi (2023), can model pooling data observed from any group testing proto-
col used in practice, including hierarchical and array testing (Kim et al., 2007).

Usage

prop.gt(
PO,
gtData,
covariance = FALSE,
nburn = 2000,
ngit = 5000,
maxit = 200,
tol = 0.001,

tracing = TRUE,
conf.level = 0.95

)
Arguments

po An initial value of the prevalence.

gtData A matrix or data.frame consisting of the pooled test outcomes and other infor-
mation from a group testing application. Needs to be specified as shown in the
example below.

covariance When TRUE, the variance is calculated at the MLE.

nburn The number of initial Gibbs iterates to be discarded.

ngit The number of Gibbs iterates to be used in the E-step after discarding the initial
iterates as a burn-in period.

maxit The maximum number of EM steps (iterations) allowed in the EM algorithm.

tol Convergence tolerance used in the EM algorithm.

tracing When TRUE, progress in the EM algorithm is displayed.

conf.level Confidence level to be used for the Wald confidence interval.

prop.gt 21

Details

gtData must be specified as follows. Columns 1-5 consist of the pooled test outcomes (0 for
negative and 1 for positive), pool sizes, pool-specific sensitivities, pool-specific specificities, and
assay ID numbers, respectively. From column 6 onward, the pool member ID numbers need to be
specified. Note that the ID numbers must start with 1 and increase consecutively up to N, the total
number of individuals tested. For smaller pools, incomplete ID numbers must be filled out by
-9 or any non-positive numbers as shown in the example below.

Z psz Se Sp Assay Meml Mem2 Mem3 Mem4 Mem5 Memb6

Pool:1 1 6 090 0.92 1 1 2 3 4 5 6

Pool:2 0 6 090 0.92 1 7 8 9 10 11 12
Pool:l3 1 2 095 096 2 1 2 -9 -9 -9 -9
Pool:4 0 2 095 096 2 3 4 -9 -9 -9 -9
Pooll5 1 2 095 096 2 5 6 -9 -9 -9 -9
Pool:6 0 1 092 0.90 3 1 -9 -9 -9 -9 -9
Pool:7 1 1 092 0.90 3 2 -9 -9 -9 -9 -9
Pool:8 0 1 092 0.90 3 5 -9 -9 -9 -9 -9
Pool9 0 1 092 090 3 6 -9 -9 -9 -9 -9

This is an example of gtData, where 12 individuals are assigned to 2 non-overlapping initial pools
and then tested based on the 3-stage hierarchical protocol. The test outcomes, Z, from 9 pools are
in column 1. In three stages, different pool sizes (6, 2, and 1), sensitivities, specificities, and assays
are used. The ID numbers of the pool members are shown in columns 6-11. The row names and
column names are not required. Note that the EM algorithm can accommodate any group testing
data including those described in Kim et al. (2007). For individual testing data, the pool size in
column 2 is 1 for all pools.

The EM algorithm implements a Gibbs sampler to approximate quantities required to complete
the E-step. Under each EM iteration, ngit Gibbs samples are retained for these purposes after
discarding the initial nburn samples.

The variance of the MLE is calculated by an appeal to the missing data principle and the method
outlined in Louis (1982).

Value

A list with components:

param The MLE of the disease prevalence.

covariance Estimated variance for the disease prevalence.

iterUsed The number of EM iterations used for convergence.

convergence 0 if the EM algorithm converges successfully and 1 if the iteration limit maxit

has been reached.

summary Estimation summary with Wald confidence interval.

22 prop.gt

References

Kim HY, Hudgens M, Dreyfuss J, Westreich D, and Pilcher C. (2007). Comparison of Group Testing
Algorithms for Case Identification in the Presence of Testing Error. Biometrics, 63:1152-1163.

Litvak E, Tu X, and Pagano M. (1994). Screening for the Presence of a Disease by Pooling Sera
Samples. Journal of the American Statistical Association, 89:424-434.

Liu A, Liu C, Zhang Z, and Albert P. (2012). Optimality of Group Testing in the Presence of
Misclassification. Biometrika, 99:245-251.

Louis T. (1982). Finding the Observed Information Matrix when Using the EM algorithm. Journal
of the Royal Statistical Society: Series B, 44:226-233.

Warasi M. (2023). groupTesting: An R Package for Group Testing Estimation. Communications in
Statistics-Simulation and Computation, 52:6210-6224.

See Also

hier.gt.simulation and array.gt.simulation for group testing data simulation, and glm.gt
for group testing regression models.

Examples

library(groupTesting)

To illustrate 'prop.gt', we use data simulated by
the R functions 'hier.gt.simulation' and 'array.gt.simulation'.

The simulated data-structures are consistent
with the data-structure required for 'gtData'.

Example 1: MLE from 3-stage hierarchical group testing data.
The data used is simulated by 'hier.gt.simulation'.

N <- 90

S<-3

psz <- c(6,2,1)

Se <- ¢(.95,.95,.98)
Sp <- ¢(.95,.98,.96)
assaylID <- c(1,2,3)
p.t <- 0.05

Sample size

3-stage hierarchical testing

Pool sizes used in stages 1-3
Sensitivities in stages 1-3
Specificities in stages 1-3

Assays used in stages 1-3

The TRUE parameter to be estimated

e

Simulating data:
set.seed(123)
gtOut <- hier.gt.simulation(N,p.t,S,psz,Se,Sp,assayID)$gtData

Running the EM algorithm:

pStart <- p.t + 0.2 # Initial value

res <- prop.gt(p@=pStart,gtData=gtOut, covariance=TRUE,
nburn=2000,ngit=5000,maxit=200,tol=1e-03,
tracing=TRUE, conf.level=0.95)

Estimation results:
> res

prop.gt

$param
[1] 0.05158

$covariance
[,1]
[1,] 0.0006374296

$iterUsed
[1] 4

$convergence
#0110

$summary
Estimate StdErr
prop 0.052 0.025

Example 2: MLE from
The data used is sim

N <- 100 #
protocol <- "A2" #
n<-5 #
Se <- ¢(0.95, 9.95) #
Sp <- c(0.98, 0.98) #
assaylID <- c(1, 1) #
p.true <- 0.05 #

Simulating data:
set.seed(123)
gtOut <- array.gt.simul

Fitting the model:
pStart <- p.true + 0.2
res <- prop.gt(p@=pStar
print(res)

Example 3: MLE from
The data used is sim

Note: With initial p
to the MLE in Litvak

N <- 1000 #
psz <- 5 #
S <-1 #
Se <- 0.95 #
Sp <- 0.99 #
assayID <- 1 #
p.true <- 0.05 #

95%1lower 95%upper
0.002 0.101

two-dimensional array testing data.
ulated by 'array.gt.simulation'.

Sample size

2-stage array without testing the initial master pool
Row/column size

Sensitivities

Specificities

The same assay in both stages

The TRUE parameter to be estimated

ation(N,p.true,protocol,n,Se,Sp,assayID)$gtData

Initial value
t,gtData=gtOut, covariance=TRUE)

non-overlapping initial pooled responses.
ulated by 'hier.gt.simulation'.

ooled responses, our MLE is equivalent
et al. (1994) and Liu et al. (2012).

Sample size

Pool size

1-stage testing
Sensitivity

Specificity

Assay used for all pools
True parameter

23

24

prop.gt

set.seed(123)
gtOut <- hier.gt.simulation(N,p.true,S,psz,Se,Sp,assayID)$gtData

pStart <- p.true + 0.2 # Initial value

res <- prop.gt(p@=pStart,gtData=gtout,
covariance=TRUE, nburn=2000,ngit=5000,
maxit=200,tol=1e-03, tracing=TRUE)

print(res)

Example 4: MLE from individual (one-by-one) testing data.
The data used is simulated by 'hier.gt.simulation'.

N <- 1000 # Sample size

psz <- 1 # Pool size 1 (i.e., individual testing)
S <=1 # 1-stage testing

Se <- 0.95 # Sensitivity

Sp <- 0.99 # Specificity

assaylD <- 1 # Assay used for all pools

p.true <- 0.05 # True parameter

set.seed(123)
gtOut <- hier.gt.simulation(N,p.true,S,psz,Se,Sp,assayID)$gtData

pStart <- p.true + 0.2 # Initial value
res <- prop.gt(p@=pStart,gtData=gtOut,
covariance=TRUE, nburn=2000,
ngit=5000,maxit=200,
tol=1e-03, tracing=TRUE)
print(res)

Example 5: Using pooled testing data.

Pooled test outcomes:
Z<-c(l, 0,1, 0,1,0,1, 0, 0

Pool sizes used:
psz <- c(6, 6, 2, 2, 2, 1, 1, 1, 1)

Pool-specific Se & Sp:
Se <- c¢(.90, .90, .95, .95, .95, .92, .92, .92, .92)
Sp <- ¢(.92, .92, .96, .96, .96, .90, .90, .90, .90)

Assays used:
Assay <- c(1, 1, 2, 2, 2, 3, 3, 3, 3)

Pool members:

Memb <- rbind(
c(1, 2, 3, 4, 5, 6),
c(7, 8, 9, 10, 11, 12),
c(1, 2, -9, -9, -9, -9),
c(3, 4, -9, -9, -9, -9,
c(5, 6, -9, -9, -9, -9,
c(1,-9, -9, -9, -9, -9),

waldTest 25

c(2,-9, -9, -9, -9, -9,

c(5,-9, -9, -9, -9, -9,

c(6,-9, -9, -9, -9, -9
)
The data-structure suited for 'gtData':
gtOut <- cbind(Z, psz, Se, Sp, Assay, Memb)

Fitting the model:

pStart <- 0.10

res <- prop.gt(p@=pStart,gtData=gtOut,
covariance=TRUE, nburn=2000,
ngit=5000,maxit=200,
tol=1e-03, tracing=TRUE)

print(res)

waldTest Wald Chi-Square Test

Description

This function implements the Wald chi-square test on a Kx1 parameter vector theta. The test
assumes that thetaHat, a consistent estimator of theta such as MLE, is asymptotically normal with
mean theta and covariance matrix Sigma. The function can implement 1 test on theta as well as
multiple, Q, tests jointly on theta.

Usage
waldTest(R, thetaHat, Sigma, r = @, L = NULL)

Arguments
R A @QxK matrix of known coefficients depending on how the test is to be carried
out.
thetaHat An estimate of theta.
Sigma An estimated covariance matrix for thetaHat.
r A @x1 matrix of hypothesized values.
L A character string to be used as a name of the test. When NULL, "L" will be
used.
Details

Suppose that Q tests are to be performed jointly on the K by 1 parameter vector theta. Let R be
a @xK matrix of known coefficients such as 0, 1, and -1, and r be a x1 matrix of hypothesized
values. The hypotheses are HO : Rf = r vs. H1: R !=r. The test statistic has a chi-square
distribution with Q degrees of freedom (Buse, 1982; Agresti, 2002).

26 waldTest

Value

A data.frame object of the Wald test results.

References

Agresti A. (2002). Categorical Data Analysis (2nd ed.). Wiley. ISBN 0471360937.

Buse A. (1982). The Likelihood Ratio, Wald, and Lagrange Multiplier Tests: An Expository Note.
The American Statistician, 36:153-157.

Examples

library(groupTesting)

Example 1

Parameter: p (proportion)

MLE <- 0.42

Var <- 0.016

(a) Test HO: p = 0.50 vs. Hl1: p !=0.50

R <- matrix(1, nrow=1, ncol=1)

po <- 0.50

waldTest(R=R, thetaHat=MLE, r=p@, Sigma=Var)

Example 2
Parameter: beta = (betal, beta2), regression coefficients
MLE <- c(1.09, 2.95)
Cov <- rbind(c(0.21, -0.27),
c(-0.27, 0.66))
(a) Test HO: betal = beta2 vs. H1: betal != beta2
R <= rbind(c(1,-1))
waldTest(R=R, thetaHat=MLE, r=0, Sigma=Cov, L="1 vs 2")

(b) Test HO@: betal = @ vs. H1: betal != 0
R <- rbind(c(1,0))
waldTest(R=R, thetaHat=MLE, r=0, Sigma=Cov)

Example 3

Parameter: beta = (beta@, betal, beta2)

MLE <- c(-3.05, 1.99, 0.93)

Cov <- rbind(c(0.045, -0.022, -0.034),
c(-0.022, 0.032, 0.008),
c(-0.034, 0.008, 0.048))

Performing simultaneous test:

HO: beta® = -3, HO: betal = 2, HO: beta2 =1
H1: beta® != -3, H1: betal != 2, H1: beta2 !=1
R <- rbind(c(1,0,0),

c(0,1,0),

c(0,0,1))

r <- matrix(c(-3,2,1), nrow=3)
waldTest(R=R, thetaHat=MLE, r=r, Sigma=Cov)

Index

array.gt.simulation, 2, 7, 14, 22

glm.gt, 5, 22
glmLink, 7, 12

hier.gt.simulation, 3, 7, 13, 22
mle.prop.eff, 16

optim, 6, 7

prop.gt, 7, 20

waldTest, 25

27

	array.gt.simulation
	glm.gt
	glmLink
	hier.gt.simulation
	mle.prop.eff
	prop.gt
	waldTest
	Index

