
Package ‘gratis’
April 10, 2024

Type Package

Title Generating Time Series with Diverse and Controllable
Characteristics

Version 1.0.7

Description Generates synthetic time series based on various univariate
time series models including MAR and ARIMA processes. Kang, Y.,
Hyndman, R.J., Li, F.(2020) <doi:10.1002/sam.11461>.

License GPL-3

URL https://github.com/ykang/gratis

BugReports https://github.com/ykang/gratis/issues/

Depends R (>= 3.5.0)

Imports doRNG, dplyr, feasts, fGarch, foreach, forecast (>= 8.16), GA,
generics, magrittr, methods, mvtnorm, polynom, purrr, shiny,
stats, tibble, tsfeatures, tsibble, utils

Suggests knitr, rlang, rmarkdown, shinydashboard

VignetteBuilder knitr

Encoding UTF-8

LazyLoad yes

NeedsCompilation no

Repository CRAN

RoxygenNote 7.3.1

Author Yanfei Kang [aut] (<https://orcid.org/0000-0001-8769-6650>),
Feng Li [aut, cre] (<https://orcid.org/0000-0002-4248-9778>),
Rob Hyndman [aut] (<https://orcid.org/0000-0002-2140-5352>),
Mitchell O'Hara-Wild [ctb] (<https://orcid.org/0000-0001-6729-7695>),
Bocong Zhao [ctb] (<https://orcid.org/0000-0001-8434-9047>)

Maintainer Feng Li <feng.li@cufe.edu.cn>

Date/Publication 2024-04-10 17:10:20 UTC

1

https://doi.org/10.1002/sam.11461
https://github.com/ykang/gratis
https://github.com/ykang/gratis/issues/
https://orcid.org/0000-0001-8769-6650
https://orcid.org/0000-0002-4248-9778
https://orcid.org/0000-0002-2140-5352
https://orcid.org/0000-0001-6729-7695
https://orcid.org/0000-0001-8434-9047

2 arima_model

R topics documented:
app_gratis . 2
arima_model . 2
ets_model . 4
generate.mar . 6
generate_msts . 7
generate_ts . 8
generate_ts_with_target . 9
mar_model . 10
pi_coefficients . 12
rmixnorm . 13
rmixnorm_ts . 14
simulate.mar . 15
simulate_target . 16

Index 19

app_gratis Web Application to generate time series with controllable features.

Description

Web Application to generate time series with controllable features.

Usage

app_gratis()

arima_model Specify parameters for an ARIMA model

Description

This function allows the parameters of a Gaussian ARIMA(p, d, q)(P,D,Q)[m] process to be
specified. The output can be used in simulate.Arima() and generate.Arima. If any argument
is NULL, the corresponding parameters are randomly selected. The AR and MA orders p and q are
chosen from {0,1,2,3}, the seasonal AR and MA orders P and Q are from {0,1,2}, while the order of
differencing, d is in {0,1,2}, and the order of seasonal differencing D is in {0,1}, with the restriction
that d+D ≤ 2. If constant is NULL, it is set to 0 if d+D = 2, otherwise it is uniformly sampled on
(-3,3). The model orders and the parameters are uniformly sampled. The AR and MA parameters
are selected to give stationary and invertible processes when d = D = 0. The noise variance sigma
is uniformly sampled on (1,5). The parameterization is as specified in Hyndman & Athanasopoulos
(2021).

arima_model 3

Usage

arima_model(
frequency = 1,
p = NULL,
d = NULL,
q = NULL,
P = NULL,
D = NULL,
Q = NULL,
constant = NULL,
phi = NULL,
theta = NULL,
Phi = NULL,
Theta = NULL,
sigma = NULL

)

Arguments

frequency The length of the seasonal period (e.g., 12 for monthly data).

p An integer equal to the non-seasonal autoregressive order

d An integer equal to the non-seasonal order of differencing

q An integer equal to the non-seasonal moving average order

P An integer equal to the seasonal autoregressive order

D An integer equal to the seasonal order of differencing

Q An integer equal to the seasonal moving average order

constant The intercept term

phi A numeric p-vector containing the AR parameters.

theta A numeric p-vector containing the MA parameters.

Phi A numeric p-vector containing the seasonal AR parameters.

Theta A numeric p-vector containing the seasonal MA parameters.

sigma The standard deviation of the noise.

Value

An ‘Arima‘ object as described in the arima function from the stats package.

Author(s)

Rob J Hyndman

See Also

simulate.Arima

4 ets_model

Examples

An AR(2) model with random parameters
model1 <- arima_model(p = 2, d = 0, q = 0)
An AR(2) model with specific parameters
model2 <- arima_model(p = 2, d = 0, q = 0, phi = c(1.34, -0.64), sigma = 15)
Seasonal ARIMA model with randomly selected parameters
model3 <- arima_model(frequency = 4)
Simulate from each model and plot the results
library(forecast)
simulate(model1, 100) %>% plot()
simulate(model2, 100) %>% plot()
simulate(model3, 100) %>% plot()

ets_model Specify parameters for an ETS model

Description

This function allows the parameters of a ETS state space model to be specified. The output can
be used in simulate.ets() and generate.ets. If any argument is NULL, the corresponding pa-
rameters are randomly selected. The error component is chosen from {A,M}, the trend component
is chosen from {N,A,Ad}, and the seasonal component is chosen from {N,A,M}. In all cases, the
component is selected uniformly on the options. The parameters are selected uniformly on the
forecastable parameter space. The noise variance sigma is uniformly sampled on (1,5) for additive
errors, and on (0.0001,0.05) for multiplicative errors. The initial states are chosen uniformly on
(-1,1) in all cases except for multiplicative seasonal states which are uniform on (0.5, 1.5), and
models with multiplicative errors for which the level is uniform on (2, 10). The parameterization is
as specified in Hyndman & Athanasopoulos (2021).

Usage

ets_model(
frequency = 1,
error = NULL,
trend = NULL,
seasonal = NULL,
alpha = NULL,
beta = NULL,
gamma = NULL,
phi = NULL,
level = NULL,
slope = NULL,
season = NULL,
damped = NULL,
sigma = NULL

)

ets_model 5

Arguments

frequency The length of the seasonal period (e.g., 12 for monthly data).

error A character string specifying the error part of the ETS model: either "A" or "M".

trend A character string specifying the trend part of the ETS model: either "N", "A"
or "Ad".

seasonal A character string specifying the seasonal part of the ETS model: either "N",
"A" or "M".

alpha A numeric value for the smoothing parameter controlling the level.

beta A numeric value for the smoothing parameter controlling the trend.

gamma A numeric value for the smoothing parameter controlling the seasonality.

phi A numeric value specifying the damping parameter.

level A numeric value specifying the initial level `0.

slope A numeric value specifying the initial slope b0
season A numeric vector specifying the initial states s1−m, ..., s0.

damped A logical value indicating if the trend is damped or not.

sigma The standard deviation of the noise.

Value

An ‘ets‘ object as described in the ets function from the forecast package.

Author(s)

Rob J Hyndman

See Also

simulate.ets

Examples

An ETS(A,A,N) model with random parameters
model1 <- ets_model(error = "A", trend = "A", seasonal = "N")
An ETS(A,A,N) model with specific parameters
model2 <- ets_model(

error = "A", trend = "A", seasonal = "N",
alpha = 0.3, beta = 0.2, level = 0, slope = 1, sigma = 2

)
A multiplicative quarterly seasonal ETS model with random parameters
model3 <- ets_model(seasonal = "M", frequency = 4)
Simulate from each model and plot the results
library(forecast)
simulate(model1, 100) %>% plot()
simulate(model2, 100) %>% plot()
simulate(model3, 100) %>% plot()

6 generate.mar

generate.mar Generate a tsibble of synthetic data from a Mixture Autoregressive
model

Description

This function simulates multiple random sample paths from a mixture of k Gaussian AR(p) pro-
cesses. The model is of the form

yt = φ0,i + φ1,iyt−1 + · · · + φp,iyt−p + σi,tεt

with probability αi, where εt is a N(0,1) variate. The index of the tsibble is guessed from the MAR
model seasonal periods.

Usage

S3 method for class 'mar'
generate(x, length = 100, nseries = 10, ...)

S3 method for class 'ets'
generate(x, length = 100, nseries = 10, ...)

S3 method for class 'Arima'
generate(x, length = 100, nseries = 10, ...)

Arguments

x A ‘mar‘ object, usually the output of mar_model().

length length of series to generate

nseries number of series to generate

... Other arguments, passed to simulate.mar.

Value

‘tsibble‘ object with ‘length‘ rows and 3 columns.

Author(s)

Rob J Hyndman

References

Feng Li, Mattias Villani, and Robert Kohn. (2010). Flexible Modeling of Conditional Distributions
using Smooth Mixtures of Asymmetric Student T Densities, Journal of Statistical Planning and
Inference, 140(12), pp. 3638-3654.

generate_msts 7

See Also

mar_model, simulate.mar

Examples

MAR model with constant variances
phi <- cbind(c(0, 0.8, 0), c(0, 0.6, 0.3))
weights <- c(0.8, 0.2)
model1 <- mar_model(phi = phi, sigmas = c(1, 2), weights = weights)
generate(model1, nseries = 5)
MAR model for hourly data with daily and weekly periods
hourly_model <- mar_model(seasonal_periods = c(24, 24*7))
generate(hourly_model)

generate_msts Generate multiple seasonal time series from random parameter spaces
of the mixture autoregressive (MAR) models.

Description

Deprecated function. Please use mar_model() and generate.mar() instead. Generates multiple
seasonal time series from random parameter spaces of the mixture autoregressive (MAR) models.

Usage

generate_msts(
seasonal.periods = c(7, 365),
n = 800,
nComp = NULL,
output_format = "list"

)

Arguments

seasonal.periods

a vector of seasonal periods of the time series to be generated.
n length of the generated time series.
nComp number of mixing components when simulating time series using MAR models.
output_format An optional argument which allows to choose output format between "list" and

"tsibble"

Value

a time series with multiple seasonal periods.

Examples

x <- generate_msts(seasonal.periods = c(7, 365), n = 800, nComp = 2, output_format = "list")
forecast::autoplot(x)

8 generate_ts

generate_ts Generate time series from random parameter spaces of the mixture
autoregressive (MAR) models.

Description

Deprecated function. Please use mar_model() and generate.mar() instead. Generate time series
from random parameter spaces of the mixture autoregressive (MAR) models.

Usage

generate_ts(n.ts = 1, freq = 1, nComp = NULL, n = 120, output_format = "list")

Arguments

n.ts number of time series to be generated.

freq seasonal period of the time series to be generated.

nComp number of mixing components when simulating time series using MAR models.

n length of the generated time series.

output_format An optional argument which allows to choose output format between "list" and
"tsibble"

Value

A list of time series together with the SARIMA coefficients used in each mixing component and
the corresponding mixing weights.

Author(s)

Yanfei Kang and Feng Li

References

Wong, CS & WK Li (2000).

Examples

x <- generate_ts(n.ts = 2, freq = 12, nComp = 2, n = 120)
x$N1$pars
forecast::autoplot(x$N1$x)

generate_ts_with_target 9

generate_ts_with_target

Generating time series with controllable features.

Description

Deprecated function. Please use generate_target() instead.

Usage

generate_ts_with_target(
n,
ts.length,
freq,
seasonal,
features,
selected.features,
target,
parallel = TRUE,
output_format = "list"

)

Arguments

n number of time series to be generated.

ts.length length of the time series to be generated.

freq frequency of the time series to be generated.

seasonal 0 for non-seasonal data, 1 for single-seasonal data, and 2 for multiple seasonal
data.

features a vector of function names.
selected.features

selected features to be controlled.

target target feature values.

parallel An optional argument which allows to specify if the Genetic Algorithm should
be run sequentially or in parallel.

output_format An optional argument which allows to choose output format between ’list’ and
’tsibble’

Value

A time-series object of class "ts" or "msts".

Author(s)

Yanfei Kang

10 mar_model

Examples

library(tsfeatures)
x <- generate_ts_with_target(

n = 1, ts.length = 60, freq = 1, seasonal = 0,
features = c("entropy", "stl_features"), selected.features = c("entropy", "trend"),
target = c(0.6, 0.9), parallel = FALSE

)
forecast::autoplot(x)

mar_model Specify parameters for a Mixture Autoregressive model

Description

This function allows the parameters of a mixture of k Gaussian ARIMA(p,d,0)(P,D,0)[m] processes
to be specified. The output is used in simulate.mar() and generate.mar. The model is of the
form

(1 −B)di(1 −Bmi)Di(1 − φi(B))(1 − Φi(B))yt = ci + σi,tεt

with probability αi, where B is the backshift operator, mi is the seasonal period, εt is a N(0,1)
variate, and φi(B) and Φi(B) are polynomials in B of order di andDi respectively. If any argument
is NULL, the corresponding parameters are randomly selected. When randomly selected, the AR
parameters are uniformly sampled from the stationary region, p is in {0,1,2,3}, d is in {0,1,2}, P is
in {0,1,2} and D is in {0,1}. The model orders are uniformly sampled. The constants are uniformly
sampled on (-3,3). The sigmas are uniformly sampled on (1,5) and the weights are uniformly
sampled on (0,1). The number of components is uniformly sampled on {1,2,3,4,5}.

Usage

mar_model(
k = NULL,
p = NULL,
d = NULL,
phi = NULL,
P = NULL,
D = NULL,
Phi = NULL,
constants = NULL,
sigmas = NULL,
weights = NULL,
seasonal_periods = 1L

)

Arguments

k Number of components.

p Non-negative integer vector giving the orders of non-seasonal AR polynomials
φi(B). Ignored if phi provided.

mar_model 11

d Non-negative integer vector giving the orders of non-seasonal differencing.

phi A max(p) x k numeric matrix containing the non-seasonal AR parameters (φ1,i, . . . , φp,i),
i = 1, . . . , k for each component.

P Non-negative integer giving the orders of seasonal AR polynomiasl Φi(B). Ig-
nored if seasonal.periods==1 or Phi provided.

D Non-negative integer giving the orders of seasonal differencing. Ignored if
seasonal.periods==1.

Phi A max(P) x k numeric matrix containing the seasonal AR parameters (Φ1,i, . . . , φP,i),
i = 1, . . . , k for each component. Ignored if seasonal.periods==1.

constants A numeric vector of length k containing c1, . . . , ck.

sigmas A numeric vector of length k or a list of k GARCH specifications. If it is a
vector, it is assumed σi,t = σi and sigmas = σ1, . . . , σk. If it is a list, each
element should be the output from fGarch::garchSpec().

weights A numeric vector of length k containing the probability of each of the component
processes, α1, . . . , αk.

seasonal_periods

Either a scalar or a numeric vector of length k containing the seasonal period of
each component.

Value

A ‘mar‘ object containing a list of k, m, p, d, P, D, phi, Phi, sigmas and weights.

Author(s)

Rob J Hyndman

See Also

simulate.mar

Examples

n <- 100
Quarterly MAR model with randomly selected parameters
model1 <- mar_model(seasonal_periods = 4)

Daily MAR model with randomly selected parameters
model2 <- mar_model(seasonal_periods = c(7, 365))

MAR model with constant variances
containing an AR(1) component and an AR(2) component
phi <- cbind(c(0, 0.8, 0), c(0, 0.6, 0.3))
weights <- c(0.8, 0.2)
model3 <- mar_model(phi = phi, d = 0, sigmas = c(1, 2), weights = weights)

MAR model with heteroskedastic errors

12 pi_coefficients

sigmas.spec <- list(
fGarch::garchSpec(model = list(alpha = c(0.05, 0.06))),
fGarch::garchSpec(model = list(alpha = c(0.05, 0.05)))

)
model4 <- mar_model(phi = phi, sigmas = sigmas.spec, weights = weights)

pi_coefficients Compute pi coefficients of an AR process from SARIMA coefficients.

Description

Convert SARIMA coefficients to pi coefficients of an AR process.

Usage

pi_coefficients(
ar = 0,
d = 0L,
ma = 0,
sar = 0,
D = 0L,
sma = 0,
m = 1L,
tol = 1e-07

)

Arguments

ar AR coefficients in the SARIMA model.

d number of differences in the SARIMA model.

ma MA coefficients in the SARIMA model.

sar seasonal AR coefficients in the SARIMA model.

D number of seasonal differences in the SARIMA model.

sma seasonal MA coefficients in the SARIMA model.

m seasonal period in the SARIMA model.

tol tolerance value used. Only return up to last element greater than tolerance.

Value

A vector of AR coefficients.

Author(s)

Rob J Hyndman

rmixnorm 13

Examples

Not Run

rmixnorm Generate random variables from a mixture of multivariate normal dis-
tributions

Description

Random variables from a mixture of k multivariate normal distributions, each of dimension q.

Usage

rmixnorm(n, means, sigmas, weights)

Arguments

n an integer for the number of samples to be generated.

means a q x k matrix (or a vector of length k if q=1) containing the means for each
component.

sigmas a q x q x k covariance array (or a vector of length k if q=1) for each component.

weights a vector of length k containing the weights for each component.

Value

An n x q matrix (or a vector if q=1) containing the generated data.

Author(s)

Feng Li, Central University of Finance and Economics.

References

Villani et al 2009.

Examples

out <- rmixnorm(
n = 1000, means = c(-5, 0, 5), sigmas = c(1, 1, 3),
weights = c(0.3, 0.4, 0.3)

)
hist(out, breaks = 100, freq = FALSE)

14 rmixnorm_ts

rmixnorm_ts Simulate autoregressive random variables from mixture of normal

Description

This function simulates random samples from a finite mixture of Gaussian distribution where the
mean from each components are AR(p) process.

Usage

rmixnorm_ts(n, means.ar.par.list, sigmas.list, weights, yinit = 0)

Arguments

n number of samples.
means.ar.par.list

parameters in AR(p) within each mixing compoment.

sigmas.list variance list.

weights weight in each list.

yinit initial values.

Value

vector of length n follows a mixture distribution.

Author(s)

Feng Li, Central University of Finance and Economics.

References

Feng Li, Mattias Villani, and Robert Kohn. (2010). Flexible Modeling of Conditional Distributions
using Smooth Mixtures of Asymmetric Student T Densities, Journal of Statistical Planning and
Inference, 140(12), pp. 3638-3654.

Examples

n <- 1000
means.ar.par.list <- list(c(0, 0.8), c(0, 0.6, 0.3))
require("fGarch")
sigmas.spec <- list(

fGarch::garchSpec(model = list(alpha = c(0.05, 0.06)), cond.dist = "norm"),
fGarch::garchSpec(model = list(alpha = c(0.05, 0.05)), cond.dist = "norm")

)
sigmas.list <- lapply(

lapply(sigmas.spec, fGarch::garchSim, extended = TRUE, n = n),
function(x) x$sigma

simulate.mar 15

)
weights <- c(0.8, 0.2)
y <- rmixnorm_ts(

n = n, means.ar.par.list = means.ar.par.list, sigmas.list = sigmas.list,
weights = weights

)
plot(y)

simulate.mar Generate synthetic data from a Mixture Autoregressive model

Description

This function simulates one random sample path from a mixture of k Gaussian AR(p) processes.
The model is of the form

yt = φ0,i + φ1,iyt−1 + · · · + φp,iyt−p + σi,tεt

with probability αi, where εt is a N(0,1) variate.

Usage

S3 method for class 'mar'
simulate(object, nsim = 100, seed = NULL, n.start = 100, ...)

Arguments

object A ‘mar‘ object, usually the output of mar_model().

nsim length of series to generate

seed Either NULL or an integer that will be used in a call to set.seed before simu-
lating the time series. The default, NULL, will not change the random generator
state.

n.start Length of ’burn-in’ period.

... Other arguments, not currently used.

Value

‘ts‘ object of length nsim.

Author(s)

Rob J Hyndman

References

Feng Li, Mattias Villani, and Robert Kohn. (2010). Flexible Modeling of Conditional Distributions
using Smooth Mixtures of Asymmetric Student T Densities, Journal of Statistical Planning and
Inference, 140(12), pp. 3638-3654.

16 simulate_target

See Also

mar_model

Examples

MAR model with constant variances
phi <- cbind(c(0, 0.8, 0), c(0, 0.6, 0.3))
weights <- c(0.8, 0.2)
model1 <- mar_model(phi = phi, sigmas = c(1, 2), weights = weights)
y <- simulate(model1, 100)
plot(y)

MAR model with heteroskedastic errors
sigmas.spec <- list(

fGarch::garchSpec(model = list(alpha = c(0.05, 0.06))),
fGarch::garchSpec(model = list(alpha = c(0.05, 0.05)))

)
model2 <- mar_model(phi = phi, sigmas = sigmas.spec, weights = weights)
y <- simulate(model2, 100)
plot(y)

simulate_target Generating time series with controllable features using MAR models

Description

simulate_target simulate one time series of length ‘length‘ from a MAR model with target fea-
tures and returns a ts or msts object. generate_target simulate multiple time series of length
‘length‘ from a MAR model with target features and returns a tsibble object. The index of the
tsibble is guessed from the seasonal periods. The specified features should not depend on the scale
of the time series as the series is scaled during simulation.

Usage

simulate_target(
length = 100,
seasonal_periods = 1,
feature_function,
target,
k = ifelse(length(seasonal_periods) == 1, 3, length(seasonal_periods)),
tolerance = 0.05,
trace = FALSE,
parallel = FALSE

)

generate_target(
length = 100,
nseries = 10,

simulate_target 17

seasonal_periods = 1,
feature_function,
target,
k = ifelse(length(seasonal_periods) == 1, 3, length(seasonal_periods)),
tolerance = 0.05,
trace = FALSE,
parallel = FALSE

)

Arguments

length length of the time series to be generated.
seasonal_periods

Either a scalar or a numeric vector of length k containing the number of seasonal
periods for each component.

feature_function

a function that returns a vector of features from a time series.

target target feature values of the same length as that returned by feature_function().

k integer specifying number of components to use for MAR models. Default is 3
unless there are multiple seasonal periods specified.

tolerance average tolerance per feature. The genetic algorithm will attempt to find a solu-
tion where the average difference between the series features and target is less
than tolerance. A larger value will give a faster but less precise solution.

trace logical indicating if details of the search should be shown.

parallel An optional argument which allows to specify if the Genetic Algorithm should
be run sequentially or in parallel.

nseries Number of series to generate

Value

A time series object of class "ts" or "msts".

Author(s)

Yanfei Kang and Rob J Hyndman

Examples

set.seed(1)
library(tsfeatures)
my_features <- function(y) {

c(entropy(y), acf = acf(y, plot = FALSE)$acf[2:3, 1, 1])
}
Simulate a ts with specified target features
y <- simulate_target(

length = 60, feature_function = my_features, target = c(0.5, 0.9, 0.8)
)
my_features(y)

18 simulate_target

plot(y)
Not run:
Generate a tsibble with specified target features
df <- generate_target(

length = 60, feature_function = my_features, target = c(0.5, 0.9, 0.8)
)
df %>%
as_tibble() %>%
group_by(key) %>%
dplyr::summarise(value = my_features(value),

feature=c("entropy","acf1", "acf2"),
.groups = "drop")

autoplot(df)
Simulate time series similar to an existing series
my_features <- function(y) {

c(stl_features(y)[c("trend", "seasonal_strength", "peak", "trough")])
}
y <- simulate_target(

length = length(USAccDeaths),
seasonal_periods = frequency(USAccDeaths),
feature_function = my_features, target = my_features(USAccDeaths)

)
tsp(y) <- tsp(USAccDeaths)
plot(cbind(USAccDeaths, y))
cbind(my_features(USAccDeaths), my_features(y))
End(Not run)

Index

app_gratis, 2
arima, 3
arima_model, 2

ets, 5
ets_model, 4

garchSpec, 11
generate.Arima, 2
generate.Arima (generate.mar), 6
generate.ets, 4
generate.ets (generate.mar), 6
generate.mar, 6, 7, 8, 10
generate_msts, 7
generate_target, 9
generate_target (simulate_target), 16
generate_ts, 8
generate_ts_with_target, 9

mar_model, 6–8, 10, 15, 16

pi_coefficients, 12

rmixnorm, 13
rmixnorm_ts, 14

set.seed, 15
simulate.Arima, 2, 3
simulate.ets, 4, 5
simulate.mar, 6, 7, 10, 11, 15
simulate_target, 16

19

	app_gratis
	arima_model
	ets_model
	generate.mar
	generate_msts
	generate_ts
	generate_ts_with_target
	mar_model
	pi_coefficients
	rmixnorm
	rmixnorm_ts
	simulate.mar
	simulate_target
	Index

