Package ‘glmnetUtils’

September 10, 2023

Type Package
Version 1.1.9

Title Utilities for 'Glmnet'

Description Provides a formula interface for the 'glmnet' package for
elasticnet regression, a method for cross-validating the alpha parameter,
and other quality-of-life tools.

Imports stats, graphics, grDevices, glmnet, parallel, Matrix
Suggests knitr, rmarkdown, MASS, doParallel, testthat
NeedsCompilation no

VignetteBuilder knitr

Copyright Microsoft

License GPL-2

URL https://github.com/hongooi73/glmnetUtils

Collate 'glmnetUtils.r' 'cvGlmnetFormula.r' 'cvaGlmnetFormula.r'
'elmnetFormula.r' 'makeModelComponents.r'

RoxygenNote 7.1.1

Author Microsoft [cph],
Hong Ooi [aut, cre]

Maintainer Hong Ooi <hongooi73@gmail.com>
Repository CRAN
Date/Publication 2023-09-10 09:20:11 UTC

R topics documented:

cvglmnet e
cva.glmnet e e e e e
glmneto
glmnet.model.matrix
glmnetUtils e e

Index

https://github.com/hongooi73/glmnetUtils

cv.glmnet

cv.glmnet Formula interface for elastic net cross-validation with cv.glmnet

Description

Formula interface for elastic net cross-validation with cv.glmnet

Usage

cv.glmnet(x, ...)

Default S3 method:
cv.glmnet(x, vy, ...)

S3 method for class 'formula’
cv.glmnet(
formula,
data,
alpha = 1,
nfolds = 10,
weights = NULL,
offset = NULL,
subset = NULL,
na.action = getOption("na.action”),
drop.unused.levels = FALSE,
xlev = NULL,
sparse = FALSE,
use.model. frame = FALSE,
gamma = c(@, 0.25, 0.5, 0.75, 1),
relax = FALSE
)

S3 method for class 'cv.glmnet.formula'
predict(object, newdata, na.action = na.pass, ...)

S3 method for class 'cv.glmnet.formula'
coef(object, ...)

S3 method for class 'cv.glmnet.formula'
print(x, ...)

S3 method for class 'cv.relaxed.formula'
predict(object, newdata, na.action = na.pass, ...)

S3 method for class 'cv.glmnet.formula'
coef(object, ...)

cv.glmnet

Arguments

X

y

formula

data
alpha
nfolds

weights

offset

subset

na.action

For the default method, a matrix of predictor variables.

For cv.glmnet.formulaand cv.glmnet.default, other arguments to be passed
to glmnet::cv.glmnet; for the predict and coef methods, arguments to be passed
to their counterparts in package glmnet.

For the default method, a response vector or matrix (for a multinomial response).

A model formula; interaction terms are allowed and will be expanded per the
usual rules for linear models.

A data frame or matrix containing the variables in the formula.
The elastic net mixing parameter. See glmnet::glmnet for more details.

The number of crossvalidation folds to use. See glmnet::cv.glmnet for more
details.

An optional vector of case weights to be used in the fitting process. If missing,
defaults to an unweighted fit.

An optional vector of offsets, an a priori known component to be included in
the linear predictor.

An optional vector specifying the subset of observations to be used to fit the
model.

A function which indicates what should happen when the data contains missing
values. For the predict method, na.action =na.pass will predict missing
values with NA; na.omit or na.exclude will drop them.

drop.unused. levels

xlev

sparse

use.model. frame

gamma

relax

object

newdata

Should factors have unused levels dropped? Defaults to FALSE.

A named list of character vectors giving the full set of levels to be assumed for
each factor.

Should the model matrix be in sparse format? This can save memory when
dealing with many factor variables, each with many levels.

Should the base model.frame function be used when constructing the model
matrix? This is the standard method that most R modelling functions use, but
has some disadvantages. The default is to avoid model . frame and construct the
model matrix term-by-term; see discussion.

For cv.glmnet.formula, the values of the parameter for mixing the relaxed
(non-regularised) fit with the regularized fit. Not used if relax=FALSE. Requires
glmnet 3.0 or later.

For cv.glmnet. formula, whether to perform a relaxed fit after the regularised
one. Requires glmnet 3.0 or later.

For the predict and coef methods, an object of class cv.glmnet. formula.

For the predict method, a data frame containing the observations for which to
calculate predictions.

4 cva.glmnet

Details

The cv.glmnet function in this package is an S3 generic with a formula and a default method. The
former calls the latter, and the latter is simply a direct call to the cv.glmnet function in package
glmnet. All the arguments to glmnet: :cv.glmnet are (or should be) supported.

There are two ways in which the matrix of predictors can be generated. The default, with use . model
= FALSE, is to process the additive terms in the formula independently. With wide datasets, this is
much faster and more memory-efficient than the standard R approach which uses the model. frame
and model.matrix functions. However, the resulting model object is not exactly the same as
if the standard approach had been used; in particular, it lacks a bona fide terms object. If you
require interoperability with other packages that assume the standard model object structure, set
use.model. frame = TRUE. See discussion for more information on this topic.

The predict and coef methods are wrappers for the corresponding methods in the glmnet package.
The former constructs a predictor model matrix from its newdata argument and passes that as the
newx argument to glmnet:: :predict.cv.glmnet.

Value

For cv.glmnet.formula, an object of class either cv.glmnet.formula or cv.relaxed. formula,

.frame

based on the value of the relax argument. This is basically the same object created by glmnet: :cv.glmnet,

but with extra components to allow formula usage.

See Also

glmnet::cv.glmnet, glmnet::predict.cv.glmnet, glmnet::coef.cv.glmnet, model.frame, model. matrix

Examples
cv.glmnet(mpg ~ ., data=mtcars)
cv.glmnet(Species ~ ., data=iris, family="multinomial")
Not run:

Leukemia example dataset from Trevor Hastie's website

download.file("https://web.stanford.edu/~hastie/glmnet/glmnetData/Leukemia.RData",
"Leukemia.RData")

load("Leukemia.Rdata")

leuk <- do.call(data.frame, Leukemia)

cv.glmnet(y ~ ., leuk, family="binomial")

End(Not run)

cva.glmnet Do elastic net cross-validation for alpha and lambda simultaneously

Description

Do elastic net cross-validation for alpha and lambda simultaneously

cva.glmnet

Usage
cva.glmnet(x, ...)

Default S3 method:
cva.glmnet(

X,

Y,

alpha = seq(@, 1, len = 11)*3,
nfolds = 10,

foldid = sample(rep(seq_len(nfolds), length = nrow(x))),

outerParallel = NULL,
checkInnerParallel = TRUE
)

S3 method for class 'formula'
cva.glmnet(
formula,
data,
weights = NULL,
offset = NULL,
subset = NULL,
na.action = getOption("na.action"”),
drop.unused.levels = FALSE,
xlev = NULL,
sparse = FALSE,
use.model.frame = FALSE

)

S3 method for class 'cva.glmnet'
predict(
object,
newx,
alpha,
which = match(TRUE, abs(object$alpha - alpha) < 1e-08),

)

S3 method for class 'cva.glmnet.formula'
predict(
object,
newdata,
alpha,
which = match(TRUE, abs(object$alpha - alpha) < 1e-08),
na.action = na.pass,

6 cva.glmnet

S3 method for class 'cva.glmnet'
coef(
object,
alpha,
which = match(TRUE, abs(object$alpha - alpha) < 1e-08),

)

S3 method for class 'cva.glmnet.formula'
print(x, ...)

S3 method for class 'cva.glmnet'
plot(x, ..., legend.x = x1im[1], legend.y = x1im[2], log.x = TRUE)

minlossplot(x, ...)

S3 method for class 'cva.glmnet'

minlossplot(x, ..., cv.type = c("1se”, "min"))
Arguments
X A matrix of predictor variables; or for the plotting methods, an object returned

by cva.glmnet.

Further arguments to be passed to lower-level functions. In the case of cva.glmnet,
these arguments are passed to cv.glmnet; for predict and coef, they are
passed to predict.cv.glmnet; and for plot and minlossplot, to plot.

y A response vector or matrix (for a multinomial response).

alpha A vector of alpha values for which to do cross-validation. The default is a se-
quence of 11 values more closely spaced around alpha = 0. For the predict and
coef methods, the specific value of alpha for which to return predictions/regression

coefficients.
nfolds The number of cross-validation folds to use. Defaults to 10.
foldid Vector of fold IDs for cross-validation. See glmnet::cv.glmnet.

outerParallel Method of parallelising the outer loop over alpha. See Details’” below. If NULL,
the loop is run sequentially.

checkInnerParallel
If the outer loop is run in parallel, check that the inner loop over lambda will not
be in contention for cores.

formula A model formula; interaction terms are allowed and will be expanded per the
usual rules for linear models.

data A data frame or matrix containing the variables in the formula.

weights An optional vector of case weights to be used in the fitting process. If missing,

defaults to an unweighted fit.

offset An optional vector of offsets, an a priori known component to be included in
the linear predictor.

cva.glmnet

subset

na.action

An optional vector specifying the subset of observations to be used to fit the
model.

A function which indicates what should happen when the data contains missing
values. For the predict method, na.action =na.pass will predict missing
values with NA; na.omit or na.exclude will drop them.

drop.unused.levels

xlev

sparse

use.model.frame

object
newx

which

newdata

Should factors have unused levels dropped? Defaults to FALSE.

A named list of character vectors giving the full set of levels to be assumed for
each factor.

Should the model matrix be in sparse format? This can save memory when
dealing with many factor variables, each with many levels.

Should the base model.frame function be used when constructing the model
matrix? This is the standard method that most R modelling functions use, but
has some disadvantages. The default is to avoid model . frame and construct the
model matrix term-by-term; see discussion.

For the predict and coef methods, an object returned by cva.glmnet.
For the predict method, a matrix of predictor variables.

An alternative way of specifying alpha; the index number of the desired value
within the alpha vector. If both which and alpha are supplied, the former takes
precedence.

For the predict and coef methods, a data frame containing the observations
for which to calculate predictions.

legend.x, legend.y

log.x

cv.type

Details

Location for the legend. Defaults to the top-left corner of the plot. Set either of
these to NULL to omit the legend.

Whether to plot the X-axis (lambda) on the log scale. Defaults to TRUE, which
for most lambda sequences produces a more reasonable looking plot. If your
lambda sequence includes zero, set this to FALSE.

For minlossplot, which cross-validated loss value to plot for each value of
alpha. This can be either "min" which is the minimum loss, or "1se"” which is
the highest loss within 1 standard error of the minimum. The default is "1se”.

The cva.glmnet function does simultaneous cross-validation for both the alpha and lambda pa-
rameters in an elastic net model. The procedure is as outlined in the documentation for glm-
net::cv.glmnet: it creates a vector foldid allocating the observations into folds, and then calls
cv.glmnet in a loop over different values of alpha, but the same values of foldid each time.

Optionally this loop over alpha can be parallelised; currently, cva.glmnet knows about two meth-

ods of doing so:

* Via parLapply in the parallel package. To use this, set outerParallel to a valid cluster object
created by makeCluster.

8 cva.glmnet

* Via rxExec as supplied by Microsoft R Server’s RevoScaleR package. To use this, set outerParallel
to a valid compute context created by RxComputeContext, or a character string specifying
such a context.

If the outer loop is run in parallel, cva.glmnet can check if the inner loop (over lambda) is also set
to run in parallel, and disable this if it would lead to contention for cores. This is done if it is likely
that the parallelisation is local on a multicore machine, ie if outerParallel is a SOCKcluster
object running on "localhost”, or if the RevoScaleR compute context is local parallel.

There are two ways in which the matrix of predictors can be generated. The default, with use.model. frame
= FALSE, is to process the additive terms in the formula independently. With wide datasets, this is

much faster and more memory-efficient than the standard R approach which uses the model. frame

and model.matrix functions. However, the resulting model object is not exactly the same as

if the standard approach had been used; in particular, it lacks a bona fide terms object. If you
require interoperability with other packages that assume the standard model object structure, set
use.model. frame = TRUE. See discussion for more information on this topic.

The predict method computes predictions for a specific alpha value given a cva.glmnet object.
It looks up the supplied alpha (possibly supplied indirectly via the which argument) in the object’s
stored alpha vector, and calls glmnet:: :predict.cv.glmnet on the corresponding cv.glmnet
fit. All the arguments to that function are (or should be) supported.

The coef method is similar, returning the coefficients for the selected alpha value via glmnet: : : coef.cv.glmnet.

The plot method for cva. glmnet objects plots the average cross-validated loss by lambda, for each
value of alpha. Each line represents one cv.glmnet fit, corresponding to one value of alpha. Note
that the specific lambda values can vary substantially by alpha.

The minlossplot function gives the best (lowest) cross-validated loss for each value of alpha.

Value

For cva.glmnet.default, an object of class cva.glmnet. This is a list containing the following:

* alpha The vector of alpha values
¢ nfolds The number of folds
* modlist A list of cv.glmnet objects, containing the cross-validation results for each value of
alpha
The function cva.glmnet. formula adds a few more components to the above, to facilitate working
with formulas.
For the predict method, a vector or matrix of predicted values.

For the coef method, a vector of regularised regression coefficients.

See Also

glmnet::cv.glmnet
glmnet::predict.cv.glmnet, glmnet::coef.cv.glmnet

cva.glmnet, glmnet::cv.glmnet, plot

glmnet 9

Examples

cva <- cva.glmnet(mpg ~ ., data=mtcars)
predict(cva, mtcars, alpha=1)

Not run:

Leukemia example dataset from Trevor Hastie's website

download.file("https://web.stanford.edu/~hastie/glmnet/glmnetData/Leukemia.RData",
"Leukemia.RData")

load("Leukemia.Rdata")

leuk <- do.call(data.frame, Leukemia)

leuk.cva <- cva.glmnet(y ~ ., leuk, family="binomial”)

leuk.pred <- predict(leuk.cva, leuk, which=6)

End(Not run)

glmnet Formula interface for elastic net modelling with glmnet

Description

Formula interface for elastic net modelling with glmnet

Usage

glmnet(x, ...)

Default S3 method:
glmnet(x, vy, ...)

S3 method for class 'formula'
glmnet(
formula,
data,
family
alpha

c("gaussian”, "binomial”, "poisson”, "multinomial”, "cox", "mgaussian"),
1,

weights = NULL,

offset = NULL,

subset = NULL,

na.action = getOption("na.action”),
drop.unused.levels = FALSE,

xlev = NULL,

sparse = FALSE,

use.model.frame = FALSE,

relax = FALSE

10

glmnet

S3 method for class 'glmnet.formula'
predict(object, newdata, offset = NULL, na.action = na.pass, ...)

S3 method for class 'glmnet.formula'

coef(object,

)

S3 method for class 'glmnet.formula'

print(
X)

digits

max(3, getOption("digits") - 3),

print.deviance.ratios = FALSE,

)

S3 method for class 'relaxed.formula'

print(
X’

digits

max (3, getOption("digits”) - 3),

print.deviance.ratios = FALSE,

)

S3 method for class 'relaxed.formula'
predict(object, newdata, offset = NULL, na.action = na.pass, ...)

S3 method for class 'relaxed.formula'

coef(object,

Arguments

X

Yy
formula

data
family
alpha
weights

offset

subset

.2

For the default method, a matrix of predictor variables.

For glmnet.formula and glmnet.default, other arguments to be passed to
glmnet::glmnet; for the predict and coef methods, arguments to be passed to
their counterparts in package glmnet.

For the default method, a response vector or matrix (for a multinomial response).

A model formula; interaction terms are allowed and will be expanded per the
usual rules for linear models.

A data frame or matrix containing the variables in the formula.
The model family. See glmnet::glmnet for how to specify this argument.
The elastic net mixing parameter. See glmnet::glmnet for more details.

An optional vector of case weights to be used in the fitting process. If missing,
defaults to an unweighted fit.

An optional vector of offsets, an a priori known component to be included in
the linear predictor.

An optional vector specifying the subset of observations to be used to fit the
model.

glmnet 11

na.action A function which indicates what should happen when the data contains missing
values. For the predict method, na.action =na.pass will predict missing
values with NA; na.omit or na.exclude will drop them.

drop.unused.levels
Should factors have unused levels dropped? Defaults to FALSE.

xlev A named list of character vectors giving the full set of levels to be assumed for
each factor.

sparse Should the model matrix be in sparse format? This can save memory when
dealing with many factor variables, each with many levels.

use.model. frame
Should the base model.frame function be used when constructing the model
matrix? This is the standard method that most R modelling functions use, but
has some disadvantages. The default is to avoid model. frame and construct the
model matrix term-by-term; see discussion.

relax For glmnet.formula, whether to perform a relaxed (non-regularised) fit after
the regularised one. Requires glmnet 3.0 or later.

object For the predict and coef methods, an object of class glmnet. formula.

newdata For the predict method, a data frame containing the observations for which to

calculate predictions.
digits Significant digits in printed output.

print.deviance.ratios
Whether to print the table of deviance ratios, as per glmnet::print.glmnet.

Details

The glmnet function in this package is an S3 generic with a formula and a default method. The
former calls the latter, and the latter is simply a direct call to the glmnet function in package glmnet.
All the arguments to glmnet: :glmnet are (or should be) supported.

There are two ways in which the matrix of predictors can be generated. The default, with use.model. frame
= FALSE, is to process the additive terms in the formula independently. With wide datasets, this is

much faster and more memory-efficient than the standard R approach which uses the model. frame

and model.matrix functions. However, the resulting model object is not exactly the same as

if the standard approach had been used; in particular, it lacks a bona fide terms object. If you
require interoperability with other packages that assume the standard model object structure, set
use.model. frame = TRUE. See discussion for more information on this topic.

The predict and coef methods are wrappers for the corresponding methods in the glmnet package.
The former constructs a predictor model matrix from its newdata argument and passes that as the
newx argument to glmnet:: :predict.glmnet.

Value

For glmnet.formula, an object of class either glmnet.formula or relaxed.formula, based on
the value of the relax argument. This is basically the same object created by glmnet: : glmnet, but
with extra components to allow formula usage.

12 glmnet.model. matrix

See Also

glmnet::glmnet, glmnet::predict.glmnet, glmnet::coef.glmnet, model.frame, model.matrix

Examples
glmnet(mpg ~ ., data=mtcars)
glmnet(Species ~ ., data=iris, family="multinomial")
Not run:

Leukemia example dataset from Trevor Hastie's website

download.file("https://web.stanford.edu/~hastie/glmnet/glmnetData/Leukemia.RData"”,
"Leukemia.RData")

load("Leukemia.Rdata")

leuk <- do.call(data.frame, Leukemia)

glmnet(y ~ ., leuk, family="binomial")

End(Not run)

glmnet.model.matrix Model matrix options for glmnet

Description

This page describes the options available for generating the model matrix.

Details

There are two ways in which glmnetUtils can generate a model matrix out of a formula and data
frame. The first is to use the standard R machinery comprising model.frameand model.matrix; and
the second is to build the matrix one variable at a time. These options are discussed and contrasted
below.

Using model. frame

This is the simpler option, and the one that is most compatible with other R modelling functions.
The model. frame function takes a formula and data frame and returns a model frame: a data frame
with special information attached that lets R make sense of the terms in the formula. For example, if
a formula includes an interaction term, the model frame will specify which columns in the data relate
to the interaction, and how they should be treated. Similarly, if the formula includes expressions
like exp(x) or I(x*2) on the RHS, model. frame will evaluate these expressions and include them
in the output.

The major disadvantage of using model. frame is that it generates a terms object, which encodes
how variables and interactions are organised. One of the attributes of this object is a matrix with
one row per variable, and one column per main effect and interaction. At minimum, this is (ap-
proximately) a p X p square matrix where p is the number of main effects in the model. For wide
datasets with p > 10000, this matrix can approach or exceed a gigabyte in size. Even if there is

glmnetUtils 13

enough memory to store such an object, generating the model matrix can take a significant amount
of time.

Another issue with the standard R approach is the treatment of factors. Normally, model.matrix
will turn an N-level factor into an indicator matrix with N — 1 columns, with one column being
dropped. This is necessary for unregularised models as fit with 1m and glm, since the full set of
N columns is linearly dependent. With the usual treatment contrasts, the interpretation is that the
dropped column represents a baseline level, while the coefficients for the other columns represent
the difference in the response relative to the baseline.

This may not be appropriate for a regularised model as fit with glmnet. The regularisation procedure
shrinks the coefficients towards zero, which forces the estimated differences from the baseline to
be smaller. But this only makes sense if the baseline level was chosen beforehand, or is otherwise
meaningful as a default; otherwise it is effectively making the levels more similar to an arbitrarily
chosen level.

Manually building the model matrix

To deal with the problems above, glmnetUtils by default will avoid using model. frame, instead
building up the model matrix term-by-term. This avoids the memory cost of creating a terms
object, and can be noticeably faster than the standard approach. It will also include one column in
the model matrix for all levels in a factor; that is, no baseline level is assumed. In this situation,
the coefficients represent differences from the overall mean response, and shrinking them to zero is
meaningful (usually).

This works in an additive fashion, ie the formula ~ a + b:c + d*e is treated as consisting of three
terms, a, b: c and d*e each of which is processed independently of the others. A dot in the formula
includes all main effect terms, ie ~ . + a:b + f(x) expands to ~a+b + x +a:b+ f(x) (assuming
a, b and x are the only columns in the data). Note that a formula like ~ (a + b) + (c + d) will be
treated as two terms, a + b and ¢ + d.

The code can handle fairly complex formulas, but it is not as sophisticated as base model. frame
and model .matrix. In particular, terms that are to be omitted from the model must be at the end of

the formula: ~ . - ¢ works, but not ~-c + ..
glmnetUtils Utilities for glmnet
Description

Some quality-of-life functions to streamline the process of fitting elastic net models with the glmnet
package, specifically:

* glmnet. formula provides a formula/data frame interface to glmnet.

e cv.glmnet.formula does a similar thing for cv.glmnet.

e Methods for predict and coef for both the above.

* A function cva.glmnet to choose both the alpha and lambda parameters via cross-validation,
following the approach described in the help page for cv.glmnet. Optionally does the cross-
validation in parallel.

¢ Methods for plot, predict and coef for the above.

Index

coef.cv.glmnet. formula (cv.glmnet), 2
coef.cv.relaxed.formula (cv.glmnet), 2
coef.cva.glmnet (cva.glmnet), 4
coef.glmnet.formula (glmnet), 9
coef.relaxed. formula (glmnet), 9
cv.glmnet, 2

cva.glmnet, 4, 8

discussion, 3, 4,7, 8,11

glmnet, 9

glmnet.model. frame
(glmnet.model.matrix), 12

glmnet.model.matrix, 12

glmnet.modelFrame
(glmnet.model.matrix), 12

glmnet.modelMatrix
(glmnet.model.matrix), 12

glmnet: :coef.cv.glmnet, 4, 8
glmnet: :coef.glmnet, 12
glmnet::cv.glmnet, 3, 4, 6-8
glmnet: :glmnet, 3, 10, 12
glmnet: :predict.cv.glmnet, 4, 8
glmnet: :predict.glmnet, /2
glmnet: :print.glmnet, 7/

glmnetUtils, 13
glmnetUtils-package (glmnetUtils), 13

makeCluster, 7
minlossplot (cva.glmnet), 4
model.frame, 3,4, 7,11, 12
model .matrix, 4, 12

parLapply, 7

plot, 8

plot.cva.glmnet (cva.glmnet), 4

predict.cv.glmnet.formula (cv.glmnet), 2

predict.cv.relaxed.formula (cv.glmnet),
2

predict.cva.glmnet (cva.glmnet), 4

14

predict.glmnet.formula (glmnet), 9
predict.relaxed.formula (glmnet), 9
print.cv.glmnet.formula (cv.glmnet), 2
print.cva.glmnet.formula (cva.glmnet), 4
print.glmnet.formula (glmnet), 9
print.relaxed.formula (glmnet), 9

terms, 4,8, 11, 12
treatment contrasts, /3

	cv.glmnet
	cva.glmnet
	glmnet
	glmnet.model.matrix
	glmnetUtils
	Index

