
Package ‘glarma’
March 28, 2025

Type Package

Title Generalized Linear Autoregressive Moving Average Models

Version 1.7-1

Date 2025-03-26

Maintainer William T.M. Dunsmuir <w.dunsmuir@unsw.edu.au>

Depends R (>= 2.3.0)

Imports MASS, methods

Suggests RUnit, knitr, digest, zoo

VignetteBuilder knitr

Description Functions are provided for estimation, testing, diagnostic checking and forecast-
ing of generalized linear autoregressive moving average (GLARMA) models for discrete val-
ued time series with regression variables. These are a class of observation driven non-linear non-
Gaussian state space models. The state vector consists of a linear regression compo-
nent plus an observation driven component consisting of an autoregressive-moving aver-
age (ARMA) filter of past predictive residuals. Currently three distributions (Poisson, nega-
tive binomial and binomial) can be used for the response series. Three options (Pearson, score-
type and unscaled) for the residuals in the observation driven component are available. Estima-
tion is via maximum likelihood (conditional on initializing values for the ARMA process) opti-
mized using Fisher scoring or Newton Raphson iterative methods. Likelihood ra-
tio and Wald tests for the observation driven component allow testing for serial depen-
dence in generalized linear model settings. Graphical diagnostics including model fits, autocorre-
lation functions and probability integral transform residuals are included in the package. Sev-
eral standard data sets are included in the package.

License GPL (>= 2)

NeedsCompilation no

Author William T.M. Dunsmuir [aut, cre],
Cenanning Li [aut],
David J. Scott [aut]

Repository CRAN

Date/Publication 2025-03-28 12:20:02 UTC

1

2 Asthma

Contents
Asthma . 2
coef.glarma . 4
DriverDeaths . 5
extractAIC.glarma . 6
extractGlarmaSimModel . 7
fitted.glarma . 9
forecast . 10
glarma . 14
glarmaSim . 19
glarmaSimModel . 21
initial . 22
likTests . 24
logLik.glarma . 25
model.frame.glarma . 26
mySolve . 27
nobs.glarma . 28
normRandPIT . 29
OxBoatRace . 31
paramGen . 32
PIT . 34
plot.glarma . 35
plotPIT . 39
Polio . 40
residuals.glarma . 41
RobberyConvict . 41
summary.glarma . 43

Index 46

Asthma Daily Presentations of Asthma at Campbelltown Hospital

Description

The data arose from a single hospital (at Campbelltown) as part of a larger (ongoing) study into the
relationship between atmospheric pollution and the number of asthma cases presenting themselves
to various emergency departments in local hospitals in the South West region of Sydney, Australia.

Usage

data(Asthma)

Format

A data frame containing the following columns:

Asthma 3

[, 1] Count Daily counts of asthma at Campbelltown Hospital.
[, 2] Intercept A vector of ones, providing the intercept in the model.
[, 3] Sunday Takes value one for Sundays, otherwise zero.
[, 4] Monday Takes value one for Mondays, otherwise zero.
[, 5] CosAnnual cos((2*pi*t)/365), annual cosine term.
[, 6] SinAnnual sin((2*pi*t)/365), annual sine term.
[, 7] H7 Scaled lagged and smoothed humidity variable.
[, 8] NO2max Maximum daily nitrogen dioxide.

[, 9:16] T1.1990 - T2.1993 Smooth shapes to capture school terms in each year.

Source

Davis, Richard A and Dunsmuir, William TM and Streett, Sarah B (2003) Observation-driven mod-
els for Poisson counts. Biometrika, 90, 777–790.

Examples

Example with asthma data
data(Asthma)
y <- Asthma[,1]
X <- as.matrix(Asthma[,2:16])

Model in Davis, Dunsmuir and Streett (2003)

MA(7) specification - see Davis, Dunsmuir and Streett (2003)

Pearson Residuals, Fisher Scoring
glarmamod <- glarma(y, X, thetaLags = 7, type = "Poi", method = "FS",

residuals = "Pearson", maxit = 100, grad = 1e-6)
glarmamod
summary(glarmamod)

likTests(glarmamod)
plot.glarma(glarmamod)

Not run:
Example is specified as \dontrun because it takes too long
for package inclusion on CRAN

Pearson Residuals, Newton Raphson, Negative Binomial
Initial value of the shape parameter take to be zero
glarmamod <- glarma(y, X, thetaLags = 7, type = "NegBin", method = "NR",

residuals = "Pearson", alphaInit = 0,
maxit = 100, grad = 1e-6)

glarmamod
summary(glarmamod)

likTests(glarmamod)
plot.glarma(glarmamod)

End(Not run)

4 coef.glarma

coef.glarma Extract GLARMA Model Coefficients

Description

coef is a generic function which extracts GLARMA model coefficients from objects returned by
modeling functions. coefficients is an alias for it.

Usage

S3 method for class 'glarma'
coef(object, types = "all", ...)

Arguments

object An object of class "glarma", obtained from a call to glarma.

types Character; which coefficients to extract, either ARMA), beta, NB or all. The
default is all.

... Further arguments passed to or from other methods.

Details

This is an S3 generic function. coef or coefficients return the requested coefficients from the
object of class "glarma". By changing the argument type, either the ARMA coefficients (ARMA),
regression coefficients (beta) or all coefficients are returned. In the case of negative binomial
counts, the negative binomial coefficient α is also returned if type is all, or if type is NB. The
default is all.

Value

ARMA coefficients, beta coefficients, NB coefficients or all of these three types of coefficients are
extracted from the glarma model object object.

A named numeric vector or list of named numeric vectors is returned.

See Also

fitted.glarma and residuals.glarma for related methods;

DriverDeaths 5

Examples

data(Polio)
Y <- Polio[, 2]
X <- as.matrix(Polio[, 3:8])
glarmamod <- glarma(Y, X, thetaLags = c(1, 2, 5), type = "Poi",

method = "FS", residuals= "Pearson",
maxit = 100, grad = 1e-6)

coef(glarmamod, type = "ARMA")
coef(glarmamod, type = "beta")
coef(glarmamod, type = "all")

DriverDeaths Single Vehicle Nighttime Driver Deaths in Utah

Description

This data set gives the number of single vehicle nighttime driver deaths in the state of Utah by
month over the period August 1980 to July 1986, along with observations on a number of possible
predictors. The aim of the study from which it was taken was to investigate the effect of the low-
ering of the legal blood alcohol concentration (BAC) while driving, from 0.1 to 0.08 units, and the
simultaneous introduction of administrative license revocation. The time period for the observations
is centred on the month of the intervention, August 1983.

Usage

data(DriverDeaths)

Format

A data frame containing the following columns:

[, 1] Deaths Number of single vehicle nighttime driver deaths monthly.
[, 2] Intercept A vector of ones, providing the intercept in the model.
[, 3] ReducedBAC Indicator of before or after lowering of legal blood alcohol level.0 for months prior to August 1983, 1 for months on or after August 1983.
[, 4] FriSat Number of Friday and Saturday nights in the month.
[, 5] lnOMVDRate Log of the number of other motor vehicle deaths per 100,000 of population.
[, 6] Population Adult population of the State of Utah.

Source

Debra H. Bernat, William T.M. Dunsmuir, and Alexander C. Wagenaar (2004) Effects of lowering
the legal BAC to 0.08 on single-vehicle-nighttime fatal traffic crashes in 19 jurisdictions. Accident
Analysis & Prevention, 36, 1089–1097.

6 extractAIC.glarma

Examples

Model number of deaths
data(DriverDeaths)
y <- DriverDeaths[, "Deaths"]
X <- as.matrix(DriverDeaths[, 2:5])
Population <- DriverDeaths[, "Population"]

Offset included
glarmamodOffset <- glarma(y, X, offset = log(Population/100000),

phiLags = c(12),
type = "Poi", method = "FS",
residuals = "Pearson", maxit = 100, grad = 1e-6)

print(summary(glarmamodOffset))
par(mfrow =c(3,2))
plot(glarmamodOffset)

No offset included
glarmamodNoOffset <- glarma(y, X, phiLags = c(12),

type = "Poi", method = "FS",
residuals = "Pearson", maxit = 100, grad = 1e-6)

print(summary(glarmamodNoOffset))
par(mfrow=c(3,2))
plot(glarmamodNoOffset)

extractAIC.glarma Extract AIC from a GLARMA Model

Description

extractAIC method for class "glarma". Used to extract AIC from a glarma object.

Usage

S3 method for class 'glarma'
extractAIC(fit, ...)

Arguments

fit An object of class "glarma", obtained from a call to glarma.
... Further arguments passed to or from other methods.

Value

AIC extracted from object

See Also

coef.glarma, residuals.glarma, glarma.

extractGlarmaSimModel 7

extractGlarmaSimModel Extract simulation model from a glarma fit

Description

Extracts required components from a fitted glarma model to create an object of class "glarmaSimModel"
to be used as input to simulate a glarma model using the function glarmaSim.

Usage

extractGlarmaSimModel(object, ...)

Arguments

object An object of class "glarma" obtained from a call to glarma

... Further arguments for the call, currently unused.

Value

An object of class "glarmaSimModel"

Author(s)

"William T.M. Dunsmuir" <w.dunsmuir@unsw.edu.au> and "David J Scott" <d.scott@auckland.ac.nz>

See Also

glarmaSim

Examples

Extract model from a glarma fit to use in simulation
Example with asthma data
data(Asthma)
y <- Asthma[,1]
X <- as.matrix(Asthma[,2:16])
Pearson Residuals, Fisher Scoring
glarmamod <- glarma(y, X, thetaLags = 7, type = "Poi", method = "FS",

residuals = "Pearson", maxit = 100, grad = 1e-6)
mod <- extractGlarmaSimModel(glarmamod)
str(mod)

glarmamod <- glarma(y, X, thetaLags = 7, type = "NegBin", method = "NR",
residuals = "Pearson", alphaInit = 0,
maxit = 100, grad = 1e-6)

mod <- extractGlarmaSimModel(glarmamod)
str(mod)

data(DriverDeaths)

8 extractGlarmaSimModel

y <- DriverDeaths[, "Deaths"]
X <- as.matrix(DriverDeaths[, 2:5])
Population <- DriverDeaths[, "Population"]

Offset included
glarmamodOffset <- glarma(y, X, offset = log(Population/100000),

phiLags = c(12),
type = "Poi", method = "FS",
residuals = "Pearson", maxit = 100, grad = 1e-6)

mod <- extractGlarmaSimModel(glarmamodOffset)
str(mod)

data(OxBoatRace)

y1 <- OxBoatRace$Camwin
n1 <- rep(1, length(OxBoatRace$Year))
Y <- cbind(y1, n1 - y1)
X <- cbind(OxBoatRace$Intercept, OxBoatRace$Diff)
colnames(X) <- c("Intercept", "Weight Diff")

oxcamglm <- glm(Y ~ Diff + I(Diff^2),
data = OxBoatRace,
family = binomial(link = "logit"), x = TRUE)

summary(oxcamglm)

X <- oxcamglm$x

glarmamod <- glarma(Y, X, thetaLags = c(1, 2), type = "Bin", method = "NR",
residuals = "Pearson", maxit = 100, grad = 1e-6)

mod <- extractGlarmaSimModel(glarmamod)
str(mod)

data(RobberyConvict)
datalen <- dim(RobberyConvict)[1]
monthmat <- matrix(0, nrow = datalen, ncol = 12)
dimnames(monthmat) <- list(NULL, c("Jan","Feb","Mar","Apr","May","Jun",

"Jul","Aug","Sep","Oct","Nov","Dec"))
monthNames <- months(strptime(RobberyConvict$Date, format = "%m/%d/%Y"),

abbreviate=TRUE)

monthNamesUnique <- unique(monthNames)

for (j in 1:12) {
monthmat[monthNames == monthNamesUnique[j], j] <- 1

}

RobberyConvict <- cbind(rep(1, datalen), RobberyConvict, monthmat)
rm(monthmat)

Lower court robbery
y1 <- RobberyConvict$LC.Y

fitted.glarma 9

n1 <- RobberyConvict$LC.N

Y <- cbind(y1, n1-y1)

glm.LCRobbery <- glm(Y ~ Step.2001 +
I(Feb + Mar + Apr + May + Jun + Jul) +
I(Aug + Sep + Oct + Nov + Dec),

data = RobberyConvict, family = binomial(link = logit),
na.action = na.omit, x = TRUE)

summary(glm.LCRobbery, corr = FALSE)

X <- glm.LCRobbery$x

Newton Raphson
glarmamod <- glarma(Y, X, phiLags = c(1), type = "Bin", method = "NR",

residuals = "Pearson", maxit = 100, grad = 1e-6)
mod <- extractGlarmaSimModel(glarmamod)
str(mod)

fitted.glarma Extract GLARMA Model Fitted Values

Description

fitted method for class "glarma". fitted.values is an alias for fitted.

Usage

S3 method for class 'glarma'
fitted(object, ...)

Arguments

object An object of class "glarma", obtained from a call to glarma.

... Further arguments passed to or from other methods.

Details

This is an S3 generic function. fitted or fitted.values return the required fitted values from an
object of class "glarma".

Value

Fitted values mu extracted from the object object.

10 forecast

See Also

coef.glarma, residuals.glarma, glarma.

forecast Forecasting GLARMA time series

Description

forecast is a generic function for forecasting time series or time series models. The function
invokes particular methods which depend on the class of the first argument.

Currently the only method provided by the package is for objects of class "glarma".

Usage

forecast(object, ...)
S3 method for class 'glarma'
forecast(object, n.ahead = 1, newdata = 0,

newoffset = 0, newm = 1, ...)

Arguments

object An object of class "glarma" obtained from a call to glarma

n.ahead The number of periods ahead to be forecast.

newdata The model matrix X comprising the values of the predictors for the times for
which the series is to be predicted. Number of rows must be equal to n.ahead

newoffset A vector containing the values of the offset for the times for which the series is
to be predicted. Length must be equal to n.ahead if the model includes an offset

newm A vector containing the number of trials when forecasting binomial or binary
time series. Defaults to the binary case. Length must be equal to n.ahead

... Further arguments for the call, currently unused.

Details

Only one forecasting method is currently provided, for objects of class "glarma". This produces an
object of class "glarmaForecast".

When forecasting one step ahead, the values in the matrix newdata (and offset if there is an offset)
in the GLARMA model are used along with the regression coefficients in the model to obtain the
predicted value of η, the regression component of the state variable W . The predicted value of the
ARMA component of the state variable is then added to this value to give the predicted value of W .

When further predictions are required, since no data is available to calculate the predicted value of
the state variable, an observation is generated from the predicted distribution and the methodology
for one step ahead is then used on this generated data. This process is repeated until predictions
are obtained for the required number of time periods (specified by n.ahead). Note that the value

forecast 11

of n.ahead must equal the row dimension of newdata and if they are specified, of newoffset and
newm.

For completeness a randomly generated value of the time series is produced even for one step-ahead
prediction.

Note that the forecasted time series returned as the component fitted is then a randomly generated
sample path for the predicted time series. If a sample of such paths is produced by repeated calls to
forecast then sample predicted distributions can be obtained for the forecast series.

In the case of binary or binomial time series in addition to values of the predictors in the regression
component of the state variable and the values of any offset, the numbers of trials for the binomially
distributed future observations are required. This information should be provided in the argument
newm. If not, the number of trials defaults to 1, which is the case of binary responses.

Value

forecast currently has no default method.

When object is of class "glarma", forecast returns an object of class "glarmaForecast" with
components:

eta the forecast values of the regression component of the state variable

W the forecast values of the state variable W

mu the conditional mean µt

Y the simulated series based on the fitted model

n.ahead the number of steps ahead for which the forecasts were requested in the call to
forecast

newdata the model matrix X comprising the values of the predictors for the times for
which the series is to be predicted

newoffset the vector containing the values of the offset for the times for which the series is
to be predicted

newm the vector giving the number of trials when forecasting binomial or binary time
series

model the "glarma" object from the call to forecast

Author(s)

"William T.M. Dunsmuir" <w.dunsmuir@unsw.edu.au> and "David J Scott" <d.scott@auckland.ac.nz>

Examples

require(zoo)
Model number of deaths
data(DriverDeaths)
y <- DriverDeaths[, "Deaths"]
X <- as.matrix(DriverDeaths[, 2:5])
Population <- DriverDeaths[, "Population"]

Offset included

12 forecast

glarmamod <- glarma(y, X, offset = log(Population/100000),
phiLags = c(12),
thetaLags = c(1),
type = "Poi", method = "FS",
residuals = "Pearson", maxit = 100, grad = 1e-6)

print(summary(glarmamod))

XT1 <- matrix(X[72,], nrow = 1)
offsetT1 <- log(Population/100000)[72]

mu <- forecast(glarmamod, 1, XT1, offsetT1)$mu
print(mu)

Save some values
allX <- X
allFits <- fitted(glarmamod)
ally <- y

Look at a succession of forecasts
Using actual values in forecasts
forecasts <- numeric(72)
for (i in (62:71)){

y <- DriverDeaths[1:i, "Deaths"]
X <- as.matrix(DriverDeaths[1:i, 2:5])
Population <- DriverDeaths[1:i, "Population"]

Offset included
glarmamod <- glarma(y, X, offset = log(Population/100000),

phiLags = c(12),
thetaLags = c(1),
type = "Poi", method = "FS",
residuals = "Pearson", maxit = 100, grad = 1e-6)

XT1 <- matrix(allX[i + 1,], nrow = 1)
offsetT1 <- log(DriverDeaths$Population[i + 1]/100000)
mu <- forecast(glarmamod, 1, XT1, offsetT1)$mu
if (i == 62){

forecasts[1:62] <- fitted(glarmamod)
}
forecasts[i+1] <- mu

}
par(mfrow = c(1,1))
forecasts <- ts(forecasts[63:72], start = c(1985, 10), deltat = 1/12)
fitted <- ts(allFits, start = c(1980, 8), deltat = 1/12)
obs <- ts(DriverDeaths$Deaths, start = c(1980, 8), deltat = 1/12)
plot(obs, ylab = "Driver Deaths", lty = 2,

main = "Single Vehicle Nighttime Driver Deaths in Utah")
points(obs)
lines(fitted, lwd = 2)
lines(forecasts, col = "red")
par(xpd = NA)
graph.param <-

legend("top",

forecast 13

legend = c("observations",expression(estimated~mu[t]),
expression(predicted~mu[t])),

ncol = 3,
cex = 0.7,
bty = "n", plot = FALSE)

legend(graph.param$rect$left,
graph.param$rect$top + graph.param$rect$h,
legend = c("observations", expression(estimated~mu[t]),

expression(predicted~mu[t])),
col = c("black","black","red"),
lwd = c(1,2,1), lty = c(2,1,1),
pch = c(1, NA_integer_, NA_integer_),
ncol = 3,
cex = 0.7,
bty = "n",
text.font = 4)

par(xpd = FALSE)

Generate a sample of Y values 2 steps ahead and examine the distribution
data(DriverDeaths)
y <- DriverDeaths[, "Deaths"]
X <- as.matrix(DriverDeaths[, 2:5])
Population <- DriverDeaths[, "Population"]

Fit the glarma model to the first 70 observations
glarmamod <- glarma(y[1:70], X[1:70,],

offset = log(Population/100000)[1:70],
phiLags = c(12),
thetaLags = c(1),
type = "Poi", method = "FS",
residuals = "Pearson", maxit = 100, grad = 1e-6)

nObs <- NROW(X)
n.ahead <- 2
Specify the X matrix and offset for the times where predictions
are required
XT1 <- as.matrix(X[(nObs - n.ahead + 1):nObs,])
offsetT1 <- log(Population/100000)[(nObs - n.ahead + 1):nObs]
nSims <- 500
forecastY <- matrix(ncol = n.ahead, nrow = nSims)
forecastMu <- matrix(ncol = n.ahead, nrow = nSims)

Generate sample predicted values
for(i in 1:nSims){

temp <- forecast(glarmamod, n.ahead, XT1, offsetT1)
forecastY[i,] <- temp$Y
forecastMu[i,] <- temp$mu

}
Examine distribution of sample of Y values n.ahead
table(forecastY[, 2])
par(mfrow = c(2,1))
barplot(table(forecastY[, 2]),

main = "Barplot of Sample Y Values 2 Steps Ahead")

14 glarma

hist(forecastY[, 2], xlab = "Sample Y values",
main = paste0("Histogram of Sample Y Values 2 Steps Ahead",

"\nwith 0.025 and 0.975 Quantiles"))
abline(v = quantile(forecastY[, 2], c(0.025, 0.975)), col = "red")

glarma Generalized Linear Autoregressive Moving Average Models with Var-
ious Distributions

Description

The function glarma is used to fit generalized linear autoregressive moving average models with
various distributions (Poisson, binomial, negative binomial) using either Pearson residuals or score
residuals, and for the binomial distribution, identity residuals. It also estimates the parameters of the
GLARMA model with various distributions by using Fisher scoring or Newton-Raphson iteration.

For Poisson and negative binomial response distributions the log link is currently used. For binomial
responses the logit link is currently used.

Usage

glarma(y, X, offset = NULL, type = "Poi", method = "FS", residuals = "Pearson",
phiLags, thetaLags, phiInit, thetaInit, beta, alphaInit,
alpha = 1, maxit = 30, grad = 2.22e-16)

glarmaPoissonPearson(y, X, offset = NULL, delta, phiLags, thetaLags,
method = "FS")

glarmaPoissonScore(y, X, offset = NULL, delta, phiLags, thetaLags,
method = "FS")

glarmaBinomialIdentity(y, X, offset = NULL, delta, phiLags, thetaLags,
method = "FS")

glarmaBinomialPearson(y, X, offset = NULL, delta, phiLags, thetaLags,
method = "FS")

glarmaBinomialScore(y, X, offset = NULL, delta, phiLags, thetaLags,
method = "FS")

glarmaNegBinPearson(y, X, offset = NULL, delta, phiLags, thetaLags,
method = "FS")

glarmaNegBinScore(y, X, offset = NULL, delta, phiLags, thetaLags,
method = "FS")

glarma 15

Arguments

y Numeric vector; the response variable. If the response variable is for the model
with the binomial distribution, it should be a n by 2 matrix, one column is the
number of successes and another is the number of failures.

X Matrix; the explanatory variables. A vector of ones should be added to the data
matrix as the first column for the beta of the intercept.

offset Either NULL or a numeric vector of length equal to the number of cases. Used
to specify an a priori known component to be included in the linear predictor
during fitting.

beta Numeric vector; initial values of the regression coefficients.

phiLags Numeric vector; AR orders.

phiInit Numeric vector; initial values for the corresponding AR orders.

thetaLags Numeric vector; MA orders.

thetaInit Numeric vector; initial values for the corresponding MA orders.

delta Numeric vector; initial values of the parameters for the GLARMA estimation
procedure. It is a combination of the parameters of beta, the AR terms and the
MA terms.

alpha Numeric; an optional initial shape parameter for glm.nb.

alphaInit Numeric; an initial shape parameter for glarma for negative binomial counts.

type Character; the count distribution. Possible values are "Poi" (Poisson), "Bin"
(binomial) and "NegBin" (negative binomial). The default is the Poisson distri-
bution.

method Character; method of iteration to be used. Possible values are "FS" (Fisher
scoring), and "NR" (Newton-Raphson). The default is to use Fisher scoring to
estimate the parameters of a GLARMA model.

residuals Character; the type of residuals to be used. Possible values are "Pearson" and
"Score", and for the binomial distribution "Identity" is also allowed. The
default is to use Pearson residuals.

maxit Numeric; the maximum number of iterations allowed.

grad Numeric; the tolerance for recognizing numbers, which are smaller than the
specified tolerance, as zero.

Details

Models for glarma are specified symbolically. A typical model has the form y (response), X (terms)
where y is the count or factor reponse vector, X is a series of terms which specifies a linear predictor
for the response. It should be noted that the first column of X should be a vector of 1s as the intercept
in the model. Four initial parameters that need to be estimated are combined into δ = (β, ϕ, θ, α),
where α is an optional parameter to accomodate the negative binomial model. Note that in the
function glm.nb from the package MASS, this parameter is called theta.

For Poisson and negative binomial response distributions the log link is currently used. For binomial
responses the logit link is currently used.

The generalized linear autoregressive moving average models are computed as follows.

16 glarma

The linear predictor for the response is

logµt = Wt = XT
t β + offset + Zt.

The infinite moving average from the linear predictor is

Zt =

∞∑
i=1

γiet−i.

This infinite moving average, is computed using the autoregressive moving average recursions

Zt = ϕ1(Zt−1 + et−1) + ...+ ϕp(Zt−p + et−p) + θ1et−1 + ...+ θqet−q

where p and q are the orders of ϕ and θ respectively and the non-zero lags of the vectors phi and
theta may be specified by the user via the arguments phiLag and thetaLag.

There are two types of residuals which may be used in each recursion, Pearson residuals or score
residuals, and in addition, for the binomial distribution, identity residuals may be used. The infinite
moving average, Zt, depends on the type of residuals used, as do the final parameters obtained from
the filter. Standardisation of past observed counts is necessary to avoid instability, therefore the user
should choose the appropriate type of residuals depending on the situation.

The method of estimation for parameters implemented in the function aims to maximise the log
likelihood by an iterative method commencing from suitably chosen initial values for the param-
eters. Starting from initial values δ̂(0) for the vector of parameters updates are obtained using the
iterations

δ̂(k+1) = δ̂(k) +Ω(δ̂(k))
∂l(δ̂(k))

∂δ

where Ω(δ̂(k)) is some suitably chosen matrix.

Iterations continue for k ≥ 1 until convergence is reached or the number of iterations k reaches a
user specified upper limit on maximum iterations in which case they will stop. The convergence
criterion used in our implementation is that based on η, the maximum of absolute values of the first
derivatives.

When η is less than a user specified value grad the iterations stop. There are two methods of opti-
mization of the likelihood, Newton-Raphson and Fisher scoring. The method used is specified by
the argument method. It should be noticed that if the initial value for parameters are not chosen well,
the optimization of the likelihood might fail to converge. Care is needed when fitting mixed ARMA
specifications because there is potential for the AR and MA parameters to be non-identifiable if the
orders p and q are too large. Lack of identifiability manifests itself in the algorithm to optimize the
likelihood failing to converge and/or the hessian being singular—check the warning messages and
convergence error codes.

Value

The function summary (i.e., summary.glarma) can be used to obtain or print a summary of the
results.

glarma 17

The generic accessor functions coef (i.e., coef.glarma), logLik (i.e., logLik.glarma), fitted
(i.e., fitted.glarma), residuals (i.e., residuals.glarma), nobs (i.e., nobs.glarma), model.frame
(i.e., model.frame.glarma) and extractAIC (i.e., extractAIC.glarma) can be used to extract
various useful features of the value returned by glarma.

glarma returns an object of class "glarma" with components:

delta a vector of coefficients for beta, AR and MA.

logLik the loglikelihood of the specific distribution.

logLikDeriv the derivative of the loglikelhood of the specified distribution.

logLikDeriv2 the second derivative of the loglikelihood of the specified distribution.

eta the estimated linear predictor.

mu the GLARMA estimated mean.

fitted.values the GLARMA fitted values.

residuals the residuals of the type specified.

cov the estimated covariance matrix of the maximum likelihood estimators.

phiLags vector of AR orders.

thetaLags vector of MA orders.

r the number of columns in the model matrix.

pq the number of phiLags plus the number of thetaLags.

null.deviance the deviance from the initial GLM fit.

df.null the degrees of freedom from the initial GLM fit.

y the y vector used in the GLARMA model.

X the model matrix.

offset the offset, NULL if there is no offset.

type the distribution of the counts.

method the method of iteration used.

residType the type of the residuals returned.

call the matched call.

iter the number of iterations.

errCode the error code; 0 indicating successful convergence of the iteration method, 1
indicating failure.

WError error code for finiteness of W ; 0 indicating all values of W are finite, 1 indicat-
ing at least one infinite value.

min the minimum of the absolute value of the gradient.

aic A version of Akaike’s An Information Criterion, minus twice the maximized
log-likelihood plus twice the number of parameters, computed by the aic com-
ponent of the family. For binomial and Poisson families the dispersion is fixed
at one and the number of parameters is the number of coefficients.

18 glarma

Author(s)

The original GLARMA routine for Poisson responses was developed in collaboration with Richard
A. Davis and Ying Wang. The binomial response version was developed with the assistance of
Haolan Lu. The extension to negative binomial response was carried out by Bo Wang. Daniel
Drescher contributed to the initial structure of the software used as the basis of the package.

The main author of the package is "William T.M. Dunsmuir" <w.dunsmuir@unsw.edu.au>. Package
development was carried out by Cenanning Li supervised by David J. Scott.

References

Dunsmuir, William T. M. and Scott, David J. (2015) The glarma Package for Observation-Driven
Time Series Regression of Counts. Journal of Statistical Software, 67(7), 1–36. doi:10.18637/
jss.v067.i07

See Also

Additional examples may be found in Asthma, OxBoatRace, RobberyConvict, and DriverDeaths.

Examples

Example from Davis, Dunsmuir Wang (1999)
MA(1,2,5), Pearson Residuals, Fisher Scoring
data(Polio)
y <- Polio[, 2]
X <- as.matrix(Polio[, 3:8])
glarmamod <- glarma(y, X, thetaLags = c(1,2,5), type = "Poi", method = "FS",

residuals = "Pearson", maxit = 100, grad = 1e-6)
glarmamod
summary(glarmamod)

Score Type (GAS) Residuals, Fisher Scoring
glarmamod <- glarma(y, X, thetaLags = c(1,2,5), type = "Poi", method = "FS",

residuals = "Score", maxit = 100, grad = 1e-6)
glarmamod
summary(glarmamod)

Score Type (GAS) Residuals, Newton Raphson
Note: Newton Raphson fails to converge from GLM initial estimates.
Setting up the initial estimates by ourselves
init.delta <- glarmamod$delta
beta <- init.delta[1:6]
thetaInit <- init.delta[7:9]

glarmamod <- glarma(y, X, beta = beta, thetaLags = c(1, 2, 5),
thetaInit = thetaInit, type ="Poi", method = "NR",
residuals = "Score", maxit = 100, grad = 1e-6)

glarmamod
summary(glarmamod)

AR(1,5), Pearson Residuals, Fisher Scoring
glarmamod <- glarma(y, X, phiLags = c(1, 5), type = "Poi", method = "FS",

https://doi.org/10.18637/jss.v067.i07
https://doi.org/10.18637/jss.v067.i07

glarmaSim 19

residuals = "Pearson", maxit = 100, grad = 1e-6)
glarmamod
summary(glarmamod)

glarmaSim Simulate a glarma process.

Description

Simulate a single instance of a glarma process specified by an object of class glarmaSim.

Usage

glarmaSim(object)

Arguments

object An object of class "glarmaSim" either constructed to be of that class or derived
from a fitted glarma model using the function extractGlarmaSimModel.

Value

An object of class "glarmaSimulation".

Author(s)

"William T.M. Dunsmuir" <w.dunsmuir@unsw.edu.au> and "David J Scott" <d.scott@auckland.ac.nz>

See Also

glarmaSim

Examples

Polio data
data("Polio")
y <- Polio[, 2]
X <- as.matrix(Polio[, 3:8])
glarmamod <- glarma(y, X, thetaLags = c(1,2,5), type = "Poi", method = "FS",

residuals = "Pearson", maxit = 100, grad = 1e-6)
PolioModel <- extractGlarmaSimModel(glarmamod)
str(PolioModel)
par(mfrow = c(3,1))
sim <- glarmaSim(PolioModel)
ts.plot(sim$W)
ts.plot(sim$mu)
ts.plot(sim$Y)

20 glarmaSim

Example with Oxford-Cambridge Boat Race
data(OxBoatRace)

y1 <- OxBoatRace$Camwin
n1 <- rep(1, length(OxBoatRace$Year))
Y <- cbind(y1, n1 - y1)
X <- cbind(OxBoatRace$Intercept, OxBoatRace$Diff)
colnames(X) <- c("Intercept", "Weight Diff")

oxcamglm <- glm(Y ~ Diff + I(Diff^2),
data = OxBoatRace,
family = binomial(link = "logit"), x = TRUE)

summary(oxcamglm)

X <- oxcamglm$x

glarmamod <- glarma(Y, X, thetaLags = c(1, 2), type = "Bin", method = "NR",
residuals = "Pearson", maxit = 100, grad = 1e-6)

str(glarmamod)
BoatRaceModel <- glarmaSimModel(X, beta = coef.glarma(glarmamod, type = "beta"),

phiLags = glarmamod$phiLags,
phi = rep(0.1, length(glarmamod$phiLags)),
thetaLags = glarmamod$thetaLags,
theta = c(0.34,0.56),
type = glarmamod$type, m = n1,
residType = glarmamod$residType)

str(BoatRaceModel)
BoatRaceModel <- extractGlarmaSimModel(glarmamod)
str(BoatRaceModel)
par(mfrow = c(3,1))
sim <- glarmaSim(BoatRaceModel)
ts.plot(sim$W)
ts.plot(sim$mu)
ts.plot(sim$Y)

Example with asthma data, negative binomial
data(Asthma)
y <- Asthma[, 1]
X <- as.matrix(Asthma[, 2:16])

Pearson Residuals, Newton Raphson, Negative Binomial
Initial value of the shape parameter take to be zero
glarmamod <- glarma(y, X, thetaLags = 7, type = "NegBin", method = "NR",

residuals = "Pearson", alphaInit = 0,
maxit = 100, grad = 1e-6)

summary(glarmamod)
str(glarmamod)
AsthmaModel <- glarmaSimModel(X, beta = coef.glarma(glarmamod, type = "beta"),

phiLags = glarmamod$phiLags,
phi = rep(0.1, length(glarmamod$phiLags)),
thetaLags = glarmamod$thetaLags,

glarmaSimModel 21

theta = c(0.044),
type = glarmamod$type, alpha = 37.19,
residType = glarmamod$residType)

str(AsthmaModel)
AsthmaModel <- extractGlarmaSimModel(glarmamod)
str(AsthmaModel)
par(mfrow = c(3,1))
sim <- glarmaSim(AsthmaModel)
ts.plot(sim$W)
ts.plot(sim$mu)
ts.plot(sim$Y)

glarmaSimModel Create a glarma simulation model

Description

Defines a glarma model for input to the function glarmaSim.

Usage

glarmaSimModel(X, beta, offset = NULL, type = "Poi", mBin = NULL,
alpha = NULL, residType = "Pearson",
phiLags = NULL, phi = NULL,
thetaLags = NULL, theta = NULL)

Arguments

X Matrix; the explanatory variables. A vector of ones should be added to the data
matrix as the first column for the beta of the intercept.

beta Numeric vector; values of the regression coefficients.

offset Either NULL or a numeric vector of length equal to the number of cases.

type Character; the count distribution. Possible values are "Poi" (Poisson), "Bin"
(binomial) and "NegBin" (negative binomial). The default is the Poisson distri-
bution.

mBin Numeric vector of length equal to the forecast horizon; only for the binomial
case, the number of trials for each time point.

alpha Numeric; for the negative binomial case, the shape parameter for glm.nb

residType Character; the type of residuals to be used. Possible values are "Pearson" and
"Score", and for the binomial distribution "Identity" is also allowed. The
default is to use Pearson residuals.

phiLags Numeric vector; AR orders.

phi Numeric vector; values for the corresponding AR orders.

thetaLags Numeric vector; MA orders.

theta Numeric vector; values for the corresponding MA orders.

22 initial

Value

Creates a list object of type "glarmaSimModel" with the same list elements as in the function call.

Author(s)

"David J. Scott" <d.scott@auckland.ac.nz> and "William T.M. Dunsmuir" <w.dunsmuir@unsw.edu.au>

See Also

See glarmaSim.

Examples

Test glarmaSimModel
data("Polio")
y <- Polio[, 2]
X <- as.matrix(Polio[, 3:8])
glarmamod <- glarma(y, X, thetaLags = c(1,2,5), type = "Poi", method = "FS",

residuals = "Pearson", maxit = 100, grad = 1e-6)
summary(glarmamod)
PolioModel <- glarmaSimModel(X, beta = coef.glarma(glarmamod, type = "beta"),

phiLags = glarmamod$phiLags,
phi = rep(0.1, length(glarmamod$phiLags)),
thetaLags = glarmamod$thetaLags,
theta = rep(0.1, length(glarmamod$thetaLags)),
type = glarmamod$type,
residType = glarmamod$residType)

str(PolioModel)
coef.glarma(glarmamod, type = "ARMA")
PolioModel <- extractGlarmaSimModel(glarmamod)
str(PolioModel)

initial Initial Parameter Generator for GLARMA from GLM

Description

Function used to generate initial values of parameters for the GLARMA model from glm or glm.nb.

Usage

initial(y, X, offset = NULL, type = "Poi", alpha = 1)

initial 23

Arguments

y Numeric vector; response variable.

X Matrix; explanatory variables. A vector of ones should be added to the data
matrix as the first column for the β of the intercept.

offset Either NULL or a numeric vector of length equal to the number of cases. Used
to specify an a priori known component to be included in the linear predictor
during fitting.

type Character; the distribution of the counts.

alpha Numeric; an optional initial value for the theta parameter in the negative bino-
mial distribution; the default value is 1.

Details

Generates and returns the initial parameters for the GLARMA model under the specified distribution
by fitting a generalized linear model.

Value

beta A named numeric vector of initial coefficients.

y If requested, the y vector used.

X If requested, the model matrix.

alpha The theta parameter in the negative binomial distribution returned by glm.nb.
NULL if any other distribution is used.

type The distribution of the counts in the GLARMA model.

null.deviance Null deviance of the GLM with the same regression structure as the GLARMA
model.

df.null Null degrees of freedom of the GLM with the same regression structure as the
GLARMA model.

Author(s)

"William T.M. Dunsmuir" <w.dunsmuir@unsw.edu.au>

Examples

Using the polio data
data(Polio)
y <- Polio[, 2]
X <- as.matrix(Polio[, 3:8])

glmMod <- initial(y, X, type = "Poi", alpha=1)
str(glmMod)
head(glmMod)

24 likTests

likTests Likelihood Ratio Test and Wald Test for GLARMA Fit

Description

Function to carry out the likelihood ratio and Wald tests of serial dependence when the alternative
is a GLARMA process. This function takes a "glarma" object and uses its attributes to set up a
GLM fit that matches the GLARMA model regression structure. This is done to ensure that the
GLM object is the null hypothesis for testing against the "glarma" object.

Usage

likTests(object)
likeTests(object)
S3 method for class 'likTests'
print(x, ...)

Arguments

object An object of class "glarma", obtained from a call to glarma.

x An object of class "likTests", a result of a call to likTests

... Further arguments passed to or from other methods.

Details

This function carries out the likelihood ratio and Wald tests for comparing the null model and the
alternative model.

likeTests is an alias for likTests.

Value

likTests returns an object of class "likTests". A matrix is shown with the statistics and p-value
for each test. The significance stars alongside help to identify any probabilities less than 0.05 or
0.01.

Author(s)

"William T.M. Dunsmuir" <w.dunsmuir@unsw.edu.au>

Examples

Binomial response
data(Polio)
y <- Polio[, 2]
X <- as.matrix(Polio[, 3:8])
glarmamod <- glarma(y, X, thetaLags = c(1,2,5), type = "Poi", method = "FS",

residuals = "Pearson", maxit = 100, grad = 2.22e-16)

logLik.glarma 25

likTests(glarmamod)
likeTests(glarmamod)
Negative binomial response
glarmamod <- glarma(y, X, thetaLags = c(1,2,5), type = "NegBin", method = "FS",

residuals = "Pearson", maxit = 100, grad = 2.22e-16)
glarmamod
summary(glarmamod)
likeTests(glarmamod)

Negative Binomial Response with offset
glarmamod.offset <- glarma(y, X, thetaLags = c(1,2,5), type = "NegBin",

method = "FS", offset=log(X[,1]),
residuals = "Pearson", maxit = 100, grad = 2.22e-16)

glarmamod.offset
summary(glarmamod.offset)
likeTests(glarmamod.offset)

logLik.glarma Extract Log-Likelihood from GLARMA Models

Description

logLik is a generic function which extracts the GLARMA model log-likelihood from objects re-
turned by modeling functions.

Usage

S3 method for class 'glarma'
logLik(object, deriv, ...)

Arguments

object An object of class "glarma", a result of a call to glarma.

deriv Numeric; either "0", "1" or "2". It is used to choose and extract the log-likehood,
its derivative or its second derivative respectively from the "glarma" object. The
default is "0".

... Further arguments passed to or from other methods.

Details

This is an S3 generic function. logLik returns the log-likelihood, its derivative, or its second
derivative from the object of class glarma based on the value of the argument deriv. "0" is for the
log-likelihood, "1" is for the first derivative of log-likelihood and "2" is for the second derivative of
the log-likelihood.

Value

The log-likelihood, the derivative of the log-likelihood or the second derivative of the log-likelihood
extracted from the GLARMA model object object.

26 model.frame.glarma

See Also

coef.glarma, residuals.glarma, fitted.glarma, glarma.

Examples

data(Polio)
Y <- Polio[, 2]
X <- as.matrix(Polio[, 3:8])
glarmamod <- glarma(Y, X, thetaLags = c(1, 2, 5), type = "Poi", method ="FS",

residuals = "Pearson", maxit = 100 , grad = 1e-6)

logLik(glarmamod, deriv = 0)
logLik(glarmamod, deriv = 1)
logLik(glarmamod, deriv = 2)

model.frame.glarma Extracting the Model Frame of the GLARMA Model

Description

model.frame (a generic function) and its methods return a data frame with the variables that are
used in the glarma model.

Usage

S3 method for class 'glarma'
model.frame(formula, ...)

Arguments

formula An object of class glarma, obtained from a call to glarma.

... Further arguments passed to or from other methods.

Details

This is an S3 generic function. It extracts the response variable vector and the matrix of the ex-
planatory variables from the object of class "glarma", and combines them as a data frame.

Value

A data frame with the variables used in the fitted glarma model.

Author(s)

Cenanning Li <cli113@aucklanduni.ac.nz>

See Also

coef.glarma, residuals.glarma, fitted.glarma, glarma.

mySolve 27

Examples

data(Polio)
print(y <- Polio[, 2])
X <- as.matrix(Polio[, 3:8])
str(X)
head(X)

glarmamod <- glarma(y, X, thetaLags = c(1, 2, 5), type = "Poi",
method = "FS", residuals = "Pearson",
maxit = 100, grad = 1e-6)

str(model.frame(glarmamod))
head(model.frame(glarmamod))

mySolve Matrix Inversion of the Hessian of the Log-Likelihood

Description

Inverts the second derivative matrix of the log-likelihood to obtain the estimated covariance matrix
of the parameters.

Usage

mySolve(A)

Arguments

A Matrix; the negative second derivative of the log-likelihood

Details

mySolve attempts to invert its matrix argument. If the matrix supplied is not invertible, ErrCode is
set to 1.

Value

Ainv inverse of the negative second derivative of the loglikelihood. If the inverse
is unable to be obtained, returns the original negative second derivative of the
log-likelihood.

ErrCode Numeric; 0 if the inverse can be found, 1 if not.

Author(s)

"William T.M. Dunsmuir" <w.dunsmuir@unsw.edu.au>

28 nobs.glarma

Examples

Using the polio data
data(Polio)
y <- Polio[, 2]
X <- as.matrix(Polio[, 3:8])

Construct the vectors of phi lags and theta lags
theta.lags <- c(1, 2, 5)
phi.lags <- rep(0, 0)
Construct the initial delta vector
delta <- c("Intcpt" = 0.2069383, "Trend" = -4.7986615 ,

"CosAnnual" = -0.1487333, "SinAnnual" = -0.5318768,
"CosSemiAnnual" = 0.1690998, "SinSemiAnnual" = -0.4321435,
"theta_1" = 0, "theta_2"= 0, "theta_5"= 0)

Calculate the second derivative of the loglikelihood
glarmamod <- glarmaPoissonPearson(y, X, delta = delta, phiLags = phi.lags,

thetaLags = theta.lags, method = "FS")

estimate the covariance matrix of the estimators from the second
derivative of the loglikelihood
mySolve(-glarmamod$ll.dd)

nobs.glarma Extract the Number of Observations from a GLARMA Model Fit

Description

An accessor function used to extract the number of observations from a "glarma" object.

Usage

S3 method for class 'glarma'
nobs(object, ...)

Arguments

object An object of class "glarma", obtained from a call to glarma.

... Further arguments passed to or from other methods.

Value

The number of observations extracted from the object object.

Author(s)

"Cenanning Li" <cli113@aucklanduni.ac.nz>

normRandPIT 29

See Also

coef.glarma, residuals.glarma, fitted.glarma, glarma.

Examples

Example from Davis, Dunsmuir Wang (1999)
MA(1,2,5), Pearson Residuals, Fisher Scoring
data(Polio)
y <- Polio[, 2]
X <- as.matrix(Polio[, 3:8])
glarmamod <- glarma(y, X, thetaLags = c(1,2,5), type = "Poi", method = "FS",

residuals = "Pearson", maxit = 100, grad = 2.22e-16)

nobs(glarmamod)

normRandPIT Random normal probability integral transformation

Description

Function to create the normalized conditional (randomized) quantile residuals.

Usage

normRandPIT(object)

Arguments

object an object of class "glarma"

Details

The function glarmaPredProb produces the non-randomized probability integral transformation
(PIT). It returns estimates of the cumulative predictive probabilities as upper and lower bounds of a
collection of intervals. If the model is correct, a histogram drawn using these estimated probabilities
should resemble a histogram obtained from a sample from the uniform distribution. This function
aims to produce observations which instead resemble a sample from a normal distribution. Such a
sample can then be examined by the usual tools for checking normality, such as histograms, Q-Q
normal plots and for checking independence, autocorrelation and partial autocorrelation plots, and
associated portmanteau statistics.

For each of the intervals produced by glarmaPredProb, a random uniform observation is generated,
which is then converted to a normal observation by applying the inverse standard normal distribution
function (that is qnorm). The vector of these values is returned by the function in the list element
rt. In addition non-random observations which should appear similar to a sample from a normal
distribution are obtained by applying qnorm to the mid-points of the predictive distribution intervals.
The vector of these values is returned by the function in the list element rtMid.

30 normRandPIT

Value

A list consisting of two elements:

rt the normalized conditional (randomized) quantile residuals

rtMid the midpoints of the predictive probability intervals

Author(s)

"William T.M. Dunsmuir" <w.dunsmuir@unsw.edu.au> and "David J Scott" <d.scott@auckland.ac.nz>

References

Berkowitz, J. (2001) Testing density forecasts, with applications to risk management. Journal of
Business & Economic Statistics, 19, 465–474.

Dunn, Peter K. and Smyth, Gordon K. (1996) Randomized quantile residuals. Journal of Compu-
tational and Graphical Statistics, 5, 236–244.

See Also

See also as glarmaPredProb.

Examples

data(DriverDeaths)
y <- DriverDeaths[, "Deaths"]
X <- as.matrix(DriverDeaths[, 2:5])
Population <- DriverDeaths[, "Population"]

Offset included
glarmamodOffset <- glarma(y, X, offset = log(Population/100000),

phiLags = c(12),
type = "Poi", method = "FS",
residuals = "Pearson", maxit = 100, grad = 1e-6)

rt <- normRandPIT(glarmamodOffset)$rt
par(mfrow = c(2,2))
hist(rt, main = "Histogram of Randomized Residuals",

xlab = expression(r[t]))
box()
qqnorm(rt, main = "Q-Q Plot of Randomized Residuals")
abline(0, 1, lty = 2)
acf(rt, main = "ACF of Randomized Residuals")
pacf(rt, main = "PACF of Randomized Residuals")

OxBoatRace 31

OxBoatRace Oxford-Cambridge Boat Race

Description

Results of the boat race between Oxford and Cambridge from 1829–2011.

Usage

data(OxBoatRace)

Format

A data frame containing the following columns:

[, 1] Year Year in which the race occurred. Some years are missing when the race was not run.
[, 2] Intercept A vector of ones, providing the intercept in the model.
[, 3] Camwin A binary response, zero for an Oxford win, one for a Cambridge win.
[, 4] WinnerWeight Weight of winning team’s crew.
[, 5] LoserWeight Weight of losing team’s crew.
[, 6] Diff Difference between winning team’s weight and losing team’s weight.

Source

Klingenberg, Bernhard (2008) Regression models for binary time series with gaps. Computational
Statistics & Data Analysis, 52, 4076–4090.

Examples

Example with Oxford-Cambridge Boat Race
data(OxBoatRace)

y1 <- OxBoatRace$Camwin
n1 <- rep(1, length(OxBoatRace$Year))
Y <- cbind(y1, n1 - y1)
X <- cbind(OxBoatRace$Intercept, OxBoatRace$Diff)
colnames(X) <- c("Intercept", "Weight Diff")

oxcamglm <- glm(Y ~ Diff + I(Diff^2),
data = OxBoatRace,
family = binomial(link = "logit"), x = TRUE)

summary(oxcamglm)

X <- oxcamglm$x

glarmamod <- glarma(Y, X, thetaLags = c(1, 2), type = "Bin", method = "NR",
residuals = "Pearson", maxit = 100, grad = 1e-6)

32 paramGen

summary(glarmamod)
likTests(glarmamod)

Plot Probability of Cambridge win versus Cambridge Weight advantage:
beta <- coef(glarmamod, "beta")
par(mfrow = c(1, 1))
plot(OxBoatRace$Diff, 1 / (1 + exp(-(beta[1] + beta[2] * OxBoatRace$Diff +

beta[3] * OxBoatRace$Diff^2))),
ylab = "Prob", xlab = "Weight Diff")

title("Probability of Cambridge win \n versus Cambridge weight advantage")

Residuals and fit plots
par(mfrow=c(3, 2))
plot.glarma(glarmamod)

paramGen Parameter Generators

Description

Functions which use the arguments of a glarma call to generate the initial delta, theta and phi
vectors.

Usage

deltaGen(y, X, offset = NULL, phiInit, thetaInit, type, alpha,
beta, alphaInit)

thetaGen(thetaLags, thetaInit)
phiGen(phiLags, phiInit)

Arguments

y Numeric vector; response variable.
X Matrix; the explanatory variables. A vector of ones should be added to the data

matrix as the first column for the beta of the intercept.
offset Either NULL or a numeric vector of length equal to the number of cases. Used

to specify an a priori known component to be included in the linear predictor
during fitting.

phiInit Numeric vector; initial values for the corresponding AR orders.
thetaInit Numeric vector; initial values for the corresponding orders.
type Character; the count distribution. The default is the Poisson distribution.
beta Numeric vector; initial values of the parameters of variables. It is for the user to

construct the specific delta by themselves.
alpha Numeric; an optional initial theta parameter for glm.nb.
alphaInit Numeric; an initial theta parameter for glarma for negative binomial counts.
thetaLags Numeric vector; MA orders
phiLags Numeric vector; AR orders

paramGen 33

Details

The thetaGen and phiGen functions take the arguments, thetaLags, phiLags, thetaInit and
phiInit, in a glarma call to generate and return the initial theta and phi vectors with orders
corresponding to their names. Then the deltaGen function uses the values returned by thetaGen,
phiGen and other arguments in the glarma call to generate and return the initial delta vector with
correct names.

Value

thetaGen returns a list containing thetaLags and thetaInit. thetaInit is the initial theta
vector with its corresponding MA orders as its names.

phiGen returns a list containing phiLags and phiInit. phiInit is the initial phi vector with its
corresponding MA orders as its names.

deltaGen returns a named vector giving the values of beta, phiInit, thetaInit plus alpha in the
negative binomial case.

Author(s)

"Cenanning Li" <cli113@aucklanduni.ac.nz> and "William T.M. Dunsmuir" <w.dunsmuir@unsw.edu.au>

Examples

Using the polio data
data(Polio)
y <- Polio[, 2]
X <- as.matrix(Polio[, 3:8])

generate the theta vector
theta.lags <- c(1, 2, 5)
theta.init <- c(0.0, 0.0, 0.0)

theta <- thetaGen(theta.lags, theta.init)
print(thetaLags <- theta[[1]])
print(theta.init <- theta[[2]])

generate the vector of phi
phi.lags <- rep(0, 0)
phi.init <- rep(0, 0)
phi <- phiGen(phi.lags, phi.init)
print(phiLags <- phi[[1]])
print(phi.init <- phi[[2]])

generate the delta vector
delta <- deltaGen(y = y, X = X, phiInit = phi.init,

thetaInit = theta.init, type = "Poi",
alpha = 1)

delta

34 PIT

PIT Non-randomized Probability Integral Transformation

Description

Functions to produce the non-randomized probability integral transform (PIT) to check the ade-
quacy of the distributional assumption of the GLARMA model.

Usage

glarmaPredProb(object)
glarmaPIT(object, bins = 10)

Arguments

object An object of class "glarma", obtained from a call to glarma.

bins Numeric; the number of bins used in the PIT.

Details

These functions are used for the assessment of predictive distributions in discrete data. They obtain
the predictive probabilities and the probability integral transformation for a fitted GLARMA model.

Value

glarmaPredProb returns a list with values:

upper the predictive cumulative probabilities used as the upper bound for computing
the non-randomized PIT.

lower the predictive cumulative probabilities used as the lower bound for computing
the non-randomized PIT.

glarmaPIT returns a list with values:

upper the predictive cumulative probabilities used as the upper bound for computing
the non-randomized PIT.

lower the predictive cumulative probabilities used as the lower bound for computing
the non-randomized PIT.

conditionalPIT the conditional probability integral transformation given the observed counts.

PIT the probability integral transformation.

Author(s)

"David J. Scott" <d.scott@auckland.ac.nz> and "Cenanning Li" <cli113@aucklanduni.ac.nz>

plot.glarma 35

References

Czado, Claudia and Gneiting, Tilmann and Held, Leonhard (2009) Predictive model assessment for
count data. Biometrics, 65, 1254–1261.

Jung, Robert.C and Tremayne, A.R (2011) Useful models for time series of counts or simply wrong
ones? Advances in Statistical Analysis, 95, 59–91.

Examples

Example from Davis, Dunsmuir Wang (1999)
MA(1,2,5), Pearson Residuals, Fisher Scoring
data(Polio)
y <- Polio[, 2]
X <- as.matrix(Polio[, 3:8])
glarmamod <- glarma(y, X, thetaLags = c(1,2,5), type = "Poi", method = "FS",

residuals = "Pearson", maxit = 100, grad = 2.22e-16)
glarmaPredProb(glarmamod)
glarmaPIT(glarmamod)

plot.glarma Plot Diagnostics for a glarma Object

Description

Ten plots (selectable by which) are currently available: a time series plot with observed values of the
dependent variable, fixed effects fit, and GLARMA fit; an ACF plot of residuals; a plot of residuals
against time; a normal Q-Q plot; the PIT histogram; a uniform Q-Q plot for the PIT; a histogram
of the normal randomized residuals; a Q-Q plot of the normal randomized residuals; a plot of the
autocorrelation of the normal randomized residuals; and a plot of the partial autocorrelation of the
normal randomized residuals. By default, six plots are provided, numbers 1, 3, 5, 7, 8 and 9 from
this list of plots.

Usage

S3 method for class 'glarma'
plot(x, which = c(1L,3L,5L,7L,8L,9L), fits = 1L:3L,

ask = prod(par("mfcol")) < length(which) && dev.interactive(),
lwdObs = 1, lwdFixed = 1, lwdGLARMA = 1,
colObs = "black", colFixed = "blue", colGLARMA = "red",
ltyObs = 2, ltyFixed = 1, ltyGLARMA = 1,
pchObs = 1, legend = TRUE, residPlotType = "h", bins = 10,
line = TRUE, colLine = "red", colHist = "royal blue",
lwdLine = 2, colPIT1 = "red", colPIT2 = "black",
ltyPIT1 = 1, ltyPIT2 = 2, typePIT = "l",
ltyQQ = 2, colQQ = "black", titles, ...)

36 plot.glarma

Arguments

x An object of class "glarma", obtained from a call to glarma.

which Numeric; if a subset of the plots is required, specify a subset of the numbers
1:10. 1 is the time series plot with observed values of the dependent variable,
fixed effects fit, and GLARMA fit. 2 is the ACF plot of residuals. 3 is a plot of
residuals against time. 4 is the normal Q-Q plot. 5 is the PIT histogram. 6 is
the uniform Q-Q plot for the PIT. 7 is the histogram of the normal randomized
residuals. 8 is the Q-Q plot of the normal randomized residuals. 9 is the auto-
correlation of the normal randomized residuals. 10 is the partial autocorrelation
of the normal randomized residuals. By default, plots 1, 3, 5, 7, 8 and 9 are
provided.

fits Numeric; if a subset of fits on the time series plot is required, specify a subset
of the numbers 1:3. 1 is the observed values of the dependent variable, 2 is the
fixed effects fit, and 3 is GLARMA fit. By default, all fits are provided.

ask Logical; if TRUE, the user is asked before each plot, see par(ask = .).

lwdObs Numeric; the line widths for lines of the observed values of the dependent vari-
able appearing in the time series plot.

lwdFixed Numeric; the line widths for lines of the fixed effects fit appearing in the time
series plot.

lwdGLARMA Numeric; the line widths for lines of GLARMA fit appearing in the time series
plot.

ltyObs An integer or character string; the line types for the line of the observed data of
the dependent variable appearing in the time series plot, see par(lty = .).

ltyFixed An integer or character string; the line types for the line of the fixed effects fit
appearing in the time series plot, see par(lty = .).

ltyGLARMA An integer or character string; the line types for the line of GLARMA fit appear-
ing in the time series plot, see par(lty = .).

pchObs Numeric; the point type for the point of the observed data of the dependent
variable appearing in the time series plot.

colObs Numeric or character; the colour of lines or points of the observed data of the
dependent variable appearing in the time series plot.

colFixed Numeric or character; the colour of lines of the fixed effects fit appearing in the
time series plot.

colGLARMA Numeric or character; the colour of lines of GLARMA fit appearing in the time
series plot.

legend Logical; if TRUE, the legend for the fits in the time series plot would be shown.
By default, it would be shown.

residPlotType A 1-character string giving the type of plot desired. The following values are
possible, for details, see plot: "p" for points, "l" for lines, "b" for both points
and lines, "c" for empty points joined by lines, "o" for overplotted points and
lines, "s" and "S" for stair steps and "h" for histogram-like vertical lines. Finally,
"n" does not produce any points or lines.

bins Numeric; the number of bins shown in the PIT histogram and of the number of
breaks in the histogram of the normal randomized residuals. By default, it is 10.

plot.glarma 37

line Logical; if TRUE, the line for displaying the standard uniform distribution will
be shown for the purpose of comparison. The default is TRUE.

colLine Numeric or character; the colour of the line for comparison in the PIT histogram.

lwdLine Numeric; the line widths for the comparison line in the PIT histogram.

colHist Numeric or character; the colour of the histogram for the PIT, and of the his-
togram of the normal randomized residuals.

colPIT1 Numeric or character; the colour of the sample uniform Q-Q plot in the PIT.

colPIT2 Numeric or character; the colour of the theoretical uniform Q-Q plot in the PIT.

ltyPIT1 An integer or character string; the line types for the sample uniform Q-Q plot in
the PIT, see par(lty = .).

ltyPIT2 An integer or character string; the line types for the theoretical uniform Q-Q plot
in the PIT, see par(lty = .).

typePIT A 1-character string; the type of plot for the sample uniform Q-Q plot in the PIT.

ltyQQ An integer or character string; the line type for the normal Q-Q plot of the normal
randomized residuals, see par(lty = .).

colQQ Numeric or character; the colour of the line in the normal Q-Q plot of the normal
randomized residuals.

titles A list of the same length as which. For any elements which are NULL, useful
titles will be created for the corresponding plot.

... Further arguments passed to plot.default and plot.ts.

Details

plot.glarma is an S3 generic function for objects of class glarma.

The plots in this method display the fixed effects fit, GLARMA fit and various types of residuals for
the GLARMA fit under the Poisson distribution, the binomial distribution or the negative binomial
distribution, plus a number of plots of the randomized residuals (see normRandPIT for details of
the randomized residuals). In all, ten plots can be produced. The observed values of the dependent
variable shown in the time series plot are mainly used to compare with the two fits.

The fixed effects fit is calculated from η, the multiplication of the data matrix X and β coefficients in
GLARMA model. In contrast, the GLARMA fit is calculated from W , the product of the data matrix
X and δ in the GLARMA model, which is the combination of both the β and ARMA coefficients,
and is also called the state variable of the series.

There are some major differences for computing the fixed effects fit from η and the GLARMA fit
from W under different distributions.

Under the Poisson distribution and negative binomial distribution,

fitfixed = exp η

and
fitglarma = expW.

Under the binomial distribution,

fitfixed =
1

(1 + e−η)

38 plot.glarma

and

fitglarma =
1

(1 + e−W)
.

The residuals are calculated from the observed data and GLARMA fit. The exact computation for
the residuals depends on the type of residuals used. The details are given in glarma. The ACF plot,
the residuals against time and the normal Q-Q plot are all based on these residuals. Further details
about those three plots are passed to acf and qqnorm.

There are four plots based on the randomized residuals calculated using normRandPIT. These are a
histogram, a Q-Q plot, an autocorrelation plot and a partial autocorrelation plot.

The number of plots to be shown in the window depends on the value of the graphical parameter
mfrow (or mfcol). If the displayed window is set to be large enough to show all ten plots, they
will be shown at one time. Otherwise, the required number of plots will appear each time in the
displayed window, and the user will need to enter return to see subsequent plots. By default, six
plots are produced.

For the time series plot in the function, the fit displayed is specified by the argument fits. The
legend will be shown if legend is TRUE. It will appear under the title of the time series plot. Also
the legend and the title will alter automatically according to the fits shown in the plot.

Author(s)

"Cenanning Li" <cli113@aucklanduni.ac.nz>

See Also

plot.ts, qqnorm, acf, plot.default, normRandPIT.

Examples

A example from Davis, Dunsmuir Wang (1999)
MA(1,2,5), Pearson Residuals, Fisher Scoring
data(Polio)
y <- Polio[, 2]
X <- as.matrix(Polio[, 3:8])
glarmamod <- glarma(y, X, thetaLags = c(1, 2, 5), type = "Poi",method = "FS",

residuals = "Pearson", maxit = 100 , grad = 1e-6)

The default plots are shown
plot(glarmamod)

The plots used only to compared GLARMA fit and the observed data
plot(glarmamod, which = 1L, fits = c(1, 3))

plotPIT 39

plotPIT PIT Plots for a glarma Object

Description

Two plots for the non-randomized PIT are currently available for checking the distributional as-
sumption of the fitted GLARMA model: the PIT histogram, and the uniform Q-Q plot for PIT.

Usage

histPIT(object, bins = 10, line = TRUE, colLine = "red",
colHist = "royal blue", lwdLine = 2, main = NULL, ...)

qqPIT(object, bins = 10, col1 = "red", col2 = "black",
lty1 = 1, lty2 = 2, type = "l", main = NULL, ...)

Arguments

object An object of class "glarma", obtained from a call to glarma.

bins Numeric; the number of bins shown in the PIT histogram or the PIT Q-Q plot.
By default, it is 10.

line Logical; if TRUE, the line for displaying the standard uniform distribution will
be shown for the purpose of comparison. The default is TRUE.

colLine Numeric or character; the colour of the line for comparison in PIT histogram.

lwdLine Numeric; the line widths for the comparison line in PIT histogram.

colHist Numeric or character; the colour of the histogram for PIT.

col1 Numeric or character; the colour of the sample uniform Q-Q plot in PIT.

col2 Numeric or character; the colour of the theoretical uniform Q-Q plot in PIT.

lty1 An integer or character string; the line types for the sample uniform Q-Q plot in
PIT, see par(lty = .).

lty2 An integer or character string; the line types for the theoretical uniform Q-Q plot
in PIT, see par(lty = .).

type A 1-character string; the type of plot for the sample uniform Q-Q plot in PIT.

main A character string giving a title. For each plot the default provides a useful title.

... Further arguments passed to plot.default and plot.ts.

Details

The histogram and the Q-Q plot are used to compare the fitted profile with U(0, 1). If they match
relatively well, it means the distributional assumption is satisfied.

Author(s)

"David J. Scott" <d.scott@auckland.ac.nz> and "Cenanning Li" <cli113@aucklanduni.ac.nz>

40 Polio

References

Czado, Claudia and Gneiting, Tilmann and Held, Leonhard (2009) Predictive model assessment for
count data. Biometrics, 65, 1254–1261.

Jung, Robert.C and Tremayne, A.R (2011) Useful models for time series of counts or simply wrong
ones? AStA Advances in Statistical Analysis, 95, 59–91.

Examples

For examples see example(plot.glarma)

Polio Cases of Poliomyelitis in the U.S.

Description

This data set gives the monthly number of cases of poliomyelitis in the U.S. for the years 1970–1983
as reported by the Center for Disease Control. The polio data frame has 168 rows and 8 columns.

Usage

data(Polio)

Format

A data frame containing the following columns:

[, 1] Cases monthly number of cases of poliomyelitis.
[, 2] Intcpt a vector of ones, providing the intercept in the model.
[, 3] Trend a linear trend.
[, 4] CosAnnual cosine harmonics at periods of 12.
[, 5] SinAnnual sine harmonics at periods of 12.
[, 6] CosSemiAnnual cosine harmonics at periods of 6.
[, 7] SinSemiAnnual sine harmonics at periods of 6.

Source

Zeger, S.L (1988) A regression model for time series of counts. Biometrika, 75, 621–629.

residuals.glarma 41

residuals.glarma Extract GLARMA Model Residuals

Description

residuals is a generic function which extracts model residuals from objects returned by the mod-
eling function glarma. resid is an alias for residuals.

Usage

S3 method for class 'glarma'
residuals(object, ...)

Arguments

object An object of class "glarma", a result of a call to glarma.

... Further arguments passed to or from other methods.

Value

Residuals extracted from the object object.

Author(s)

"William T.M. Dunsmuir" <w.dunsmuir@unsw.edu.au> and "Cenanning Li" <cli113@aucklanduni.ac.nz>

See Also

coefficients.glarma, fitted.glarma, glarma.

RobberyConvict Court Convictions for Armed Robbery in New South Wales

Description

Monthly counts of charges laid and convictions made in Local Courts and Higher Court in armed
robbery in New South Wales from 1995–2007.

Usage

data(RobberyConvict)

42 RobberyConvict

Format

A data frame containing the following columns:

[, 1] Date Date in month/year format.
[, 2] Incpt A vector of ones, providing the intercept in the model.
[, 3] Trend Scaled time trend.
[, 4] Step.2001 Unit step change from 2001 onwards.
[, 5] Trend.2001 Change in trend term from 2001 onwards.
[, 6] HC.N Monthly number of cases for robbery (Higher Court).
[, 7] HC.Y Monthly number of convictions for robbery (Higher court).
[, 8] HC.P Proportion of convictions to charges for robbery (Higher court).
[, 9] LC.N Monthly number of cases for robbery (Lower court).

[, 10] LC.Y Monthly number of convictions for robbery (Lower court).
[, 11] LC.P Proportion of convictions to charges for robbery (Lower court).

Source

Dunsmuir, William TM, Tran, Cuong, and Weatherburn, Don (2008) Assessing the Impact of
Mandatory DNA Testing of Prison Inmates in NSW on Clearance, Charge and Conviction Rates
for Selected Crime Categories.

Examples

Example with Robbery Convictions
data(RobberyConvict)
datalen <- dim(RobberyConvict)[1]
monthmat <- matrix(0, nrow = datalen, ncol = 12)
dimnames(monthmat) <- list(NULL, c("Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
months <- unique(months(strptime(RobberyConvict$Date, format = "%m/%d/%Y"),

abbreviate=TRUE))

for (j in 1:12) {
monthmat[months(strptime(RobberyConvict$Date, "%m/%d/%Y"),

abbreviate = TRUE) == months[j], j] <- 1
}

RobberyConvict <- cbind(rep(1, datalen), RobberyConvict, monthmat)
rm(monthmat)

LOWER COURT ROBBERY
y1 <- RobberyConvict$LC.Y
n1 <- RobberyConvict$LC.N

Y <- cbind(y1, n1-y1)

glm.LCRobbery <- glm(Y ~ Step.2001 +
I(Feb + Mar + Apr + May + Jun + Jul) +
I(Aug + Sep + Oct + Nov + Dec),

summary.glarma 43

data = RobberyConvict, family = binomial(link = logit),
na.action = na.omit, x = TRUE)

summary(glm.LCRobbery, corr = FALSE)

X <- glm.LCRobbery$x

Newton Raphson
glarmamod <- glarma(Y, X, phiLags = c(1), type = "Bin", method = "NR",

residuals = "Pearson", maxit = 100, grad = 1e-6)
glarmamod
summary(glarmamod)

LRT, Wald tests.
likTests(glarmamod)

Residuals and Fit Plots
plot.glarma(glarmamod)

HIGHER COURT ROBBERY
y1 <- RobberyConvict$HC.Y
n1 <- RobberyConvict$HC.N

Y <- cbind(y1, n1-y1)

glm.HCRobbery <- glm(Y ~ Trend + Trend.2001 +
I(Feb + Mar + Apr + May + Jun) + Dec,

data = RobberyConvict, family = binomial(link = logit),
na.action = na.omit, x = TRUE)

summary(glm.HCRobbery,corr = FALSE)

X <- glm.HCRobbery$x

Newton Raphson
glarmamod <- glarma(Y, X, phiLags = c(1, 2, 3), type = "Bin", method = "NR",

residuals = "Pearson", maxit = 100, grad = 1e-6)
glarmamod
summary(glarmamod)

LRT, Wald tests.
likTests(glarmamod)

Residuals and Fit Plots
plot.glarma(glarmamod)

summary.glarma Summarize GLARMA Fit

44 summary.glarma

Description

summary method for class glarma and functions to generate the estimates for this summary method.

Usage

S3 method for class 'glarma'
summary(object, tests = TRUE, ...)
S3 method for class 'summary.glarma'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
glarmaModelEstimates(object)

Arguments

object An object of class "glarma", obtained from a call to glarma.
x An object of class "summary.glarma", obtained from a call to summary.glarma.
digits Numeric; minimum number of significant digits to be used for most numbers.
tests Logical; if TRUE, the likelihood-ratio test and the Wald test are shown in the

summary. The default is TRUE.
... Further arguments passed to or from other methods.

Value

summary.glarma returns an object of class "summary.glarma", a list with components

call the component from object

null.deviance null deviance of the GLM with the same regression structure as the GLARMA
model.

df.null null degrees of freedom of the GLM with the same regression structure as the
GLARMA model.

phi.lags the component from object.
theta.lags the component from object.
pq the component from object.
iter the component from object.
deviance the deviance of the fitted model.
df.residual the degrees of freedom of the fitted model.
deviance.resid the component from object.
aic the component from object.
methods vector specifying the count distribution of the GLARMA model, the iteration

method and the type of residual used.
tests whether tests were asked for.
likTests if tests is TRUE, the result of a call to likTests, NULL otherwise.
coefficients1 the matrix of beta coefficients, standard errors, z-ratio and p-values.
coefficients2 the matrix of ARMA coefficients, standard errors, z-ratio and p-values.
coefficients3 when the count distribution is negative binomial, a matrix with 1 row, giving the

negative binomial parameter, its standard error, z-ratio and p-value.

summary.glarma 45

Author(s)

"William T.M. Dunsmuir" <w.dunsmuir@unsw.edu.au> and "Cenanning Li" <cli113@aucklanduni.ac.nz>

See Also

glarma, summary.

Examples

For examples see example(glarma)

Index

∗ Accessor Functions
coef.glarma, 4
extractAIC.glarma, 6
fitted.glarma, 9
logLik.glarma, 25
model.frame.glarma, 26
nobs.glarma, 28
residuals.glarma, 41

∗ Diagnostic
likTests, 24
plot.glarma, 35
plotPIT, 39

∗ GLARMA
glarma, 14
mySolve, 27

∗ Initial Parameter Generators
paramGen, 32

∗ Initial Parameter Generator
initial, 22

∗ Print
summary.glarma, 44

∗ datasets
Asthma, 2
DriverDeaths, 5
OxBoatRace, 31
Polio, 40
RobberyConvict, 41

∗ methods
extractGlarmaSimModel, 7
forecast, 10

∗ method
glarmaSim, 19

∗ ts
extractGlarmaSimModel, 7
forecast, 10
glarmaSim, 19
glarmaSimModel, 21
normRandPIT, 29
PIT, 34

acf, 38
Asthma, 2, 18

coef, 17
coef.glarma, 4, 6, 10, 17, 26, 29
coefficients.glarma, 41
coefficients.glarma (coef.glarma), 4

deltaGen (paramGen), 32
DriverDeaths, 5, 18

extractAIC, 17
extractAIC.glarma, 6, 17
extractGlarmaSimModel, 7

fitted, 17
fitted.glarma, 4, 9, 17, 26, 29, 41
fitted.values.glarma (fitted.glarma), 9
forecast, 10

glarma, 4, 6, 9, 10, 14, 24–26, 28, 29, 32–34,
36, 38, 39, 41, 44, 45

glarmaBinomialIdentity (glarma), 14
glarmaBinomialPearson (glarma), 14
glarmaBinomialScore (glarma), 14
glarmaModelEstimates (summary.glarma),

44
glarmaNegBinPearson (glarma), 14
glarmaNegBinScore (glarma), 14
glarmaPIT (PIT), 34
glarmaPoissonPearson (glarma), 14
glarmaPoissonScore (glarma), 14
glarmaPredProb, 29, 30
glarmaPredProb (PIT), 34
glarmaSim, 7, 19, 19, 22
glarmaSimModel, 21
glm, 22
glm.nb, 15, 21–23, 32

histPIT (plotPIT), 39

46

INDEX 47

initial, 22

likeTests (likTests), 24
likTests, 24
logLik, 17
logLik.glarma, 17, 25

model.frame, 17
model.frame.glarma, 17, 26
mySolve, 27

nobs, 17
nobs.glarma, 17, 28
normRandPIT, 29, 37, 38

OxBoatRace, 18, 31

par, 36, 37, 39
paramGen, 32
phiGen (paramGen), 32
PIT, 34
plot, 36
plot.default, 37–39
plot.glarma, 35
plot.ts, 37–39
plotPIT, 39
Polio, 40
print.glarma (glarma), 14
print.likTests (likTests), 24
print.summary.glarma (summary.glarma),

44

qnorm, 29
qqnorm, 38
qqPIT (plotPIT), 39

resid.glarma (residuals.glarma), 41
residuals, 17
residuals.glarma, 4, 6, 10, 17, 26, 29, 41
RobberyConvict, 18, 41

summary, 16, 45
summary.glarma, 16, 43

thetaGen (paramGen), 32

	Asthma
	coef.glarma
	DriverDeaths
	extractAIC.glarma
	extractGlarmaSimModel
	fitted.glarma
	forecast
	glarma
	glarmaSim
	glarmaSimModel
	initial
	likTests
	logLik.glarma
	model.frame.glarma
	mySolve
	nobs.glarma
	normRandPIT
	OxBoatRace
	paramGen
	PIT
	plot.glarma
	plotPIT
	Polio
	residuals.glarma
	RobberyConvict
	summary.glarma
	Index

