Package ‘gibasa’

February 16, 2025
Type Package
Title An Alternative 'Rcpp’ Wrapper of 'MeCab'
Version 1.1.2
Maintainer Akiru Kato <paithiov909@gmail.com>

Description A plain 'Repp' wrapper for 'MeCab' that can segment Chinese,
Japanese, and Korean text into tokens. The main goal of this package
is to provide an alternative to 'tidytext' using morphological
analysis.

License GPL (>= 3)
URL https://paithiov909.github.io/gibasa/

BugReports https://github.com/paithiov909/gibasa/issues

Depends R (>=4.2)

Imports dplyr, Matrix, Rcpp, ReppParallel, readr, rlang (>= 0.4.11),
stringi

Suggests roxygen?2, testthat (>= 3.0.0), withr

LinkingTo Rcpp, ReppParallel

Config/Needs/website ggdendro, ggh4x, gghighlight, ggrepel, quanteda,
quanteda.textmodels, quanteda.textstats, ca, tidytext, stringr,
textrecipes, text2vec, tidymodels, xgboost, paithiov909/1dccr

Config/testthat/edition 3
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2

SystemRequirements GNU make, MeCab (libmecab-dev (deb),
mecab-devel(rpm))

NeedsCompilation yes

Author Akiru Kato [aut, cre],
Shogo Ichinose [aut],
Taku Kudo [aut],
Jorge Nocedal [ctb],
Nippon Telegraph and Telephone Corporation [cph]

1

https://paithiov909.github.io/gibasa/
https://github.com/paithiov909/gibasa/issues

2 as_tokens

Repository CRAN

Date/Publication 2025-02-16 09:10:02 UTC

Contents
aS_tOKENS e e e e e 2
bind_Ir. 3
bind_tf idf2 4
build_sys_dic 6
build_user_dic. e e 7
collapse_tokens 8
dictionary_info 10
gbs_tokenize 11
get_dict_features 12
et_transition_CoSt e 12
GINGA . . e 13
is_blanko e, 14
lex_density e e 14
mute_toKENS e e e e e e e e 15
ngram_tokenizer L. e 16
pack . .o 17
prettifyo 18
tOKENIZE e 19

Index 21

as_tokens Create a list of tokens
Description

Create a list of tokens

Usage

as_tokens(
thl,

token_field = "token"”,
pos_field = get_dict_features()[1],

nm = NULL

bind Ir 3

Arguments
tbl A tibble of tokens out of tokenize().
token_field <data-masked> Column containing tokens.
pos_field Column containing features that will be kept as the names of tokens. If you
don’t need them, give a NULL for this argument.
nm Names of returned list. If left with NULL, "doc_id" field of tbl is used instead.
Value

A named list of tokens.

Examples

Not run:
tokenize(
data.frame(
doc_id = seq_along(5:8),
text = ginga[5:8]
)
) 1>
prettify(col_select = "POS1") |>
as_tokens()

End(Not run)

bind_1r Bind importance of bigrams

Description

Calculates and binds the importance of bigrams and their synergistic average.

Usage

bind_lr(tbl, term = "token"”, lr_mode = c("n"”, "dn"), avg_rate = 1)

Arguments
tbl A tidy text dataset.
term <data-masked> Column containing terms.
1r_mode Method for computing 'FL’ and "FR’ values. n is equivalent to "LN’ and 'RN’,

and dn is equivalent to 'LDN’ and "RDN’.
avg_rate Weight of the LR’ value.

4 bind_tf idf2

Details

The LR’ value is the synergistic average of bigram importance that based on the words and their
positions (left or right side).

Value

A data.frame.

See Also
doi:10.5715/jnlp.10.27

Examples

Not run:
df <- tokenize(
data. frame(
doc_id = seq_along(5:8),
text = ginga[5:8]
)
)
bind_1lr(df) |>
head()

End(Not run)

bind_tf_idf2 Bind term frequency and inverse document frequency

Description

Calculates and binds the term frequency, inverse document frequency, and TF-IDF of the dataset.
This function experimentally supports 4 types of term frequencies and 5 types of inverse document
frequencies.

Usage

bind_tf_idf2(
tbl,
term = "token",
document = "doc_id",
n="n",
tf = c("tf", "tf2", "tf3", "itf"),
idf = c("idf", "idf2", "idf3", "idf4", "df"),
norm = FALSE,
rmecab_compat = TRUE

https://doi.org/10.5715/jnlp.10.27

bind_tf idf2 5

Arguments
tbl A tidy text dataset.
term <data-masked> Column containing terms.
document <data-masked> Column containing document IDs.
n <data-masked> Column containing document-term counts.
tf Method for computing term frequency.
idf Method for computing inverse document frequency.
norm Logical; If passed as TRUE, TF-IDF values are normalized being divided with

L2 norms.

rmecab_compat Logical; If passed as TRUE, computes values while taking care of compatibility
with 'RMeCab’. Note that 'RMeCab’ always computes IDF values using term
frequency rather than raw term counts, and thus TF-IDF values may be doubly
affected by term frequency.

Details
Types of term frequency can be switched with tf argument:

e tf is term frequency (not raw count of terms).
* tf2 is logarithmic term frequency of which base is exp(1).
* tf3is binary-weighted term frequency.

* itf is inverse term frequency. Use with idf="df".
Types of inverse document frequencies can be switched with idf argument:

 idf is inverse document frequency of which base is 2, with smoothed. ’smoothed” here means
just adding 1 to raw values after logarithmizing.

idf2 is global frequency IDF.
* idf3 is probabilistic IDF of which base is 2.
» idf4 is global entropy, not IDF in actual.

* df is document frequency. Use with tf="itf".

Value

A data.frame.

Examples

Not run:
df <- tokenize(
data.frame(
doc_id = seq_along(5:8),
text = ginga[5:8]
)
) 1>
dplyr::group_by(doc_id) |>

6 build_sys_dic

dplyr::count(token) |>
dplyr: :ungroup()

bind_tf_idf2(df) |>
head()

End(Not run)

build_sys_dic Build system dictionary

Description

Builds a UTF-8 system dictionary from source dictionary files.

Usage

build_sys_dic(dic_dir, out_dir, encoding)

Arguments
dic_dir Directory where the source dictionaries are located. This argument is passed as
’-d’ option argument.
out_dir Directory where the binary dictionary will be written. This argument is passed
as -0’ option argument.
encoding Encoding of input csv files. This argument is passed as ’-f” option argument.
Details

This function is a wrapper around dictionary compiler of "MeCab’.
Running this function will create 4 files: *char.bin’, *matrix.bin’, ’sys.dic’, and "unk.dic’ in out_dir.

To use these compiled dictionary, you also need create a dicrc file in out_dir. A dicrc file is
included in source dictionaries, so you can just copy it to out_dir.

Value

A TRUE is invisibly returned if dictionary is successfully built.

Examples

if (requireNamespace("withr"”)) {

create a sample dictionary in temporary directory

build_sys_dic(
dic_dir = system.file("”latin”, package = "gibasa"),
out_dir = tempdir(),
encoding = "utf8”

)

copy the 'dicrc' file

file.copy(

build _user_dic 7

system.file("latin/dicrc"”, package = "gibasa"),

tempdir()
)
mocking a 'mecabrc' file to temporarily use the dictionary
withr::with_envvar(

c(
"MECABRC" = if (.Platform$0S.type == "windows") {
"nul”
} else {
"/dev/null”
3
"RCPP_PARALLEL_BACKEND" = "tinythread”
),
{
tokenize("katta-wokattauresikatta”, sys_dic = tempdir())
}
)
3
build_user_dic Build user dictionary
Description

Builds a UTF-8 user dictionary from a csv file.

Usage

build_user_dic(dic_dir, file, csv_file, encoding)

Arguments
dic_dir Directory where the source dictionaries are located. This argument is passed as
’-d’ option argument.
file Path to write the user dictionary. This argument is passed as ’-u’ option argu-
ment.
csv_file Path to an input csv file.
encoding Encoding of input csv files. This argument is passed as ’-f” option argument.
Details

This function is a wrapper around dictionary compiler of "MeCab’.

Note that this function does not support auto assignment of word cost field. So, you can’t leave any
word costs as empty in your input csv file. To estimate word costs, use posDebugRcpp () function.

Value

A TRUE is invisibly returned if dictionary is successfully built.

Examples

if (requireNamespace("withr")) {
create a sample dictionary in temporary directory
build_sys_dic(
dic_dir = system.file("”latin”, package = "gibasa"),
out_dir = tempdir(),
encoding = "utf8”

)
copy the 'dicrc' file
file.copy(
system.file("latin/dicrc"”, package = "gibasa"),
tempdir()
)
write a csv file and compile it into a user dictionary
csv_file <- tempfile(fileext = ".csv")
writeLines(
c(
"ga, @, 0, 5, \u304f\u3041"”,
"gqi, @, 0, 5, \u304f\u3043",
"qu, @, 9, 5, \u304f”,
"ge, @, 0, 5, \u304f\u3047",
"go, @, @, 5, \u304f\u3049”
),
csv_file
)

build_user_dic(
dic_dir = tempdir(),
file = (user_dic <- tempfile(fileext = ".dic")),
csv_file = csv_file,
encoding = "utf8”
)
mocking a 'mecabrc' file to temporarily use the dictionary
withr::with_envvar(

c(
"MECABRC" = if (.Platform$0S.type == "windows") {
"nul”
} else {
"/dev/null”
h
"RCPP_PARALLEL_BACKEND" = "tinythread"
),
{
tokenize("quensan”, sys_dic = tempdir(), user_dic = user_dic)
3
)
3

collapse_tokens

collapse_tokens Collapse sequences of tokens by condition

collapse_tokens 9

Description

Concatenates sequences of tokens in the tidy text dataset, while grouping them by an expression.

Usage

collapse_tokens(tbl, condition, .collapse = "")
Arguments

tbl A tidy text dataset.

condition <data-masked> A logical expression.

.collapse String with which tokens are concatenated.
Details

Note that this function drops all columns except but "token’ and columns for grouping sequences.
So, the returned data.frame has only ’doc_id’, ’sentence_id’, ’token_id’, and "token’ columns.

Value

A data.frame.

Examples

Not run:
df <- tokenize(
data.frame(
doc_id = "odakyu-sen",
text = "\ub5cof\u7530\u6025\u7dda”
)
) 1>
prettify(col_select = "P0S1")

collapse_tokens(

df,

POS1 == "\u540d\u8ab5e” & stringr::str_detect(token, "*“[\\p{Han}]1+$")
) 1>

head()

End(Not run)

10 dictionary_info

dictionary_info Get dictionary information

Description

Returns all dictionary information under the current configuration.

Arguments
sys_dic Character scalar; path to the system dictionary for "MeCab’.
user_dic Character scalar; path to the user dictionary for "MeCab’.
Details

To use the tokenize() function, there should be a system dictionary for "MeCab’ specified in
some ‘mecabrc’ configuration files with a line dicdir=<path/to/dir/dictionary/included>.
This function can be used to check if such a configuration file exists.

Currently, this package detects 'mecabrc’ configuration files that are stored in the user’s home
directory or the file specified by the MECABRC environment variable.

If there are no such configuration files, the package tries to fall back to the mecabrc’ file that is
included with default installations of "MeCab’, but this fallback is not guaranteed to work in all
cases.

In case there are no *mecabrc’ files available at all, this function will return an empty data.frame.

Note that in this case, the tokenize() function will not work even if a system dictionary is man-
ually specified via the sys_dic argument. In such a case, you should mock up a *'mecabrc’ file to
temporarily use the dictionary. See examples for build_sys_dic() and build_user_dic() for
details.

Value

A data.frame (an empty data.frame if there is no dictionary configured at all).

Examples

Not run:
dictionary_info()

End(Not run)

gbs_tokenize

11

ghs_tokenize

Tokenize sentences using ’"MeCab’

Description

Tokenize sentences using "MeCab’

Usage

gbs_tokenize(

X,
sys_dic =
user_dic =

’

split = FALSE,
partial = FALSE,

mode = c("parse”, "wakati")
)
Arguments
X A data.frame like object or a character vector to be tokenized.
sys_dic Character scalar; path to the system dictionary for "MeCab’. Note that the sys-
tem dictionary is expected to be compiled with UTF-8, not Shift-JIS or other
encodings.
user_dic Character scalar; path to the user dictionary for "MeCab’.
split Logical. When passed as TRUE, the function internally splits the sentences into
sub-sentences using stringi::stri_split_boundaries(type = "sentence”).
partial Logical. When passed as TRUE, activates partial parsing mode. To activate this
feature, remember that all spaces at the start and end of the input chunks are
already squashed. In particular, trailing spaces of chunks sometimes cause errors
when parsing.
mode Character scalar to switch output format.
Value

A tibble or a named list of tokens.

12 get_transition_cost

get_dict_features Get dictionary features

Description

Returns names of dictionary features. Currently supports "unidic17" (2.1.2 src schema), "unidic26"
(2.1.2 bin schema), "unidic29" (schema used in 2.2.0, 2.3.0), "cc-cedict", "ko-dic" (mecab-ko-dic),
"naistl 1", "sudachi", and "ipa".

Usage

get_dict_features(
dict = c("ipa", "unidic17"”, "unidic26"”, "unidic29", "cc-cedict"”, "ko-dic", "naist11",

"sudachi")
)
Arguments
dict Character scalar; one of "ipa", "unidic17", "unidic26", "unidic29", "cc-cedict",
"ko-dic", "naist11", or "sudachi".
Value

A character vector.

See Also
See also "CC-CEDICT-MeCab’ and *mecab-ko-dic’.

Examples

get_dict_features("ipa")

get_transition_cost Get transition cost between pos attributes

Description

Gets transition cost between two pos attributes for a given dictionary. Note that the valid range of
pos attributes differs depending on the dictionary. If rcAttr or 1cAttr is out of range, this function
will be aborted.

Usage

nn

get_transition_cost(rcAttr, lcAttr, sys_dic = , user_dic = "")

https://github.com/ueda-keisuke/CC-CEDICT-MeCab
https://bitbucket.org/eunjeon/mecab-ko-dic/src/master/

ginga

Arguments

rcAttr
l1cAttr
sys_dic

user_dic

Value

An integer scalar.

13

Integer; the right context attribute ID of the right-hand side of the transition.
Integer; the left context attribute ID of the left-hand side of the transition.
Character scalar; path to the system dictionary for "MeCab’.

Character scalar; path to the user dictionary for "MeCab’.

ginga

Whole text of *Ginga Tetsudo no Yoru’ written by Miyazawa Kenji from
Aozora Bunko

Description

Whole text of *Ginga Tetsudo no Yoru’ written by Miyazawa Kenji from Aozora Bunko

Usage

ginga

Format

An object of class character of length 553.

Details

A dataset containing the text of Miyazawa Kenji’s novel "Ginga Tetsudo no Yoru" (English title:
"Night on the Galactic Railroad") which was published in 1934, the year after Kenji’s death. Copy-
right of this work has expired since more than 70 years have passed after the author’s death.

The UTF-8 plain text is sourced from https://www.aozora.gr.jp/cards/000081/card43737.
html and is cleaned of meta data.

Source

https://www.aozora.gr.jp/cards/000081/files/43737_ruby_19028.zip

Examples

head(ginga)

https://www.aozora.gr.jp/cards/000081/card43737.html
https://www.aozora.gr.jp/cards/000081/card43737.html
https://www.aozora.gr.jp/cards/000081/files/43737_ruby_19028.zip

14 lex_density

is_blank Check if scalars are blank

Description

Check if scalars are blank

Usage
is_blank(x, trim = TRUE, ...)
Arguments
X Object to check its emptiness.
trim Logical. If passed as TRUE and the object is a character vector, stringi::stri_trim()
is applied before checking.
Additional arguments for base: : sapply().
Value
Logicals.
Examples
is_blank(list(c(a = "", b = NA_character_), NULL))
lex_density Calculate lexical density
Description

The lexical density is the proportion of content words (lexical items) in documents. This function
is a simple helper for calculating the lexical density of given datasets.

Usage
lex_density(vec, contents_words, targets = NULL, negate = c(FALSE, FALSE))

Arguments

vec A character vector.
contents_words A character vector containing values to be counted as contents words.

targets A character vector with which the denominator of lexical density is filtered be-
fore computing values.

negate A logical vector of which length is 2. If passed as TRUE, then respectively negates
the predicate functions for counting contents words or targets.

mute_tokens 15

Value

A numeric vector.

Examples

Not run:
df <- tokenize(
data.frame(
doc_id = seq_along(5:8),
text = ginga[5:8]
)
)
df |>
prettify(col_select = "P0OS1") |>
dplyr::group_by(doc_id) |>
dplyr::summarise(
noun_ratio = lex_density(POST1,
"\u540d\u8a5e"”,
c("\u52a9\u8a5e”, "\u52a9\u52d5\u8a5e"),
negate = c(FALSE, TRUE)

),

mvr = lex_density(
POS1,
c("\u5f62\u5bb9\u8abe”, "\u526f\u8a5e”, "\u9023\u4f53\u8abe”),
"\u52d5\u8a5e”

)7

vnr = lex_density(POS1, "\u52d5\u8a5e”, "\u54@d\u8a5e")

)

End(Not run)

mute_tokens Mute tokens by condition

Description

Replaces tokens in the tidy text dataset with a string scalar only if they are matched to an expression.

Usage

mute_tokens(tbl, condition, .as = NA_character_)

Arguments
tbl A tidy text dataset.
condition <data-masked> A logical expression.
.as String with which tokens are replaced when they are matched to condition. The

default value is NA_character_.

16

Value

A data.frame.

Examples

Not run:
df <- tokenize(
data.frame(
doc_id = seq_along(5:8),
text = ginga[5:8]
)
) 1>
prettify(col_select = "P0S1")

mute_tokens(df, POS1 %in% c("\u52a9\u8a5e”, "\u52a9\u52d5\u8a5e")) |>

head()

End(Not run)

ngram_tokenizer

ngram_tokenizer Ngrams tokenizer

Description

Makes an ngram tokenizer function.

Usage

ngram_tokenizer(n = 1L)

Arguments

n Integer.

Value

ngram tokenizer function

Examples

bigram <- ngram_tokenizer(2)
bigram(letters, sep = "-")

pack 17

pack Pack a data.frame of tokens

Description

Packs a data.frame of tokens into a new data.frame of corpus, which is compatible with the Text
Interchange Formats.

Usage
pack(tbl, pull = "token”, n = 1L, sep = "-", .collapse =" ")
Arguments
tbl A data.frame of tokens.
pull <data-masked> Column to be packed into text or ngrams body. Default value
is token.
n Integer internally passed to ngrams tokenizer function created of gibasa: :ngram_tokenizer ()
sep Character scalar internally used as the concatenator of ngrams.
.collapse This argument is passed to stringi::stri_c().
Value
A tibble.

Text Interchange Formats (TIF)
The Text Interchange Formats (TIF) is a set of standards that allows R text analysis packages to
target defined inputs and outputs for corpora, tokens, and document-term matrices.

Valid data.frame of tokens

The data.frame of tokens here is a data.frame object compatible with the TIF.

A TIF valid data.frame of tokens is expected to have one unique key column (named doc_id) of
each text and several feature columns of each tokens. The feature columns must contain at least
token itself.

See Also

https://github.com/ropenscilabs/tif

https://github.com/ropenscilabs/tif

18

Examples

Not run:
df <- tokenize(
data. frame(
doc_id = seq_along(5:8),
text = gingal[5:8]
)

)
pack(df)

End(Not run)

prettity

prettify Prettify tokenized output

Description

Turns a single character column into features while separating with delimiter.

Usage

prettify(
tbl,
col = "feature”,
into = get_dict_features("ipa"),
col_select = seq_along(into),

delim = ",)"

)

Arguments
tbl A data.frame that has feature column to be prettified.
col <data-masked> Column containing features to be prettified.
into Character vector that is used as column names of features.
col_select Character or integer vector that will be kept in prettified features.
delim Character scalar used to separate fields within a feature.

Value

A data.frame.

tokenize

Examples

prettify(
data.frame(x = c("x,y", "y,z", "z,x")),
col = "x",
intO = c(llall’ Ilbll),
col_select = "b"

)

Not run:
df <- tokenize(
data. frame(
doc_id = seq_along(5:8),
text = ginga[5:8]
)
)
prettify(df, col_select = 1:3)
prettify(df, col_select = c(1, 3, 6))
prettify(df, col_select = c("POS1"”, "Original”))

End(Not run)

tokenize Tokenize sentences using '"MeCab’

Description

Tokenize sentences using "MeCab’

Usage

tokenize(
X,
text_field = "text"”,
docid_field = "doc_id",
sys_dic = "",
user_dic = "",
split = FALSE,
partial = FALSE,
grain_size = 1L,

mode = c("parse”, "wakati")
)
Arguments
X A data.frame like object or a character vector to be tokenized.
text_field <data-masked> String or symbol; column containing texts to be tokenized.

docid_field <data-masked> String or symbol; column containing document IDs.

20

sys_dic

user_dic

split

partial

grain_size

mode

Value

tokenize

Character scalar; path to the system dictionary for "MeCab’. Note that the sys-
tem dictionary is expected to be compiled with UTF-8, not Shift-JIS or other
encodings.

Character scalar; path to the user dictionary for "MeCab’.

Logical. When passed as TRUE, the function internally splits the sentences into

sub-sentences using stringi::stri_split_boundaries(type = "sentence").

Logical. When passed as TRUE, activates partial parsing mode. To activate this
feature, remember that all spaces at the start and end of the input chunks are
already squashed. In particular, trailing spaces of chunks sometimes cause errors
when parsing.

Integer value larger than 1. This argument is internally passed to RcppParallel:
function. Setting a larger chunk size could improve the performance in some
cases.

Character scalar to switch output format.

A tibble or a named list of tokens.

Examples

Not run:
df <- tokenize(
data.frame(

doc_id = seq_along(5:8),
text = ginga[5:8]

)

)
head(df)

End(Not run)

:parallelFor

Index

x datasets
ginga, 13

as_tokens, 2

bind_1r,3
bind_tf_idf2,4
build_sys_dic, 6
build_user_dic, 7

collapse_tokens, 8
dictionary_info, 10

gbs_tokenize, 11
get_dict_features, 12
get_transition_cost, 12
ginga, 13

is_blank, 14
lex_density, 14
mute_tokens, 15
ngram_tokenizer, 16

pack, 17
prettify, 18

tokenize, 19

21

	as_tokens
	bind_lr
	bind_tf_idf2
	build_sys_dic
	build_user_dic
	collapse_tokens
	dictionary_info
	gbs_tokenize
	get_dict_features
	get_transition_cost
	ginga
	is_blank
	lex_density
	mute_tokens
	ngram_tokenizer
	pack
	prettify
	tokenize
	Index

