Package ‘ggshadow’

November 20, 2022
Title Shadow and Glow Geoms for 'ggplot2'
Version 0.0.5

Description A collection of Geoms for R's 'ggplot2' library. geom_shadowpath(), geom_shadowline(),
geom_shadowstep() and geom_shadowpoint() functions draw a shadow be-
low lines to make busy plots more
aesthetically pleas-
ing. geom_glowpath(), geom_glowline(), geom_glowstep() and geom_glowpoint() add a
neon glow around lines to get a steampunk style.

Depends R (>=3.4.0)

Imports stats, ggplot2 (>= 3.3.0), grid, scales, rlang, glue, vctrs,
cli

Suggests rmarkdown, knitr
VignetteBuilder knitr
License GPL-2

Encoding UTF-8

URL https://github.com/marcmenem/ggshadow/

BugReports https://github.com/marcmenem/ggshadow/issues
RoxygenNote 7.2.1

Collate 'geom-glowpath.r' 'geom-glowpoint.r' 'geom-shadowpath.r'
'geom-shadowpoint.r' 'internal-doc.r' 'scale-shadow.1'

NeedsCompilation no

Author Marc Menem [aut, cre]

Maintainer Marc Menem <marc.menem@m4x.org>
Repository CRAN

Date/Publication 2022-11-20 22:50:08 UTC

https://github.com/marcmenem/ggshadow/
https://github.com/marcmenem/ggshadow/issues

2

geom_glowpath

R topics documented:

geom_glowpath L 2
geom_glowpoint e 5
geom_shadowpath L L 6
geom_shadowpoint 9
scale_brewer e e 11
scale_colour_hue 13
scale_colour_Steps e 15
scale_ContinuUoUS o ot i e e e e e e e e e 18
scale_gradient L. e e e e 20
SCale_ZIeY e e e e e e e 24
scale_identity e e e e 26
scale_manual e e 27
scale_VIridiS L e e 29

Index 32

geom_glowpath Connect Observations
Description

Plot a glow beneath the connected lines to make it easier to read a chart with several overlapping
observations. ‘geom_glowpath()‘ connects the observations in the order in which they appear in the
data. ‘geom_glowline()‘ connects them in order of the variable on the x axis. ‘geom_glowstep()*
creates a stairstep plot, highlighting exactly when changes occur.

Usage

geom_glowpath(

)

mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity"”,

lineend = "butt”,
linejoin = "round”,
linemitre = 10,
arrow = NULL,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

geom_glowline(

mapping = NULL,
data = NULL,

geom_glowpath

stat = "identity"”,

position

na.rm =

)

geom_glowstep(

"identity",
FALSE,

orientation
show.legend =
inherit.aes

NA,
NA,
TRUE,

mapping = NULL,

data =

stat = "identity”,
position = "identity"”,
direction = "hv",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,

Arguments

mapping

data

stat

position

lineend
linejoin
linemitre

arrow

Set of aesthetic mappings created by [aes()] or [aes_()]. If specified and ‘in-
herit.aes = TRUE® (the default), it is combined with the default mapping at the
top level of the plot. You must supply ‘mapping‘ if there is no plot mapping.
The data to be displayed in this layer. There are three options:

If ‘NULL’, the default, the data is inherited from the plot data as specified in the
call to [ggplot()].

A ‘data.frame’, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See [fortify()] for which variables will be
created.

A ‘“function‘ will be called with a single argument, the plot data. The return
value must be a ‘data.frame*, and will be used as the layer data. A ‘function’
can be created from a ‘formula‘ (e.g. ‘~ head(.x, 10)°).

The statistical transformation to use on the data for this layer, as a string.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

Other arguments passed on to [layer()]. These are often aesthetics, used to set
an aesthetic to a fixed value, like ‘colour = "red"* or ‘size = 3°. They may also
be parameters to the paired geom/stat.

Line end style (round, butt, square).
Line join style (round, mitre, bevel).
Line mitre limit (number greater than 1).

Arrow specification, as created by [grid::arrow()].

na.rm

show. legend

inherit.aes

orientation

direction

Details

geom_glowpath

If ‘FALSE", the default, missing values are removed with a warning. If “TRUE",
missing values are silently removed.

logical. Should this layer be included in the legends? ‘NA°, the default, includes
if any aesthetics are mapped. ‘FALSE® never includes, and ‘TRUE‘ always
includes. It can also be a named logical vector to finely select the aesthetics to
display.

If ‘FALSE", overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. [borders()].

The orientation of the layer. The default (‘NA*) automatically determines the
orientation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting ‘orientation* to either ‘"x"‘ or ‘"y"‘. See the *Orien-
tation* section for more detail.

direction of stairs: ’vh’ for vertical then horizontal, ’hv’ for horizontal then
vertical, or 'mid’ for step half-way between adjacent x-values.

The ‘group‘ aesthetic determines which cases are connected together. These functions are designed
as a straight replacement to the [geom_path()], [geom_line()] and [geom_step()] functions. To set
the order of drawing, make the ‘colour® aesthetic a factor, and set the order from bottom to top.

Value

a ‘ggplot2° layer to add to a plot.

Functions

» geom_glowpath(): Connects observations in the order in which they appear in the data.

e geom_glowline(): Connects observations in order of the variable on the x axis.

» geom_glowstep(): Creates a stairstep plot, highlighting exactly when changes occur.

Missing value handling

‘geom_glowpath()*, ‘geom_glowline()*, and ‘geom_glowstep()‘ handle ‘NA* as follows:

* If an ‘NA* occurs in the middle of a line, it breaks the line. No warning is shown, regardless of
whether ‘na.rm* is ‘TRUE® or ‘FALSE‘. * If an ‘NA* occurs at the start or the end of the line and
‘na.rm‘ is ‘FALSE* (default), the ‘NA°‘ is removed with a warning. * If an ‘NA‘ occurs at the start
or the end of the line and ‘na.rm‘ is ‘TRUE", the ‘NA° is removed silently, without warning.

Aesthetics

Adds 3 new aesthetics to [geom_path()]: * shadowcolour defaults to path color, controls the color
of the shadow. * shadowsize defaults to size, controls the size of the shadow. * shadowalpha
defaults to @.06 * alpha or @. 06, controls the alpha of the glow.

geom_glowpoint 5

See Also

[ggplot::geom_path()], [ggplot::geom_line()], [ggplot::geom_step()]: Filled paths (polygons);

Examples

geom_glowline() is suitable for time series
library(ggplot2)
ggplot(economics_long, aes(date, value@1, colour = variable)) + geom_glowline()

geom_glowpoint Points

Description

The point geom is used to create scatterplots. [geom_glowpoint()] is designed as a drop in re-
placement for [geom_point()] with an added glow beneath the point to make a busy plot more
aesthetically appealing or to make points stand out from the rest of the plot.

Usage

geom_glowpoint(
mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity"”,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)
Arguments
mapping Set of aesthetic mappings created by [aes()] or [aes_()]. If specified and ‘in-
herit.aes = TRUE® (the default), it is combined with the default mapping at the
top level of the plot. You must supply ‘mapping® if there is no plot mapping.
data The data to be displayed in this layer. There are three options:

If ‘NULL, the default, the data is inherited from the plot data as specified in the
call to [ggplot()].

A ‘data.frame’, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See [fortify()] for which variables will be
created.

A ‘function‘ will be called with a single argument, the plot data. The return
value must be a ‘data.frame*, and will be used as the layer data. A ‘function’
can be created from a ‘formula‘ (e.g. ‘~ head(.x, 10)°).

stat

position

na.rm

show. legend

inherit.aes

Value

geom_shadowpath

The statistical transformation to use on the data for this layer, as a string.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

Other arguments passed on to [layer()]. These are often aesthetics, used to set
an aesthetic to a fixed value, like ‘colour = "red"* or ‘size = 3‘. They may also
be parameters to the paired geom/stat.

If ‘FALSE", the default, missing values are removed with a warning. If “TRUE",
missing values are silently removed.

logical. Should this layer be included in the legends? ‘NA°, the default, includes
if any aesthetics are mapped. ‘FALSE‘ never includes, and ‘TRUE‘ always
includes. It can also be a named logical vector to finely select the aesthetics to
display.

If ‘FALSE", overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. [borders()].

a layer to add to a plot.

Aesthetics

Adds 3 new aesthetics to [geom_point()]: * shadowcolour defaults to the same color as the point,
controls the color of the glow * shadowsize defaults to size, controls the sie of the shadow. *
shadowalpha defaults to .06 * alpha or @. 06, controls the alpha of the glow

Examples

library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg))
p + geom_shadowpoint()

geom_shadowpath

Connect Observations

Description

Plot a shadow beneath the connected lines to make it easier to read a chart with several over-
lapping observations. ‘geom_shadowpath()‘ connects the observations in the order in which they
appear in the data. ‘geom_shadowline()‘ connects them in order of the variable on the x axis.
‘geom_shadowstep()‘ creates a stairstep plot, highlighting exactly when changes occur.

geom_shadowpath 7

Usage

geom_shadowpath(
mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity",

lineend = "butt”,
linejoin = "round”,
linemitre = 10,
arrow = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)

geom_shadowline(
mapping = NULL,

data = NULL,

stat = "identity"”,
position = "identity"”,
na.rm = FALSE,

orientation = NA,
show.legend = NA,
inherit.aes = TRUE,

)

geom_shadowstep(
mapping = NULL,
data = NULL,
stat = "identity"”,
position = "identity",
direction = "hv",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,

)
Arguments
mapping Set of aesthetic mappings created by [aes()] or [aes_()]. If specified and ‘in-
herit.aes = TRUE® (the default), it is combined with the default mapping at the
top level of the plot. You must supply ‘mapping‘ if there is no plot mapping.
data The data to be displayed in this layer. There are three options:

If ‘NULL’, the default, the data is inherited from the plot data as specified in the
call to [ggplot()].

stat
position

lineend
linejoin
linemitre
arrow

na.rm

show. legend

inherit.aes

orientation

direction

Details

geom_shadowpath

A ‘data.frame’, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See [fortify()] for which variables will be
created.

A ‘function® will be called with a single argument, the plot data. The return
value must be a ‘data.frame‘, and will be used as the layer data. A ‘function’
can be created from a ‘formula‘ (e.g. ‘~ head(.x, 10)°).

The statistical transformation to use on the data for this layer, as a string.
Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

Other arguments passed on to [layer()]. These are often aesthetics, used to set
an aesthetic to a fixed value, like ‘colour = "red"* or ‘size = 3‘. They may also
be parameters to the paired geom/stat.

Line end style (round, butt, square).

Line join style (round, mitre, bevel).

Line mitre limit (number greater than 1).

Arrow specification, as created by [grid::arrow()].

If ‘FALSE", the default, missing values are removed with a warning. If “TRUE",
missing values are silently removed.

logical. Should this layer be included in the legends? ‘NA‘, the default, includes
if any aesthetics are mapped. ‘FALSE‘ never includes, and ‘TRUE‘ always
includes. It can also be a named logical vector to finely select the aesthetics to
display.

If ‘FALSE", overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. [borders()].
The orientation of the layer. The default (‘NA*) automatically determines the
orientation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting ‘orientation‘ to either ‘"x"‘ or ‘"y"‘. See the *Orien-
tation* section for more detail.

direction of stairs: ’vh’ for vertical then horizontal, ’hv’ for horizontal then
vertical, or 'mid’ for step half-way between adjacent x-values.

The ‘group‘ aesthetic determines which cases are connected together. These functions are designed
as a straight replacement to the [geom_path()], [geom_line()] and [geom_step()] functions. To set
the order of drawing, make the ‘colour® aesthetic a factor, and set the order from bottom to top.

Value

a layer to add to a plot.

Functions

» geom_shadowpath(): Connects observations in the order in which they appear in the data.

e geom_shadowline(): Connects observations in order of the variable on the x axis.

» geom_shadowstep(): Creates a stairstep plot, highlighting exactly when changes occur.

geom_shadowpoint 9

Missing value handling

‘geom_shadowpath()‘, ‘geom_shadowline()‘, and ‘geom_shadowstep()‘ handle ‘NA°* as follows:

* If an ‘NA* occurs in the middle of a line, it breaks the line. No warning is shown, regardless of
whether ‘na.rm‘ is “TRUE® or ‘FALSE*. * If an ‘NA‘ occurs at the start or the end of the line and
‘na.rm‘ is ‘FALSE* (default), the ‘NA°‘ is removed with a warning. * If an ‘NA‘ occurs at the start
or the end of the line and ‘na.rm‘ is ‘TRUE®, the ‘NA‘ is removed silently, without warning.

Aesthetics

Adds 3 new aesthetics to [geom_path()]: * shadowcolour defaults to white, controls the color of
the shadow. * shadowsize defaults to 2.5 * size, controls the size of the shadow. * shadowalpha
defaults to @.25 * alpha or @.9, controls the alpha of the shadow.

See Also

[ggplot::geom_path()], [ggplot::geom_line()], [ggplot::geom_step()]: Filled paths (polygons);

Examples

geom_shadowline() is suitable for time series
library(ggplot2)
ggplot(economics_long, aes(date, value@1l, colour = variable)) + geom_shadowline()

ggplot(economics_long, aes(date, value@1, colour = value@l,
group = variable, alpha=date, shadowalpha=1)) +
geom_shadowline()

geom_shadowpoint Points

Description

The point geom is used to create scatterplots. [geom_shadowpoint()] is designed as a drop in re-
placement for [geom_point()] with an added shadow beneath the point to make a busy plot more
aesthetically appealing or to make points stand out from the rest of the plot.

Usage

geom_shadowpoint(
mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity"”,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

10

Arguments

mapping

data

stat

position

na.rm

show. legend

inherit.aes

Value

geom_shadowpoint

Set of aesthetic mappings created by [aes()] or [aes_()]. If specified and ‘in-
herit.aes = TRUE® (the default), it is combined with the default mapping at the
top level of the plot. You must supply ‘mapping® if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If ‘NULL’, the default, the data is inherited from the plot data as specified in the
call to [ggplot()].

A ‘data.frame’, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See [fortify()] for which variables will be
created.

A ‘function‘ will be called with a single argument, the plot data. The return
value must be a ‘data.frame‘, and will be used as the layer data. A ‘function’
can be created from a ‘formula‘ (e.g. ‘~ head(.x, 10)°).

The statistical transformation to use on the data for this layer, as a string.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

Other arguments passed on to [layer()]. These are often aesthetics, used to set
an aesthetic to a fixed value, like ‘colour = "red"* or ‘size = 3. They may also
be parameters to the paired geom/stat.

If ‘FALSE", the default, missing values are removed with a warning. If “TRUE",
missing values are silently removed.

logical. Should this layer be included in the legends? ‘NA°, the default, includes
if any aesthetics are mapped. ‘FALSE‘ never includes, and ‘“TRUE‘ always
includes. It can also be a named logical vector to finely select the aesthetics to
display.

If ‘FALSE", overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. [borders()].

a layer to add to a plot.

Aesthetics

Adds 3 new aesthetics to [geom_point()]: * shadowcolour defaults to white, controls the color of
the shadow. * shadowsize defaults to 1.8 x size, controls the sie of the shadow. * shadowalpha
defaults to 0. 25 * alpha or 0.9, controls the alpha of the shadow.

Examples

library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg))
p + geom_shadowpoint()

scale_brewer 11

scale_brewer Sequential, diverging and qualitative colour scales from color-
brewer.org

Description

The ‘brewer‘ scales provides sequential, diverging and qualitative colour schemes from Color-
Brewer. These are particularly well suited to display discrete values on a map. See https:
//colorbrewer2.org for more information.

Usage

scale_shadowcolour_brewer(

type = "seq”,

palette = 1,

direction = 1,

aesthetics = "shadowcolour”

scale_shadowcolour_distiller(

type = "seq”,

palette = 1,
direction = -1,
values = NULL,
space = "Lab",
na.value = "grey50"”,
guide = "colourbar”,
aesthetics = "shadowcolour”
)
Arguments
Other arguments passed on to [discrete_scale()], [continuous_scale()], or [binned_scale()],
for ‘brewer’, ‘distiller, and ‘fermenter variants respectively, to control name,
limits, breaks, labels and so forth.
type One of "seq" (sequential), "div" (diverging) or "qual" (qualitative)
palette If a string, will use that named palette. If a number, will index into the list of
palettes of appropriate ‘type‘. The list of available palettes can found in the
Palettes section.
direction Sets the order of colours in the scale. If 1, the default, colours are as output by
RColorBrewer: :brewer.pal(). If -1, the order of colours is reversed.
aesthetics Character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics =c("colour”, "fill").

https://colorbrewer2.org
https://colorbrewer2.org

12 scale_brewer

values if colours should not be evenly positioned along the gradient this vector gives
the position (between 0 and 1) for each colour in the colours vector. See
rescale() for a convenience function to map an arbitrary range to between

Oand 1.

space colour space in which to calculate gradient. Must be "Lab" - other values are
deprecated.

na.value Colour to use for missing values

guide Type of legend. Use "colourbar” for continuous colour bar, or "legend” for

discrete colour legend.

Details
The ‘brewer* scales were carefully designed and tested on discrete data. They were not designed to
be extended to continuous data, but results often look good. Your mileage may vary.

Value

a scale object to add to a plot.

Palettes
The following palettes are available for use with these scales:

Diverging BrBG, PiYG, PRGn, PuOr, RdBu, RdGy, RdYIBu, RdY1Gn, Spectral
Qualitative Accent, Dark2, Paired, Pastell, Pastel2, Setl, Set2, Set3

Sequential Blues, BuGn, BuPu, GnBu, Greens, Greys, Oranges, OrRd, PuBu, PuBuGn, PuRd,
Purples, RdPu, Reds, Y1Gn, YIGnBu, Y1OrBr, YIOrRd

Modify the palette through the ‘palette‘ argument.

Note

The ‘distiller* scales extend brewer to continuous scales by smoothly interpolating 7 colours from
any palette to a continuous scale. The ‘fermenter‘ scales provide binned versions of the brewer
scales.

See Also

Other colour scales: scale_colour_hue, scale_colour_steps, scale_gradient, scale_grey,
scale_viridis

Examples

library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg, shadowcolor=as.factor(gear)))
p + geom_shadowpoint() + scale_shadowcolour_brewer()

library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg, shadowcolor=gear))
p + geom_shadowpoint() + scale_shadowcolour_distiller() + guides(shadowcolor="'none')

scale_colour_hue

13

scale_colour_hue

Evenly spaced colours for discrete data

Description

This is the default colour scale for categorical variables. It maps each level to an evenly spaced hue
on the colour wheel. It does not generate colour-blind safe palettes.

Usage

scale_shadowcolour_hue(

L

h = c(0, 360) + 15,

c = 100,

1 = 65,

h.start = 0,

direction = 1,

na.value = "grey50",
aesthetics = "shadowcolour”

)

scale_shadowcolour_discrete(

L

= 100,
= 65,
h.start = 0,
direction =

= 0 = -

c(0, 360) + 15,

1,

na.value = "grey50",

aesthetics =

Arguments

"shadowcolour”

Arguments passed on to ggplot2: :discrete_scale

scale_name The name of the scale that should be used for error messages as-
sociated with this scale.

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales: :hue_pal()).

name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

breaks One of:

e NULL for no breaks

e waiver() for the default breaks (the scale limits)

14

h

C

1

h.start
direction
na.value
aesthetics

scale_colour_hue

¢ A character vector of breaks

* A function that takes the limits as input and returns breaks as output.
Also accepts rlang lambda function notation.

labels One of:
* NULL for no labels
* waiver() for the default labels computed by the transformation object
A character vector giving labels (must be same length as breaks)

* A function that takes the breaks as input and returns labels as output.
Also accepts rlang lambda function notation.

limits One of:
e NULL to use the default scale values

* A character vector that defines possible values of the scale and their
order

* A function that accepts the existing (automatic) values and returns new
ones. Also accepts rlang lambda function notation.

expand For position scales, a vector of range expansion constants used to add
some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

na.translate Unlike continuous scales, discrete scales can easily show miss-
ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

drop Should unused factor levels be omitted from the scale? The default, TRUE,
uses the levels that appear in the data; FALSE uses all the levels in the factor.

guide A function used to create a guide or its name. See guides() for more
information.

position For position scales, The position of the axis. left or right fory
axes, top or bottom for x axes.

super The super class to use for the constructed scale
range of hues to use, in [0, 360]

chroma (intensity of colour), maximum value varies depending on combination
of hue and luminance.

luminance (lightness), in [0, 100]

hue to start at

direction to travel around the colour wheel, 1 = clockwise, -1 = counter-clockwise
Colour to use for missing values

Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to apply
colour settings to the ‘colour* and ‘fill* aesthetics at the same time, via ‘aesthet-
ics = c("colour", "fill")".

scale_colour_steps 15

Value

a scale object to add to a plot.

See Also

Other colour scales: scale_brewer, scale_colour_steps, scale_gradient, scale_grey, scale_viridis

Examples

library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg, shadowcolor=as.factor(gear)))
p + geom_shadowpoint() + scale_shadowcolour_hue()

library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg, shadowcolor=as.factor(gear)))
p + geom_shadowpoint() + scale_shadowcolour_discrete()

scale_colour_steps Binned gradient colour scales

Description

‘scale_*_steps® creates a two colour binned gradient (low-high), ‘scale_*_steps2‘ creates a diverg-
ing binned colour gradient (low-mid-high), and ‘scale_*_stepsn* creates a n-colour binned gradient.
These scales are binned variants of the [gradient scale][scale_colour_gradient] family and works in
the same way.

Usage

scale_shadowcolour_steps(
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "coloursteps”,
aesthetics = "shadowcolour”

scale_shadowcolour_steps2(

L

low

= muted("red"”),
mid = "white”,
high = muted("blue"),
midpoint = 0,

space = "Lab",

na.value = "grey50"”,
guide = "coloursteps”,
aesthetics = "shadowcolour”

scale_shadowcolour_stepsn(

L

scale_colour_steps

colours,
values = NULL,
space = "Lab",
na.value = "grey50"”,
guide = "coloursteps”,
aesthetics = "shadowcolour”,
colors
)
Arguments

Arguments passed on to ggplot2: :binned_scale

name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

breaks One of:
* NULL for no breaks
* waiver () for the default breaks computed by the transformation object
* A numeric vector of positions
* A function that takes the limits as input and returns breaks as output
(e.g., a function returned by scales: :extended_breaks()). Also ac-
cepts rlang lambda function notation.
labels One of:
* NULL for no labels
e waiver () for the default labels computed by the transformation object
A character vector giving labels (must be same length as breaks)
* A function that takes the breaks as input and returns labels as output.
Also accepts rlang lambda function notation.
limits One of:
* NULL to use the default scale range
¢ A numeric vector of length two providing limits of the scale. Use NA to
refer to the existing minimum or maximum
* A function that accepts the existing (automatic) limits and returns new
limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If
the purpose is to zoom, use the limit argument in the coordinate system
(see coord_cartesian()).
oob One of:

Function that handles limits outside of the scale limits (out of bounds).
Also accepts rlang lambda function notation.

scale_colour_steps 17

e The default (scales: :censor()) replaces out of bounds values with
NA.
* scales: :squish() for squishing out of bounds values into range.
* scales::squish_infinite() for squishing infinite values into range.
expand For position scales, a vector of range expansion constants used to add
some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.
n.breaks The number of break points to create if breaks are not given directly.
nice.breaks Logical. Should breaks be attempted placed at nice values in-
stead of exactly evenly spaced between the limits. If TRUE (default) the
scale will ask the transformation object to create breaks, and this may re-
sult in a different number of breaks than requested. Ignored if breaks are
given explicitly.
right Should values on the border between bins be part of the right (upper)
bin?
trans For continuous scales, the name of a transformation object or the object
itself. Built-in transformations include "asn", "atanh", "boxcox", "date",
"exp", "hms", "identity", "log", "log10", "loglp", "log2", "logit", "modu-
lus", "probability", "probit", "pseudo_log", "reciprocal”, "reverse", "sqrt"
and "time".
A transformation object bundles together a transform, its inverse, and meth-
ods for generating breaks and labels. Transformation objects are defined in
the scales package, and are called <name>_trans (e.g., scales: :boxcox_trans()).
You can create your own transformation with scales: :trans_new().
show.limits should the limits of the scale appear as ticks

position For position scales, The position of the axis. left or right for y
axes, top or bottom for x axes.

super The super class to use for the constructed scale

low, high Colours for low and high ends of the gradient.

space colour space in which to calculate gradient. Must be "Lab" - other values are
deprecated.

na.value Colour to use for missing values

guide Type of legend. Use "colourbar” for continuous colour bar, or "legend” for

discrete colour legend.

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics =c("colour”, "fill").

mid colour for mid point

midpoint The midpoint (in data value) of the diverging scale. Defaults to 0.
colours, colors
Vector of colours to use for n-colour gradient.

18 scale_continuous

values if colours should not be evenly positioned along the gradient this vector gives
the position (between 0 and 1) for each colour in the colours vector. See
rescale() for a convenience function to map an arbitrary range to between
Oand 1.

Details

Default colours are generated with munsell and ‘mnsl(c("2.5PB 2/4", "2.5PB 7/10"))‘. Generally,
for continuous colour scales you want to keep hue constant, but vary chroma and luminance. The
munsell package makes this easy to do using the Munsell colour system.

Value

a scale object to add to a plot.

See Also

[scales::seq_gradient_pal()] for details on underlying palette

Other colour scales: scale_brewer, scale_colour_hue, scale_gradient, scale_grey, scale_viridis

Examples

library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg, shadowcolor=gear))
p + geom_shadowpoint() + scale_shadowcolour_steps() + guides(shadowcolour="'none')

library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg, shadowcolor=gear))
p + geom_shadowpoint() + scale_shadowcolour_steps2() + guides(shadowcolour="'none')

library(ggplot2)

p <- ggplot(mtcars, aes(wt, mpg, shadowcolor=gear))

p <- p + geom_shadowpoint() + scale_shadowcolour_stepsn(colours=c('red', 'yellow'))
p + guides(shadowcolour="none')

scale_continuous Continuous and binned colour scales

Description

Colour scales for continuous data default to the values of the ‘ggplot2.continuous.colour® and ‘gg-
plot2.continuous.fill‘ options. These [options()] default to ‘"gradient" (i.e., [scale_colour_gradient()]
and [scale_fill_gradient()])

scale_continuous 19

Usage

scale_shadowcolour_continuous(

L

type = getOption("ggplot2.continuous.colour”, default = "gradient”)
)

scale_shadowcolour_binned(
type = getOption("ggplot2.binned.colour”, default =
getOption("ggplot2.continuous.colour”, default = "gradient"))

)
Arguments
Additional parameters passed on to the scale type
type One of the following: * "gradient" (the default) * "viridis" * A function that
returns a continuous colour scale.
Value

a scale object to add to a plot.

Color Blindness

Many color palettes derived from RGB combinations (like the "rainbow" color palette) are not
suitable to support all viewers, especially those with color vision deficiencies. Using ‘viridis® type,
which is perceptually uniform in both colour and black-and-white display is an easy option to ensure
good perceptive properties of your visulizations. The colorspace package offers functionalities -
to generate color palettes with good perceptive properties, - to analyse a given color palette, like
emulating color blindness, - and to modify a given color palette for better perceptivity.

For more information on color vision deficiencies and suitable color choices see the [paper on the
colorspace package](https://arxiv.org/abs/1903.06490) and references therein.

See Also

[scale_colour_gradient()], [scale_colour_viridis_c()], [scale_colour_steps()], [scale_colour_viridis_b()],
[scale_fill_gradient()], [scale_fill_viridis_c()], [scale_fill_steps()], and [scale_fill_viridis_b()]

Examples

library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg, shadowcolor=gear))
p + geom_shadowpoint() + scale_shadowcolour_continuous() + guides(shadowcolour="none")

library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg, shadowcolor=gear))
p + geom_shadowpoint() + scale_shadowcolour_binned() + guides(shadowcolour="none")

20

scale_gradient

scale_gradient

Gradient colour scales

Description

‘scale_*_gradient® creates a two colour gradient (low-high), ‘scale_*_gradient2‘ creates a diverging

colour gradient (low-mid-high), ‘scale_*_gradientn® creates a n-colour gradient.

Usage

scale_shadowcolour_gradient(

)

low = "#132B43",

high = "#56B1F7",

space = "Lab",

na.value = "grey50",

guide = "colourbar”,
aesthetics = "shadowcolour”

scale_shadowcolour_gradient2(

)

0

low

= muted("red"),

mid = "white",

high = muted("blue"),
midpoint = 0,

space = "Lab",

na.value = "grey50",

guide = "colourbar”,
aesthetics = "shadowcolour”

scale_shadowcolour_gradientn(

)

c

colours,

values = NULL,

space = "Lab",

na.value = "grey50"”,

guide = "colourbar”,
aesthetics = "shadowcolour”,
colors

scale_shadowcolour_datetime(

low = "#132B43",
high = "#56B1F7",

scale_gradient 21

space = "Lab",
na.value = "grey50",
guide = "colourbar”

)

scale_shadowcolour_date(

low = "#132B43",
high = "#56B1F7",

space = "Lab",
na.value = "grey50",
guide = "colourbar”
)
Arguments

Arguments passed on to ggplot2::continuous_scale
scale_name The name of the scale that should be used for error messages as-
sociated with this scale.

palette A palette function that when called with a numeric vector with values
between 0 and 1 returns the corresponding output values (e.g., scales: :area_pal()).

name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

breaks One of:
* NULL for no breaks
* waiver () for the default breaks computed by the transformation object
* A numeric vector of positions

* A function that takes the limits as input and returns breaks as output
(e.g., a function returned by scales: :extended_breaks()). Also ac-
cepts rlang lambda function notation.

minor_breaks One of:
¢ NULL for no minor breaks

* waiver() for the default breaks (one minor break between each major
break)

* A numeric vector of positions

* A function that given the limits returns a vector of minor breaks. Also
accepts rlang lambda function notation.

n.breaks An integer guiding the number of major breaks. The algorithm may
choose a slightly different number to ensure nice break labels. Will only
have an effect if breaks =waiver(). Use NULL to use the default number
of breaks given by the transformation.

labels One of:
* NULL for no labels
* waiver() for the default labels computed by the transformation object
* A character vector giving labels (must be same length as breaks)

22

low, high

space

na.value

scale_gradient

* A function that takes the breaks as input and returns labels as output.
Also accepts rlang lambda function notation.

limits One of:
* NULL to use the default scale range

* A numeric vector of length two providing limits of the scale. Use NA to
refer to the existing minimum or maximum

* A function that accepts the existing (automatic) limits and returns new
limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If
the purpose is to zoom, use the limit argument in the coordinate system
(see coord_cartesian()).

rescaler A function used to scale the input values to the range [0, 1]. This is
always scales::rescale(), except for diverging and n colour gradients
(i.e., scale_colour_gradient2(), scale_colour_gradientn()). The
rescaler isignored by position scales, which always use scales: :rescale().
Also accepts rlang lambda function notation.

oob One of:

¢ Function that handles limits outside of the scale limits (out of bounds).
Also accepts rlang lambda function notation.

e The default (scales: :censor()) replaces out of bounds values with
NA.

e scales: :squish() for squishing out of bounds values into range.
e scales::squish_infinite() for squishing infinite values into range.

expand For position scales, a vector of range expansion constants used to add
some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

trans For continuous scales, the name of a transformation object or the object
itself. Built-in transformations include "asn", "atanh", "boxcox", "date",
"exp", "hms", "identity", "log", "log10", "loglp", "log2", "logit", "modu-
lus", "probability", "probit", "pseudo_log", "reciprocal”, "reverse", "sqrt"
and "time".
A transformation object bundles together a transform, its inverse, and meth-
ods for generating breaks and labels. Transformation objects are defined in
the scales package, and are called <name>_trans (e.g., scales: :boxcox_trans()).
You can create your own transformation with scales: : trans_new().

position For position scales, The position of the axis. left or right fory
axes, top or bottom for x axes.

super The super class to use for the constructed scale
Colours for low and high ends of the gradient.

colour space in which to calculate gradient. Must be "Lab" - other values are
deprecated.

Colour to use for missing values

scale_gradient

guide

aesthetics

mid
midpoint
colours, colors

values

Details

23

"e

Type of legend. Use ‘"colourbar
discrete colour legend.

for continuous colour bar, or ‘"legend"* for

Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics =c("colour”, "fill").

colour for mid point

The midpoint (in data value) of the diverging scale. Defaults to 0.

Vector of colours to use for n-colour gradient.

if colours should not be evenly positioned along the gradient this vector gives
the position (between O and 1) for each colour in the colours vector. See
rescale() for a convenience function to map an arbitrary range to between
0 and 1.

Default colours are generated with munsell and ‘mnsl(c("2.5PB 2/4", "2.5PB 7/10"))‘. Generally,
for continuous colour scales you want to keep hue constant, but vary chroma and luminance. The
munsell package makes this easy to do using the Munsell colour system.

Value

a scale object to add to a plot.

See Also

[scales::seq_gradient_pal()] for details on underlying palette

Other colour scales: scale_brewer, scale_colour_hue, scale_colour_steps, scale_grey,

scale_viridis

Examples

library(ggplot2

)

p <- ggplot(economics, aes(date, unemploy, shadowcolor=pce))
p + geom_shadowline() + scale_shadowcolour_gradient() + guides(shadowcolour="none")

library(ggplot2

)

p <- ggplot(economics, aes(date, unemploy, shadowcolor=pce))
p + geom_shadowline() + scale_shadowcolour_gradient2() + guides(shadowcolour="'none')

library(ggplot2

)

p <- ggplot(economics, aes(date, unemploy, shadowcolor=pce))
p <- p + geom_shadowline() + scale_shadowcolour_gradientn(colours=c('red', 'green'))
p + guides(shadowcolour="none')

library(ggplot2

)

p <- ggplot(economics, aes(uempmed, unemploy, shadowcolor=as.POSIXct(date)))
p + geom_shadowpath() + scale_shadowcolour_datetime() + guides(shadowcolour="none")

24

library(ggplot2)
p <- ggplot(economics, aes(uempmed, unemploy, shadowcolor=date))
p + geom_shadowpath() + scale_shadowcolour_date() + guides(shadowcolour='none')

scale_grey

scale_grey

Sequential grey colour scales

Description

Based on [gray.colors()]. This is black and white equivalent of [scale_colour_gradient()].

Usage

scale_shadowcolour_grey(

start = 0.2,

end = 0.8,
na.value "red",
aesthetics = "shadowcolour”
)
Arguments

Arguments passed on to ggplot2: :discrete_scale

scale_name The name of the scale that should be used for error messages as-
sociated with this scale.

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales: :hue_pal()).

name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

breaks

L]

labels

[
L]

L]

One of:

NULL for no breaks

waiver () for the default breaks (the scale limits)

A character vector of breaks

A function that takes the limits as input and returns breaks as output.
Also accepts rlang lambda function notation.

One of:

NULL for no labels

waiver () for the default labels computed by the transformation object
A character vector giving labels (must be same length as breaks)

A function that takes the breaks as input and returns labels as output.
Also accepts rlang lambda function notation.

scale_grey 25

limits One of:
e NULL to use the default scale values

* A character vector that defines possible values of the scale and their
order
A function that accepts the existing (automatic) values and returns new
ones. Also accepts rlang lambda function notation.
expand For position scales, a vector of range expansion constants used to add
some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

na.translate Unlike continuous scales, discrete scales can easily show miss-
ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

drop Should unused factor levels be omitted from the scale? The default, TRUE,
uses the levels that appear in the data; FALSE uses all the levels in the factor.

guide A function used to create a guide or its name. See guides() for more
information.

position For position scales, The position of the axis. left or right fory
axes, top or bottom for x axes.

super The super class to use for the constructed scale

start grey value at low end of palette

end grey value at high end of palette

na.value Colour to use for missing values

aesthetics Character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics =c("colour”, "fill").

Value

a scale object to add to a plot.

See Also

Other colour scales: scale_brewer, scale_colour_hue, scale_colour_steps, scale_gradient,
scale_viridis

Examples

library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg, shadowcolour=as.factor(gear)))
p + geom_glowpoint() + scale_shadowcolour_grey() + guides(shadowcolour="'none")

26 scale_identity

scale_identity Use values without scaling

Description

Use this set of scales when your data has already been scaled, i.e. it already represents aesthetic
values that ggplot2 can handle directly. These scales will not produce a legend unless you also
supply the ‘breaks, ‘labels‘, and type of ‘guide‘ you want.

Usage
scale_shadowcolour_identity(..., guide = "none"”, aesthetics = "shadowcolour")
Arguments
Other arguments passed on to [discrete_scale()] or [continuous_scale()]
guide Guide to use for this scale. Defaults to ‘"none"".
aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to apply
colour settings to the ‘colour’ and ‘fill* aesthetics at the same time, via ‘aesthet-
ics = c("colour", "fill")*.
Details

The functions ‘scale_colour_identity()‘, ‘scale_fill_identity()‘, ‘scale_size_identity()‘, etc. work
on the aesthetics specified in the scale name: ‘colour’, ‘fill*, ‘size‘, etc. However, the functions
‘scale_colour_identity()‘ and ‘scale_fill_identity()‘ also have an optional ‘aesthetics‘ argument that
can be used to define both ‘colour® and ‘fill* aesthetic mappings via a single function call. The
functions ‘scale_discrete_identity()‘ and ‘scale_continuous_identity()‘ are generic scales that can
work with any aesthetic or set of aesthetics provided via the ‘aesthetics‘ argument.

Value

a scale object to add to a plot.

Examples

library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg, shadowcolor='red'))
p + geom_shadowpoint() + scale_shadowcolour_identity()

scale_manual 27

scale_manual Create your own discrete scale

Description

These functions allow you to specify your own set of mappings from levels in the data to aesthetic
values.

Usage

scale_shadowcolour_manual(

L

values,
aesthetics = "shadowcolour”,
breaks = waiver()
)
Arguments

Arguments passed on to ggplot2: :discrete_scale
scale_name The name of the scale that should be used for error messages as-
sociated with this scale.

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales: :hue_pal()).

name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

labels One of:
e NULL for no labels
* waiver() for the default labels computed by the transformation object
¢ A character vector giving labels (must be same length as breaks)

* A function that takes the breaks as input and returns labels as output.
Also accepts rlang lambda function notation.

limits One of:
¢ NULL to use the default scale values

* A character vector that defines possible values of the scale and their
order

* A function that accepts the existing (automatic) values and returns new
ones. Also accepts rlang lambda function notation.
na.translate Unlike continuous scales, discrete scales can easily show miss-

ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

28

scale_manual

na.value If na.translate = TRUE, what aesthetic value should the missing
values be displayed as? Does not apply to position scales where NA is al-
ways placed at the far right.

drop Should unused factor levels be omitted from the scale? The default, TRUE,
uses the levels that appear in the data; FALSE uses all the levels in the factor.

guide A function used to create a guide or its name. See guides() for more
information.

super The super class to use for the constructed scale

values a set of aesthetic values to map data values to. The values will be matched
in order (usually alphabetical) with the limits of the scale, or with ‘breaks® if
provided. If this is a named vector, then the values will be matched based on the
names instead. Data values that don’t match will be given ‘na.value®.

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to apply
colour settings to the ‘colour® and ‘fill* aesthetics at the same time, via ‘aesthet-
ics = ¢("colour", "fill")‘.

breaks One of: - ‘NULL* for no breaks - ‘waiver()* for the default breaks (the scale
limits) - A character vector of breaks - A function that takes the limits as input
and returns breaks as output

Details

The functions ‘scale_colour_manual()‘, ‘scale_fill_manual()‘, ‘scale_size_manual()‘, etc. work
on the aesthetics specified in the scale name: ‘colour‘, ‘fill‘, ‘size‘, etc. However, the functions
‘scale_colour_manual()‘ and ‘scale_fill_manual()* also have an optional ‘aesthetics‘ argument that
can be used to define both ‘colour® and ‘fill* aesthetic mappings via a single function call (see ex-
amples). The function ‘scale_discrete_manual()‘ is a generic scale that can work with any aesthetic
or set of aesthetics provided via the ‘aesthetics® argument.

Value

a scale object to add to a plot.

Color Blindness

Many color palettes derived from RGB combinations (like the "rainbow" color palette) are not
suitable to support all viewers, especially those with color vision deficiencies. Using ‘viridis® type,
which is perceptually uniform in both colour and black-and-white display is an easy option to ensure
good perceptive properties of your visulizations. The colorspace package offers functionalities -
to generate color palettes with good perceptive properties, - to analyse a given color palette, like
emulating color blindness, - and to modify a given color palette for better perceptivity.

For more information on color vision deficiencies and suitable color choices see the [paper on the
colorspace package](https://arxiv.org/abs/1903.06490) and references therein.

Examples

library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg, shadowcolour=as.factor(gear)))

scale_viridis 29

p <- p + geom_glowpoint() + guides(shadowcolour="none")

p + scale_shadowcolour_manual(values=c('red', 'blue', 'green'))
scale_viridis Viridis colour scales from viridisLite
Description

The ‘viridis‘ scales provide colour maps that are perceptually uniform in both colour and black-and-
white. They are also designed to be perceived by viewers with common forms of colour blindness.
See also <https://bids.github.io/colormap/>.

Usage

scale_shadowcolour_viridis_d(
alpha
begin = 0,
end = 1,
direction = 1,
option = "D",
aesthetics = "shadowcolour”

1
i

scale_shadowcolour_viridis_c(
alpha
begin = 0,
end = 1,
direction = 1,
option = "D",
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "colourbar”,
aesthetics = "shadowcolour”

1
-

scale_shadowcolour_viridis_b(
alpha
begin = 0,
end = 1,
direction = 1,
option = "D",
values = NULL,

1
-

30 scale_viridis

space = "Lab",

na.value = "grey50",

guide = "coloursteps”,
aesthetics = "shadowcolour”

)

scale_shadowcolour_ordinal(

alpha

=1 R
begin = 0,
end = 1,
direction = 1,
option = "D",
aesthetics = "shadowcolour”
)
Arguments
Other arguments passed on to [discrete_scale()], [continuous_scale()], or [binned_scale]
to control name, limits, breaks, labels and so forth.
alpha The alpha transparency, a number in [0,1], see argument alpha in hsv.
begin, end The (corrected) hue in [0, 1] at which the color map begins and ends.
direction Sets the order of colors in the scale. If 1, the default, colors are ordered from
darkest to lightest. If -1, the order of colors is reversed.
option A character string indicating the color map option to use. Eight options are

available:
* "magma" (or "A")
* "inferno" (or "B")
 "plasma" (or "C")
* "viridis" (or "D")
e "cividis" (or "E")
¢ "rocket" (or "F")
* "mako" (or "G")
e "turbo" (or "H")
aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to apply

colour settings to the ‘colour® and ‘fill* aesthetics at the same time, via ‘aesthet-
ics = c("colour", "fill")".

values if colours should not be evenly positioned along the gradient this vector gives
the position (between 0 and 1) for each colour in the colours vector. See
rescale() for a convenience function to map an arbitrary range to between
Oand 1.

space colour space in which to calculate gradient. Must be "Lab" - other values are
deprecated.

na.value Missing values will be replaced with this value.

scale_viridis 31

guide A function used to create a guide or its name. See guides() for more informa-
tion.

Value

a scale object to add to a plot.

See Also

Other colour scales: scale_brewer, scale_colour_hue, scale_colour_steps, scale_gradient,
scale_grey

Examples

library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg, shadowcolour=as.factor(gear)))
p + geom_glowpoint() + scale_shadowcolour_viridis_d() + guides(shadowcolour="'none")

library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg, shadowcolour=gear))
p + geom_glowpoint() + scale_shadowcolour_viridis_c() + guides(shadowcolour="none")

library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg, shadowcolour=gear))
p + geom_glowpoint() + scale_shadowcolour_viridis_b() + guides(shadowcolour="none")

library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg, shadowcolour=as.factor(gear)))
p + geom_glowpoint() + scale_shadowcolour_ordinal() + guides(shadowcolour="'none")

Index

* colour scales
scale_brewer, 11
scale_colour_hue, 13
scale_colour_steps, 15
scale_gradient, 20
scale_grey, 24
scale_viridis, 29

coord_cartesian(), 16, 22
expansion(), 14, 17,22, 25

geom_glowline (geom_glowpath), 2
geom_glowpath, 2

geom_glowpoint, 5

geom_glowstep (geom_glowpath), 2
geom_shadowline (geom_shadowpath), 6
geom_shadowpath, 6
geom_shadowpoint, 9

geom_shadowstep (geom_shadowpath), 6
ggplot2::binned_scale, 16
ggplot2::continuous_scale, 21
ggplot2::discrete_scale, 13, 24,27
guides(), 14, 25, 28, 31

hsv, 30
lambda, 14, 16, 21, 22, 24, 25, 27

RColorBrewer: :brewer.pal(), 11
rescale(), 12, 18, 23, 30

scale_brewer, 11, 15, 18, 23, 25, 31
scale_colour_gradient2(), 22
scale_colour_gradientn(), 22
scale_colour_hue, 12, 13, 18, 23, 25, 31

scale_colour_steps, 12, 15, 15, 23, 25, 31

scale_continuous, 18
scale_gradient, 12, 15, 18, 20, 25, 31
scale_grey, 12, 15,18, 23,24, 31
scale_identity, 26

scale_manual, 27
scale_shadowcolour_binned
(scale_continuous), 18
scale_shadowcolour_brewer
(scale_brewer), 11
scale_shadowcolour_continuous
(scale_continuous), 18
scale_shadowcolour_date
(scale_gradient), 20
scale_shadowcolour_datetime
(scale_gradient), 20
scale_shadowcolour_discrete
(scale_colour_hue), 13
scale_shadowcolour_distiller
(scale_brewer), 11
scale_shadowcolour_gradient
(scale_gradient), 20
scale_shadowcolour_gradient?2
(scale_gradient), 20
scale_shadowcolour_gradientn
(scale_gradient), 20
scale_shadowcolour_grey (scale_grey), 24
scale_shadowcolour_hue
(scale_colour_hue), 13
scale_shadowcolour_identity
(scale_identity), 26
scale_shadowcolour_manual
(scale_manual), 27
scale_shadowcolour_ordinal
(scale_viridis), 29
scale_shadowcolour_steps
(scale_colour_steps), 15
scale_shadowcolour_steps?2
(scale_colour_steps), 15
scale_shadowcolour_stepsn
(scale_colour_steps), 15
scale_shadowcolour_viridis_b
(scale_viridis), 29
scale_shadowcolour_viridis_c

INDEX

(scale_viridis), 29

scale_shadowcolour_viridis_d

(scale_viridis), 29

scale_viridis, 12, 15, 18, 23, 25, 29

scales:
scales:
scales:
scales:
scales:
scales:
scales:
scales:
scales:

:area_pal(), 21
:boxcox_trans(), 17, 22
:censor(), 17,22
:extended_breaks(), 16, 21
:hue_pal(), 13, 24,27
:rescale(), 22
:squish(), 17, 22
:squish_infinite(), 17, 22
:trans_new(), 17, 22

transformation object, 16, 21

33

	geom_glowpath
	geom_glowpoint
	geom_shadowpath
	geom_shadowpoint
	scale_brewer
	scale_colour_hue
	scale_colour_steps
	scale_continuous
	scale_gradient
	scale_grey
	scale_identity
	scale_manual
	scale_viridis
	Index

