Package ‘gggenomes’

August 30, 2024

Title A Grammar of Graphics for Comparative Genomics
Version 1.0.1

Description An extension of 'ggplot2' for creating complex genomic
maps. It builds on the power of 'ggplot2' and 'tidyverse' adding new 'ggplot2'-style
geoms & positions and 'dplyr'-style verbs to manipulate the underlying data. It
implements a layout concept inspired by 'ggraph' and introduces tracks to bring
tidiness to the mess that is genomics data.

License MIT + file LICENSE
URL https://github.com/thackl/gggenomes

BugReports https://github.com/thackl/gggenomes/issues
Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

VignetteBuilder knitr

Depends R (>=3.4.2), ggplot2 (>=3.5.0),

Imports vctrs, rlang, dplyr, tidyr, readr (>= 2.0.0), purtr, tibble,
stringr, grid, jsonlite, snakecase, magrittr, scales,
tidyselect, colorspace, methods, utils, ellipsis

Suggests testthat, ggtree, patchwork, Hmisc, knitr, ggrepel, IRanges,
NeedsCompilation no

Author Thomas Hackl [aut, cre],
Markus J. Ankenbrand [aut],
Bart van Adrichem [aut],
Kristina Haslinger [ctb, sad]

Maintainer Thomas Hackl <t .hackl@rug.nl>
Repository CRAN
Date/Publication 2024-08-30 11:40:02 UTC

https://github.com/thackl/gggenomes
https://github.com/thackl/gggenomes/issues

2 Contents

Contents
add_feats e e 3
add_seqs e e 5
check_strand e 5
combine_strands e e e 6
def formats e 6
def_names e 8
drop_feat_layout 9
drop_layout e 9
drop_link_layout 10
drop_seq_layout. 10
emale_ava e 11
emale_Cogs e 11
emale_gec e e e 12
emale_genes e e e e e e 13
emale_ngaros oL e e e e e e e 14
emale_prot_ava e 15
emale_Seqs e e 15
emale_tirS e e 16
BX i e e e e e e e e e e e e 17
feats e e e e e 17
flip . . o e e e 19
flip_strand e 21
focus e e e 21
GeomPFeatText e e 24
geom_bin_label 25
GEOM_COVEIAZE . . . v v o e e e e et e e e e e e e e e e e e 27
geom_feat L e e e 30
geom_feat_text L. e e e e e 33
GEOM_ZENE . .+« . v v v v e 38
geom_gene_label L L 42
geom_link 44
GEOMLSEU « + « ¢ v v e 47
geom_seq_break 49
geom_seq_label 52
GEOM_VATIANt v it e e e e e e e e e e e e e e e e 54
GELLSEOS « « v v e e e e e e e e e e e e e e e e e e e 58
GEEENOMES . .« . v v vt e e e e e e e e e e e e 58
I TEVEISE . . . o o 61
introduce L. e e 61
IN_TANZE . . .« o o o e e e 62
IS_TEVETSE . v v v v v o e e e e e e e e e e 63
layout e e 64
layout_seqs e e 64
pick ..o 65
position_strand 67

POSIION_VAriant o o e e e e e 69

add_feats 3

read_alitv L e e 70
read_bed e 71
read_blast e 72
read_conteXt e e e 73
read_gbk . . . L 74
read_gff3 . . . L L 75
read_paf 76
read_seq_len 77
read_tracks L L e e 79
read_vef . . L 81
TEQUITE_VATS .« . v v v v v e e e e i e e e e e e e e e e e e e e e e 82
scale_color_variant e 83
scale_ X _bp . ..o 85
SEt_Class e, 86
shift . . . e 87
strand_Chr 88
strand_INt L L e e e e e 88
strand_Igl e e e 89
swap_if . .o 89
SWAP_QUETY . . o v v v v it e e e e e e e e e e e e e e e e e 90
theme_gggenomes_clean Lo 90
track_ids e 91
track_info e 91
UNNESE_EXOMNS .+ v v v v v v e e e e e e e e e e e e e 92
vars_track L e 93
width . . . e e e e 93
write_gff3 . . . 94
Index 96
add_feats Add different types of tracks
Description

Add different types of tracks

Usage

add_feats(x, ...)

add_links(x, ..., .adjacent_only = TRUE)

add_subfeats(x, ..., .track_id

"genes"”, .transform = "aa2nuc")

add_sublinks(x, ..., .track_id = "genes"”, .transform = "aa2nuc")

add_clusters(x, ..., .track_id

ngenesn)

4 add_feats

Arguments

X object to add the tracks to (e.g. gggenomes, gggenomes_layout)
named data.frames, i.e. genes=gene_df, snps=snp_df
.adjacent_only indicate whether links should be drawn only between vertically adjacent tracks

.track_id track_id of the feats that subfeats, sublinks or clusters map to.

non "non

.transform one of "aa2nuc", "none", "nuc2aa"

Value

gggenomes object with added features

Functions

* add_feats(): Add feature annotations to sequences
* add_links(): Add links connecting sequences, such as whole-genome alignment data.

* add_subfeats(): Add features of features, such as gene/protein domains, blast hits to genes/proteins,
etc.

* add_sublinks(): Add links that connect features, such as protein-protein alignments con-
necting genes.

e add_clusters(): Add gene clusters or other feature groups. Takes a data.frame with at least
two required columns cluster_id and feat_id. The data.frame is converted to a link track
connecting features belonging to the same cluster over their entire length. Additionally, the
data.frame is joined to the parent feature track, adding cluster_id and all additional columns
to the parent table.

Examples

Add some repeat annotations

gggenomes(seqs = emale_seqs) %>%
add_feats(repeats = emale_tirs) +
geom_seq() + geom_feat()

Add all-vs-all whole-genome alignments

gggenomes(seqs = emale_seqs) %>%
add_links(links = emale_ava) +
geom_seq() + geom_link()

Add domains to genes

genes <- tibble::tibble(seq_id = "A", start = 100, end = 200, feat_id = "genel")

domains <- tibble::tibble(feat_id = "genel”, start = 40, end = 80)

gggenomes(genes = genes) %>% add_subfeats(domains, .transform = "none") +
geom_gene() + geom_feat()

Add protein-protein alignments

gggenomes (emale_genes) %>%
add_sublinks(emale_prot_ava) +
geom_gene() + geom_link()

add_seqs

add clusters

gggenomes (emale_genes, emale_seqs) %>%
add_clusters(emale_cogs) %>%
sync() + # works because clusters
geom_link() + # become links
geom_seq() +
works because cluster info is joined to gene track
geom_gene(aes(fill = ifelse(is.na(cluster_id), NA,

stringr::str_glue("{cluster_id} [{cluster_size}]")

)+
scale_fill_discrete("C0Gs")

add_seqgs Add seqs
Description
Add seqs
Usage
add_seqs(x, seqs, ...)
Arguments
X a gggenomes or gggenomes_layout objekt
seqs the sequences to add

pass through to as_seqs()

Value

a gggenomes or gggenomes_layout object with added seqs

check_strand Check strand

Description

Check strand

Usage

check_strand(strand, na)

Arguments

strand

na

Value

some representation for strandedness

what to use for NA

strand vector with unknown values replaced by na

def _formats

combine_strands

Combine strands

Description

Combine strands

Usage
combine_strands(strand, strand2, ...)
Arguments
strand first strand
strand2 second strand
more strands
Value

the combined strand

def_formats

Defined file formats and extensions

Description

For seamless reading of different file formats, gggenomes uses a mapping of known formats to asso-
ciated file extensions and contexts in which the different formats can be read. The notion of context
allows one to read different information from the same format/extension. For example, a gbk file
holds both feature and sequence information. If read in "feats" context read_feats(".gbk") it
will return a feature table, if read in "seqs" context read_seqs("*.gbk"), a sequence index.

def_formats 7

Usage
def_formats(
file = NULL,
ext = NULL,

context = NULL,
parser = NULL,
allow_na = FALSE

)

Arguments
file a vector of file names
ext a vector of file extensions
context a vector of file contexts defined in gggenomes_global$def_formats
parser a vector of file parsers defined in gggenomes_global$def_formats
allow_na boolean

Value

dictionarish vector of file formats with recognized extensions as names

Defined formats, extensions, contexts, and parsers

format ext context parser
1 ambigious txt, tsv, csv NA read_ambigious
2 fasta fa, fas, fasta, ffn, fna, faa seqs read_seg_len
3 fai fai seqs read_fai
4 gff3 gff, gff3, gff2, gtf feats, segs read_gff3, read_seq_len
5 gbk gbk, gb, gbff, gpff feats, segs read_gbk, read_seq_len
6 bed bed feats read_bed
7 blast m8, 06, o7 feats, links read_blast, read_blast
8 paf paf feats, links read_paf, read_paf
9 alitv json feats, seqs, links read_alitv_genes, read_alitv_seqs, read_alitv_link
10 vcf vef feats read_vcf
Examples

vector of defined zip formats and recognized extensions as names
format of file
def_formats("foo.fa")

formats associated with each extension
def_formats(ext = c("fa", "gff"))

all formats/extensions that can be read in seqs context; includes formats
that are defined for context=NA, i.e. that can be read in any context.
def_formats(context = "seqgs")

8 def _names

def_names Default column names and types for defined formats

Description

Intended to be used in readr: : read_tsv()-like functions that accept a col_names and a col_types
argument.

Usage
def_names(format)
def_types(format)

Arguments

format specify a format known to gggenomes, such as gff3, gbk, ...

Value

a vector with default column names for the given format

a vector with default column types for the given format

Functions

e def_names(): default column names for defined formats

* def_types(): default column types for defined formats

Defined formats, column types and names

gff3 ccciicecc seq_id, source, type,start,end, score,strand, phase,attributes
paf ciiicciiiiid seq_id,length,start,end,strand,seq_id2,length2,start2,end2,map_match,map_le
blast ccdiiiiiiidd seq_id,seq_id2,pident,length,mismatch,gapopen,start,end,start2,end2,evalue
bed ciicdc seqg_id, start,end,name, score,strand
fai ci--- seq_id, seq_desc, length
seq_len cci seq_id, seq_desc, length
vef ciccedcecc seq_id, start,feat_id,ref,alt,qual,filter,info,format
Examples

read a blast-tabular file with read_tsv
readr::read_tsv(ex("emales/emales-prot-ava.o6"”), col_names = def_names("blast"))

drop_feat_layout

drop_feat_layout Drop feature layout

Description

Drop feature layout

Usage

drop_feat_layout(x, keep = "strand")

Arguments
X feat_layout
keep features to keep
Value

feat_layout without unwanted features

drop_layout Drop a genome layout

Description

Drop a genome layout

Usage
drop_layout(data, ...)
Arguments
data layout
additional data
Value

gggenomes object without layout

10

drop_seq_layout

drop_link_layout Drop a link layout

Description

Drop a link layout

Usage

drop_link_layout(x, keep = "strand")

Arguments
X link_layout
keep features to keep
Value

link_layout without unwanted features

drop_seq_layout Drop a seq layout

Description

Drop a seq layout

Usage

drop_seq_layout(x, keep = "strand")

Arguments
X seq_layout
keep features to keep
Value

seq_layout without unwanted features

emale_ava 11

emale_ava All-versus-all whole genome alignments of 6 EMALE genomes

Description

One row per alignment block. Alignments were computed with minimap?2.

Usage

emale_ava

Format
A data frame with 125 rows and 23 columns

file_id name of the file the data was read from

seq_id identifier of the sequence the feature appears on

length length of the sequence

start start of the feature on the sequence

end end of the feature on the sequence

strand orientation of the feature relative to the sequence (+ or -)
seq_id2 identifier of the sequence the feature appears on
length2 length of the sequence

start2 start of the feature on the sequence

end2 end of the feature on the sequence

map_match, map_length, map_quality, NM, ms, AS, nn, tp, cm, s1, de, rl, cg see https://github.
com/1h3/miniasm/blob/master/PAF.md for additional columns

Source

* Derived & bundled data: ex("emales/emales.paf”)

emale_cogs Clusters of orthologs of 6 EMALE proteomes

Description

One row per feature. Clusters are based on manual curation.

Usage

emale_cogs

https://github.com/lh3/miniasm/blob/master/PAF.md
https://github.com/lh3/miniasm/blob/master/PAF.md

12

Format
A data frame with 48 rows and 3 columns
cluster_id identifier of the cluster

feat_id identifer of the gene

cluster_size number of features in the cluster

Source

¢ Derived & bundled data: ex("emales/emales-cogs.tsv")

emale_gc

emale_gc Relative GC-content along 6 EMALE genomes

Description

One row per 50 bp window.

Usage

emale_gc

Format

A data frame with 2856 rows and 6 columns

file_id name of the file the data was read from

seq_id identifier of the sequence the feature appears on
start start of the feature on the sequence

end end of the feature on the sequence

name name of the feature

score relative GC-content of the window

Source

¢ Derived & bundled data: ex("emales/emales-gc.bed")

emale_genes 13

emale_genes Gene annotations if 6 EMALE genomes (endogenous virophages)

Description

A data set containing gene feature annotations for 6 endogenous virophages found in the genomes
of the marine protist Cafeteria burkhardae.

Usage

emale_genes

Format

A data frame with 143 rows and 17 columns

file_id name of the file the data was read from

seq_id identifier of the sequence the feature appears on

start start of the feature on the sequence

end end of the feature on the sequence

strand reading orientation relative to sequence (+ or -)

type feature type (CDS, mRNA, gene, ...)

feat_id unique identifier of the feature

introns a list column with internal intron start/end positions
parent_ids a list column with parent IDs - feat_id’s of parent features
source source of the annotation

score score of the annotation

phase For "CDS" features indicates where the next codon begins relative to the 5 start
width width of the feature

gc_content relative GC-content of the feature

name name of the feature

Note

geom_id an identifier telling the which features should be plotted as on items (usually CDS and
mRNA of same gene)

Source
* Publication: doi:10.1101/2020.11.30.404863

e Raw data: https://github.com/thackl/cb-emales
* Derived & bundled data: ex("emales/emales.gff")

https://doi.org/10.1101/2020.11.30.404863
https://github.com/thackl/cb-emales

14 emale_ngaros

emale_ngaros Integrated Ngaro retrotransposons of 6 EMALE genomes

Description

Integrated Ngaro retrotransposons of 6 EMALE genomes

Usage

emale_ngaros

Format

A data frame with 3 rows and 14 columns

file_id name of the file the data was read from

seq_id identifier of the sequence the feature appears on

start start of the feature on the sequence

end end of the feature on the sequence

strand orientation of the feature relative to the sequence (+ or -)

type feature type (CDS, mRNA, gene, ...)

feat_id unique identifier of the feature

introns a list column with internal intron start/end positions
parent_ids a list column with parent IDs - feat_id’s of parent features
source source of the annotation

score score of the annotation

phase For "CDS" features indicates where the next codon begins relative to the 5 start
name name of the feature

geom_id an identifier telling the which features should be plotted as on items (usually CDS and
mRNA of same gene)

Source
 Publication: doi:10.1101/2020.11.30.404863

e Raw data: https://github.com/thackl/cbh-emales

¢ Derived & bundled data: ex("emales/emales-ngaros.gff")

https://doi.org/10.1101/2020.11.30.404863
https://github.com/thackl/cb-emales

emale_prot_ava 15

emale_prot_ava All-versus-all alignments 6 EMALE proteomes

Description

One row per alignment. Alignments were computed with mmseqs2 (blast-like).

Usage

emale_prot_ava

Format
A data frame with 827 rows and 13 columns

file_id name of the file the data was read from
feat_id identifier of the first feature in the alignment
feat_id2 identifier of the second feature in the alignment

pident, length, mismatch, gapopen, start, end, start2, end2, evalue, bitscore see https://github.
com/seqan/lambda/wiki/BLAST-Output-Formats for BLAST-tabular format columns

Source

e Derived & bundled data: ex("emales/emales-prot-ava.o6")

emale_seqs Sequence index of 6 EMALE genomes (endogenous virophages)

Description
A data set containing the sequence information on 6 endogenous virophages found in the genomes
of the marine protist Cafeteria burkhardae.

Usage

emale_seqs

Format
A data frame with 6 rows and 4 columns
file_id name of the file the data was read from
seq_id sequence identifier

seq_desc sequence description

length length of the sequence

https://github.com/seqan/lambda/wiki/BLAST-Output-Formats
https://github.com/seqan/lambda/wiki/BLAST-Output-Formats

16

Source
¢ Publication: doi:10.1101/2020.11.30.404863
e Raw data: https://github.com/thackl/cb-emales

¢ Derived & bundled data: ex("emales/emales.fna")

emale_tirs

emale_tirs Terminal inverted repeats of 6 EMALE genomes

Description

Terminal inverted repeats of 6 EMALE genomes

Usage

emale_tirs

Format
A data frame with 3 rows and 14 columns

file_id name of the file the data was read from

seq_id identifier of the sequence the feature appears on

start start of the feature on the sequence

end end of the feature on the sequence

strand reading orientation relative to sequence (+ or -)

type feature type (CDS, mRNA, gene, ...)

feat_id unique identifier of the feature

introns a list column with internal intron start/end positions
parent_ids a list column with parent IDs - feat_id’s of parent features
source source of the annotation

score score of the annotation

phase For "CDS" features indicates where the next codon begins relative to the 5 start
name name of the feature

width end-start+1

geom_id an identifier telling the which features should be plotted as on items (usually CDS and

mRNA of same gene)

Source

e Publication: doi:10.1101/2020.11.30.404863
* Raw data: https://github.com/thackl/cb-emales
¢ Derived & bundled data: ex("emales/emales-tirs.gff")

https://doi.org/10.1101/2020.11.30.404863
https://github.com/thackl/cb-emales
https://doi.org/10.1101/2020.11.30.404863
https://github.com/thackl/cb-emales

(¢

17

ex

Get path to gggenomes example files

Description

Get path to gggenomes example files

Usage

ex(file = NULL)

Arguments

file name of example file
Value

path to example file

feats

Use tracks inside and outside geom_x calls

Description

Track selection works like dplyr: :pull() and supports unquoted ids and positional arguments.
. can be used to subset the data in dplyr::filter () fashion. pull-prefixed variants return the
specified track from a gggenome object. Unprefixed variants work inside geom_x calls.

Usage
feats(.track_id = 1, ..., .ignore = "genes", .geneify = FALSE)
feats@(.track_id = 1, ..., .ignore = NA, .geneify = FALSE)
genes(..., .gene_types = c("CDS", "mRNA", "tRNA", "tmRNA", "ncRNA", "rRNA"))
links(.track_id = 1, ..., .ignore = NULL, .adjacent_only = NULL)
segs(...)
bins(..., .group = vars())
track(.track_id = 1, ..., .track_type = NULL, .ignore = NULL)

pull_feats(.x, .track_id =1, ..., .ignore = "genes", .geneify = FALSE)

18 feats

pull_genes(
X,

.gene_types = c("CDS", "mRNA", "tRNA", "tmRNA", "ncRNA", "rRNA")
)

pull_links(.x, .track_id =1, ..., .ignore = NULL, .adjacent_only = NULL)
pull_seqgs(.x, ...)
pull_bins(.x, ..., .group = vars())

S3 method for class 'gggenomes_layout

pull_bins(.x, ..., .group = vars())

pull_track(.x, .track_id =1, ..., .track_type = NULL, .ignore = NULL)
Arguments

.track_id The track to pull out, either as a literal variable name or as a positive/negative

integer giving the position from the left/right.

Logical predicates passed on to dplyr::filter. "seqs", "feats", "links". Affects
position-based selection.

.ignore track names to ignore when selecting by position. Default is "genes", if using
feats@ this defaults to NA.

.geneify add dummy type, introns and geom_id column to play nicely with geoms sup-
porting multi-level and spliced gene models.

.gene_types return only feats of this type (type %in% .gene_types)
.adjacent_only filter for links connecting direct neighbors (abs(y-yend)==1))

.group what variables to use in grouping of bins from seqs in addition to y and bin_id.
Use this to get additional shared variables from the seqs table into the bins table.
.track_type restrict to these types of tracks - any combination of "seqs", "feats", "links".
X A gggenomes or gggenomes_layout object.
Value

A function that pulls the specified track from a gggenomes object.
A function that pulls the specified track from a gggenomes object.
A function that pulls the specified track from a gggenomes object.
A function that pulls the specified track from a gggenomes object.
A function that pulls the specified track from a gggenomes object.
A function that pulls the specified track from a gggenomes object.

A function that pulls the specified track from a gggenomes object.

flip 19

Functions

* feats(): by default pulls out the first feat track not named "genes".
* feats@(): by default pulls out the first feat track.

» genes(): pulls out the first feat track (genes), filtering for records with type=="CDS", and
adding a dummy gene_id column if missing to play nice with multi-exon geoms.

* links(): by default pulls out the first link track.
* seqs(): pulls out the seqs track (there is only one).

* bins(): pulls out a binwise summary table of the seqs data powering geom_bin_x() calls.
The bin table is not a real track, but recomputed on-the-fly.

e track(): pulls from all tracks in order seqs, feats, links.

Examples

gg <- gggenomes(emale_genes, emale_seqs, emale_tirs, emale_ava)
gg %>% track_info() # info about track ids, positions and types

get first feat track that isn't "genes” (all equivalent)

gg %>% pull_feats() # easiest

gg %>% pull_feats(feats) # by id

gg %>% pull_feats(1) # by position

gg %>% pull_feats(2, .ignore = NULL) # default .ignore="genes”

get "seqgs" track (always track #1)
gg %>% pull_seqs()

plot integrated transposons and GC content for some viral genomes
gg <- gggenomes(seqs = emale_seqs, feats = list(emale_ngaros, GC = emale_gc))
gg + geom_seq() +
geom_feat(color = "skyblue") + # defaults to data=feats()
geom_line(aes(x, y + score - .6, group = y), data = feats(GC), color = "gray60")

flip Flip bins and sequences

Description

flip and flip_seqgs reverse-complement specified bins or individual sequences and their features.
sync automatically flips bins using a heuristic that maximizes the amount of forward strand links
between neighboring bins.

Usage
flip(x, ..., .bin_track = segs)
flip_seqs(x, ..., .bins = everything(), .seq_track = seqgs, .bin_track = seqs)

sync(x, link_track = 1, min_support = 0)

20 flip

Arguments

X a gggenomes object

bins or sequences to flip in dplyr::select like syntax (numeric position or un-
quoted expressions)

.bin_track, .seq_track
when using a function as selector such as tidyselect: :where(), this specifies
the track in which context the function is evaluated.

.bins preselection of bins with sequences to flip. Useful if selecting by numeric
position. It sets the context for selection, for example the 11th sequences of
the total set might more easily described as the 2nd sequences of the 3rd bin:
flip_seqs(2, .bins=3).

link_track the link track to use for flipping bins nicely

min_support only flip a bin if at least this many more nucleotides support an inversion over
the given orientation

Details

For more details see the help vignette: vignette("flip”, package = "gggenomes")

Value

a gggenomes object with flipped bins or sequences

Examples

library(patchwork)

p <- gggenomes(genes = emale_genes) +
geom_seq(aes(color = strand), arrow = TRUE) +
geom_link(aes(fill = strand)) +
expand_limits(color = c("-")) +
labs(caption = "not flipped")

nothing flipped
po <- p %>% add_links(emale_ava)

flip manually
pl <= p %>%
add_links(emale_ava) %>%
flip(4:6) + labs(caption = "manually”)

flip automatically based on genome-genome links
p2 <- p %>%

add_links(emale_ava) %>%

sync() + labs(caption = "genome alignments”)

flip automatically based on protein-protein links
p3 <- p %%

add_sublinks(emale_prot_ava) %>%

sync() + labs(caption = "protein alignments”)

flip_strand 21

flip automatically based on genes linked implicitly by belonging
to the same clusters of orthologs (or any grouping of your choice)
p4 <- p %%

add_clusters(emale_cogs) %>%

sync() + labs(caption = "shared orthologs"”)

pd + pl + p2 + p3 + p4 + plot_layout(nrow = 1, guides = "collect")

flip_strand Flip strand

Description

Flip strand

Usage

flip_strand(strand, na = NA)

Arguments

strand some representation for strandedness

na what to use for NA

Value

the strand flipped

focus Show features and regions of interest

Description

Show loci containing features of interest. Loci can either be provided as predefined regions directly
(loci=), or are constructed automatically based on pre-selected features (via . . .). Features within
max_dist are greedily combined into the same locus. locate() adds these loci as new track so that
they can be easily visualized. focus() extracts those loci from their parent sequences making them
the new sequence set. These sequences will have their locus_id as their new seq_id.

22 focus

Usage

focus(
X’

.track_id = 2,

.max_dist = 10000,

.expand = 5000,

.overhang = c("drop”, "trim"”, "keep"),

.locus_id = str_glue("{seq_id}_lc{row_number()}"),
.locus_id_group = seq_id,

.locus_bin = c("bin”, "seq", "locus"),
.locus_score = n(),

.locus_filter = TRUE,

.loci = NULL
)
locate(
X)
.track_id = 2,

.max_dist = 10000,

.expand = 5000,

.locus_id = str_glue("{seq_id}_lc{row_number()}"),
.locus_id_group = .data$seq_id,

.locus_bin = c("bin”, "seq", "locus"),
.locus_score = n(),

.locus_filter = TRUE,

.locus_track = "loci”

Arguments

X A gggenomes object

Logical predicates defined in terms of the variables in the track given by . track_id.
Multiple conditions are combined with ‘&’. Only rows where the condition eval-
uates to “TRUE’ are kept.

)

The arguments in ... are automatically quoted and evaluated in the context of
the data frame. They support unquoting and splicing. See ‘vignette("programming")’
for an introduction to these concepts.

.track_id the track to filter from - defaults to first feature track, usually "genes". Can be
a quoted or unquoted string or a positional argument giving the index of a track
among all tracks (seqs, feats & links).

.max_dist Maximum distance between adjacent features to be included into the same locus,
default 10kb.

.expand The amount to nucleotides to expand the focus around the target features. De-
fault 2kb. Give two values for different up- and downstream expansions.

focus 23

.overhang How to handle features overlapping the locus boundaries (including expand).
Options are to "keep" them, "trim" them exactly at the boundaries, or "drop" all
features not fully included within the boundaries.

.locus_id, .locus_id_group
How to generate the ids for the new loci which will eventually become their new
seq_ids.

.locus_bin What bin to assign new locus to. Defaults to keeping the original binning, but
can be set to the "seq" to bin all loci originating from the same parent sequence,
or to "locus" to separate all loci into individual bins.

.locus_score An expression evaluated in the context of all features that are combined into a
new locus. Results are stored in the column locus_score. Defaults to the n(),
i.e. the number of features per locus. Set, for example, to sum(bitscore) to
sum over all blast hit bitscore of per locus. Usually used in conjunction with
.locus_filter.

.locus_filter An predicate expression used to post-filter identified loci. Set . locus_filter=locus_score
>= 3 to only return loci comprising at least 3 target features.

.loci A data.frame specifying loci directly. Required columns are seq_id, start,end.
Supersedes

.locus_track The name of the new track containing the identified loci.

Value

A gggenomes object focused on the desired loci

A gggenomes object with the new loci track added

Functions

» focus(): Identify regions of interest and zoom in on them

* locate(): Identify regions of interest and add them as new feature track

Examples

Let's hunt some defense systems in marine SAGs

read the genomes

s@ <- read_seqgs(ex("gorg/gorg.fna.fai"))

s1 <- s@ %>%
strip trailing number from contigs to get bins
dplyr::mutate(bin_id = stringr::str_remove(seq_id, "_\\d+$"))

gene annotations from prokka

g0 <- read_feats(ex("gorg/gorg.gff.xz"))

best hits to the PADS Arsenal database of prokaryotic defense-system genes
$ mmseqs easy-search gorg.fna pads-arsenal-vi-prf gorg-pads-defense.o6 /tmp \
--greedy-best-hits
f@ <- read_feats(ex("gorg/gorg-pads-defense.06"))
f1 <- fo %>%
parser system/gene info
tidyr::separate(seq_id2, into = c("seq_id2", "system”, "gene"), sep = ",") %>%

24

GeomFeatText

dplyr::filter(
evalue < 1e-10, # get rid of some spurious hits
and let's focus just on a few systems for this example
system %in% c("CRISPR-CAS", "DISARM", "GABIJA", "LAMASSU", "THOERIS")

)

plot the distribution of hits across full genomes
gggenomes(gd, s1, f1, wrap = 2e5) +

geom_seq() + geom_bin_label() +

scale_color_brewer(palette = "Dark2") +

geom_point(aes(x = x, y =y, color = system), data = feats())

hilight the regions containing hits
gggenomes(gd, s1, f1, wrap = 2e5) %>%
locate(.track_id = feats) %>%
identity() +
geom_seq() + geom_bin_label() +
scale_color_brewer(palette = "Dark2") +
geom_feat(data = feats(loci), color = "plum3") +
geom_point(aes(x = x, y =y, color = system), data = feats())

zoom in on loci

gggenomes(gd, s1, f1, wrap = 5e4) %>%
focus(.track_id = feats) +
geom_seq() + geom_bin_label() +
geom_gene() +
geom_feat(aes(color = system)) +
geom_feat_tag(aes(label = gene)) +

scale_color_brewer(palette = "Dark2")
GeomFeatText Geom for feature text
Description

Geom for feature text

Usage

GeomFeatText

Format

An object of class GeomFeatText (inherits from Geom, ggproto, gg) of length 6.

geom_bin_label

25

geom_bin_label

Draw bin labels

Description

Put bin labels left of the sequences. nudge_left adds space relative to the total bin width between
the label and the seqs, by default 5%. expand_left expands the plot to the left by 20% to make

labels visible.

Usage

geom_bin_label(

mapping = NULL,
data = bins(),

hjust = 1,
size = 3,

nudge_left = 0.05,

expand_left

expand_x =

0.2,

NULL,

expand_aes = NULL,

yjust = 0,

Arguments

mapping

data

hjust

size
nudge_left
expand_left
expand_x

expand_aes

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Moves the text horizontally

of the label

by this much relative to the widest bin

by this much relative to the widest bin

expand the plot to include this absolute x value

provide custom aes mappings for the expansion (advanced)

26 geom_bin_label

yjust for multiline bins set to 0.5 to center labels on bins, and 1 to align labels to the
bottom.

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

. Unknown arguments that are not part of the 4 categories below are ignored.

* Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red"” or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =0.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

Details

Set x and expand_x to an absolute position to align all labels at a specific location

Value

Bin labels are added as a text layer/component to the plot.

Examples

s@ <- read_seqgs(list.files(ex("cafeteria”), "Cr.*\\.fa.fai$"”, full.names = TRUE))
s1 <- s@ %>% dplyr::filter(length > 5e5)

gggenomes (emale_genes) + geom_seq() + geom_gene() +
geom_bin_label()

make larger labels and extra room on the canvas
gggenomes (emale_genes) + geom_seq() + geom_gene() +
geom_bin_label(size = 7, expand_left = .4)

align labels for wrapped bins:

top

gggenomes(seqs = s1, infer_bin_id = file_id, wrap = 5e6) +
geom_seq() + geom_bin_label() + geom_seq_label()

geom_coverage

center
gggenomes(seqs = s1, infer_bin_id = file_id, wrap = 5e6) +
geom_seq() + geom_bin_label(yjust = .5) + geom_seq_label()

bottom
gggenomes(seqs = s1, infer_bin_id = file_id, wrap = 5e6) +
geom_seq() + geom_bin_label(yjust = 1) + geom_seq_label()

geom_coverage Draw wiggle ribbons or lines

Description

Visualize data that varies along sequences as ribbons, lines, lineranges, etc.

Usage

geom_coverage(
mapping = NULL,
data = feats(),

stat = "coverage”,
geom = "ribbon”,
position = "identity",

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
offset = 0,

height = 0.2,

max = base::max,

geom_wiggle(
mapping = NULL,
data = feats(),
stat = "wiggle”,
geom = "ribbon”,
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
offset = 0,
height = 0.8,
bounds = Hmisc::smedian.hilow,

28

Arguments

mapping

data

stat

geom

position

na.rm

geom_coverage

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

The statistical transformation to use on the data for this layer. When using a
geom_x () function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

* For more information and other ways to specify the stat, see the layer stat
documentation.

The geometric object to use to display the data for this layer. When using a
stat_x() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

* A Geom ggproto subclass, for example GeomPoint.

* A string naming the geom. To give the geom as a string, strip the function
name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point”.

* For more information and other ways to specify the geom, see the layer
geom documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

geom_coverage

show. legend

inherit.aes

offset
height

max

bounds

Details

29

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

distance between seq center and wiggle mid/start.
distance in plot between lowest and highest point of the wiggle data.

geom_coverage uses the function base::max by default, which plots data in pos-
itive direction. (base::min Can also be called here when the input data)

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

« Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red” or linewidth
=3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area"”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_x() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =@.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

geom_wiggle uses mid, low and high boundary values for plotting wiggle data.
Can be both a function or a vector returning those three values. Defaults to
Hmisc::smedian.hilow.

Geom_wiggle plots the wiggle data in both directions around the median. Geom_coverage plots
the data only in positive direction. Both functions use data from the feats’ track.

Value

A ggplot2 layer with coverage information.

30 geom_feat

Aesthetics

geom_wiggle() and geom_coverage () understand aesthetics depending on the chosen underlying
ggplot geom, by default ggplot2::geom_ribbon(). Other options that play well are for exam-
ple ggplot2::geom_line(), ggplot2::geom_linerange(), ggplot2: :geom_point (). The only
required aesthetic is:

*Z

Examples

Plotting data with geom_coverage with increased height.

gggenomes(seqs = emale_seqs, feats = emale_gc) +
geom_coverage(aes(z = score), height = 0.5) +
geom_seq()

In opposite direction by calling base::min and taking the negative values of "score”
gggenomes(seqs = emale_seqs, feats = emale_gc) +

geom_coverage(aes(z = -score), max = base::min, height = 0.5) +

geom_seq()

GC-content plotted as points with variable color in geom_coverage
gggenomes(seqs = emale_seqs, feats = emale_gc) +
geom_coverage(aes(z = score, color = score), height = 0.5, geom = "point"”) +
geom_seq()
Plot varying GC-content along sequences as ribbon
gggenomes(seqs = emale_seqs, feats = emale_gc) +
geom_wiggle(aes(z = score)) +
geom_seq()

customize color and position

gggenomes(genes = emale_genes, seqs = emale_seqs, feats = emale_gc) +
geom_wiggle(aes(z = score), fill = "lavenderblush3”, offset = -.3, height = .5) +
geom_seq() + geom_gene()

GC-content as line and with variable color
gggenomes(seqs = emale_seqs, feats = emale_gc) +

geom_wiggle(aes(z = score, color = score), geom = "line”, bounds = c(.5, @, 1)) +
geom_seq() +
scale_colour_viridis_b(option = "A")

or as lineranges
gggenomes(seqs = emale_seqs, feats = emale_gc) +

geom_wiggle(aes(z = score, color = score), geom = "linerange") +
geom_seq() +
scale_colour_viridis_b(option = "A")

geom_feat Draw feats

geom_feat 31

Description

geom_feat () allows the user to draw (additional) features to the plot/graph. For example, specific
regions within a sequence (e.g. transposons, introns, mutation hotspots) can be highlighted by color,

size, etc..
Usage
geom_feat(

mapping = NULL,
data = feats(),
stat = "identity",
position = "pile”,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data feat_layout: Uses first data frame stored in the feats track by default.

stat The statistical transformation to use on the data for this layer. When using a
geom_x () function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

» For more information and other ways to specify the stat, see the layer stat
documentation.

position describes how the position of different plotted features are adjusted. By default
it uses "pile”, but different ggplot2 position adjustments, such as "identity
or "jitter" can be used as well.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

32 geom_feat

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

. Unknown arguments that are not part of the 4 categories below are ignored.

* Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red"” or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =0.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

Details

geom_feat uses ggplot2: :geom_segment under the hood. As a result, different aesthetics such as
alpha, linewidth, color, etc. can be called upon to modify the visualization of the data.

By default, the function uses the first feature track.

Value

A ggplot2 layer with features.

Examples

Plotting data from the feats' track with adjusted linewidth and color
gggenomes(seqs = emale_seqs, feats = emale_ngaros) +

geom_seq() +

geom_feat(linewidth = 5, color = "darkred")

Geom_feat can be called several times as well, when specified what data should be used
gggenomes(seqs = emale_seqs, feats = list(emale_ngaros, emale_tirs)) +
geom_seq() +
geom_feat(linewidth = 5, color = "darkred”) + # uses first feature track
geom_feat(data = feats(emale_tirs))

Additional notes to feats can be added with functions such as: geom_feat_note / geom_feat_text
gggenomes(seqs = emale_seqs, feats = list(emale_ngaros, emale_tirs)) +
geom_seq() +

geom_feat_text 33

geom_feat(color = "darkred") +
geom_feat(data = feats(emale_tirs), color = "darkblue"”) +
geom_feat_note(data = feats(emale_ngaros), label = "repeat region”, size = 4)

Different position adjustments with a simple dataset
exampledata <- tibble::tibble(
seqg_id = c(rep("A", 3), rep("B", 3), rep("C", 3)),
start = c(0, 30, 15, 40, 80, 20, 30, 50, 70),
end = c(30, 90, 60, 60, 100, 80, 60, 90, 120)
)

gggenomes (feats = exampledata) +
geom_feat(position = "identity”, alpha = 0.5, linewidth = 0.5) +
geom_bin_label()

geom_feat_text Add text to genes, features, etc.

Description

The functions below are useful for labeling features/genes in plots. Users have to call on aes(label
=...) or (label = ...) to define label’s text Based on the function, the label will be placed at a
specific location:

e geom_. .._text() will plot text in the middle of the feature.
e geom_..._tag() will plot text on top of the feature, with a 45 degree angle.
e geom_..._note() will plot text under the feature at the left side.
The . .. can be either replaced with feat or gene depending on which track the user wants to label.

With arguments such as hjust, vjust, angle, and nudge_y, the user can also manually change the
position of the text.

Usage

geom_feat_text(
mapping = NULL,
data = feats(),
stat = "identity",
position = "identity",
parse = FALSE,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

geom_feat_tag(

34

)

mapping = NULL,
data = feats(),
stat = "identity"”,

position = "identity"”,
hjust = 0,

vjust = 0,

angle = 45,

nudge_y = 0.03,

xjust = 0.5,

strandwise = TRUE,
parse = FALSE,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

geom_feat_note(

)

mapping = NULL,
data = feats(),
stat = "identity"”,

position = "identity",
hjust = 0,

vjust = 1,

nudge_y = -0.03,

xjust = 0,

strandwise = FALSE,
parse = FALSE,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

geom_gene_text(

mapping = NULL,

data = genes(),

stat = "identity"”,
position = "identity"”,
parse = FALSE,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

geom_feat_text

geom_feat_text

geom_gene_tag(

)

mapping = NULL,
data = genes(),
stat = "identity"”,

position = "identity",
hjust = 0,

vjust = 0@,

angle = 45,

nudge_y = 0.03,

xjust = 0.5,

strandwise = TRUE,
parse = FALSE,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

geom_gene_note(

mapping = NULL,
data = genes(),
stat = "identity"”,

position = "identity"”,
hjust = 0,

vjust = 1,

nudge_y = -0.03,

xjust = 0,

strandwise = FALSE,
parse = FALSE,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

Arguments

mapping

data

35

Set of aesthetic mappings created by aes(). If specified and inherit.aes =

TRUE (the default), it is combined with the default mapping at the top level of

the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the

call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be

36

stat

position

geom_feat_text

created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

The statistical transformation to use on the data for this layer. When using a
geom_x* () function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

 For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. Cannot be jointy specified
with nudge_x or nudge_y. This can be used in various ways, including to pre-
vent overplotting and improving the display. The position argument accepts
the following:

* The result of calling a position function, such as position_jitter().

* A string nameing the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

. Unknown arguments that are not part of the 4 categories below are ignored.

* Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red” or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_x() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =@.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

geom_feat_text

parse

check_overlap

na.rm

show. legend

inherit.aes

hjust
vjust
angle

nudge_y

xjust

strandwise

Details

37

If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text (). Note
that this argument is not supported by geom_label ().

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Moves the text horizontally
Moves the text vertically
Defines the angle in which the text will be placed. *Note

Moves the text vertically an entire contig/sequence. (e.g. nudge_y =1 places
the text to the contig above)

Move text in x direction

plotting of feature tags

These labeling functions use ggplot2: :geom_text () under the hood. Any changes to the aesthet-
ics of the text can be performed in a ggplot2 manner.

Value

A ggplot2 layer with gene text.

A ggplot2 layer with feature tags.

A ggplot2 layer with feature notes.

A ggplot2 layer with gene text.

A ggplot2 layer with gene tags.

A ggplot2 layer with gene notes.

Examples

example data

genes <- tibble::tibble(
Seq_id = C(HAH’ YIA“’ I'A", "B"y IIB”, IICYI)’
start = c(20, 40, 80, 30, 10, 60),
end = c(30, 70, 85, 40, 15, 90),
feat_id = c("A1", "A2", "A3", "B1", "B2", "C1"),
type = c("CDS", "cbS", "cDS", "CDS", "CDS", "CDS"),

38 geom_gene

name = c("geneA”, "geneB", "geneC", "geneA", "geneC", "geneB")

)

seqs <- tibble::tibble(
seq_id = c("A", "B", "C"),
start = c(@, 0, 0),
end = c(100, 100, 100),
length = c(100, 100, 100)
)

basic plot creation

plot <- gggenomes(seqs = seqs, genes = genes) +
geom_bin_label() +
geom_gene ()

geom_..._text
plot + geom_gene_text(aes(label = name))

geom_..._tag
plot + geom_gene_tag(aes(label = name))

geom_..._note
plot + geom_gene_note(aes(label = name))

with horizontal adjustment (“hjust™), vertical adjustment (“vjust™)
plot + geom_gene_text(aes(label = name), vjust = -2, hjust = 1)

using “nudge_y” and and “angle” adjustment
plot + geom_gene_text(aes(label = name), nudge_y = 1, angle = 10)

labeling with manual input
plot + geom_gene_text(label = c("This",

n n n

is”, "an

n

, "example”, "test", "test"))

geom_gene Draw gene models

Description

Draw coding sequences, mRNAs and other non-coding features. Supports multi-exon features.
CDS and mRNAs in the same group are plotted together. They can therefore also be positioned as
a single unit using the position argument.

Usage

geom_gene(
mapping = NULL,
data = genes(),
stat = "identity"”,
position = "identity"”,
na.rm = FALSE,

geom_gene 39

show. legend
inherit.aes
size = 2,
rna_size = size,

shape = size,

rna_shape = shape,

intron_shape = size,

intron_types = c(”CDS", "mRNA", "tRNA", "tmRNA", "ncRNA", "rRNA"),
cds_aes = NULL,

rna_aes = NULL,

intron_aes = NULL,

NA,
TRUE,

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_x () function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

» For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

40 geom_gene

* For more information and other ways to specify the position, see the layer
position documentation.

na.rm remove na values

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

size, rna_size the size of the gene model, aka the height of the polygons. rna_size only
applies to non-coding parts of the gene model, defaults to size.

shape, rna_shape
vector of height and width of the arrow tip, defaults to size. If only one value
is provided it is recycled. Set ’0’ to deactivates arrow-shaped tips. rna_shape
only applies to non-coding parts of the gene model, defaults to shape.

intron_shape single value controlling the kink of the intron line. Defaults to size. Set O for
straight lines between exons.

intron_types introns will only be computed/drawn for features with types listed here. Set to
"CDS" to plot mRNAs as continous features, and set to NA to completely ignore
introns.

cds_aes, rna_aes, intron_aes
overwrite aesthetics for different model parts. Need to be wrapped in ggplot2: :aes().
NOTE: These remappings are applied after the data has been transformed and
mapped by the plot scales (see ggplot2: :after_scale()). So you need to map
between aesthetic names (not data columns) and with standardized names, i.e.
British English spelling. These mappings can be used to dynamically change
parts of the gene model. For example, to change the color of introns from
a hard-coded "black" to the same color used to fill the CDS you could spec-
ify intron_aes=aes(colour = fill). By default, rna_aes is remapped with
aes(fill=colorspace::lighten(fill, .5), colour=colorspace::lighten(colour,
.5)) to give it a lighter appearence than the corresponding CDS but in the same
color.

passed to layer params

Value

A ggplot2 layer with genes.

Aesthetics
geom_gene () understands the following aesthetics (required aesthetics are in bold):
* X
* xend
*y
* alpha

geom_gene 41

e colour
e fill
e group
e introns
e linetype
* stroke
* type
Learn more about setting these aesthetics in vignette("ggplot2-specs”).

’type’ and ’group’ (mapped to 'type’ and ’geom_id’ by default) power the proper recognition of
CDS and their corresponding mRNAs so that they can be drawn as one composite object. Overwrite
*group’ to plot CDS and mRNAs independently.

’introns’ (mapped to ’introns’) is used to compute intron/exon boundaries. Use the parameter
intron_types if you want to disable introns.

Examples

gggenomes (genes = emale_genes) +
geom_gene ()

gggenomes (genes = emale_genes) +
geom_gene(aes(fill = as.numeric(gc_content)), position = "strand") +
scale_fill_viridis_b()

g0 <- read_gff3(ex("eden-utr.gff"))
gggenomes(genes = go) +
all features in the "genes" regardless of type
geom_feat(data = feats(genes)) +
annotate("text”, label = "geom_feat”, x = =15, y = .9) + x1im(-20, NA) +
only features in the "genes"” of geneish type (implicit ~data=genes()~)
geom_gene() +
geom_gene_tag(aes(label = ifelse(is.na(type), "<NA>" 6 type)), data = genes(.gene_types = NULL)) +
annotate(”text”, label = "geom_gene”, x = -15, y = 1) +
control which types are returned from the track
geom_gene(aes(y = 1.1), data = genes(.gene_types = c(”"CDS"”, "misc_RNA"))) +
annotate(”text”, label = "gene_types”, x = =15, y = 1.1) +
control which types can have introns
geom_gene(
aes(y = 1.2, yend = 1.2),
data = genes(.gene_types = c("CDS", "misc_RNA")),
intron_types = "misc_RNA"
) +
annotate(”text”, label = "intron_types”, x = -15, y = 1.2)

spliced genes

library(patchwork)

gg <- gggenomes(genes = go)

gg + geom_gene(position = "pile") +
gg + geom_gene(aes(fill = type),

42 geom_gene_label

position = "pile",
shape = @, intron_shape = 0, color = "white"
) +

some fine-control on cds/rna/intron after_scale aesthetics
gg + geom_gene(aes(fill = geom_id),
position = "pile”,
size = 2, shape = c(4, 3), rna_size = 2, intron_shape = 4, stroke = 0,
cds_aes = aes(fill = "black”), rna_aes = aes(fill = fill),
intron_aes = aes(colour = fill, stroke = 2)
) +
scale_fill_viridis_d() +
fun with introns
gg + geom_gene(aes(fill = geom_id), position = "pile”, size = 3, shape = c(4, 4)) +
gg + geom_gene(aes(fill = geom_id),

position = "pile"”, size = 3, shape = c(4, 4),
intron_types = c()
) +
gg + geom_gene(aes(fill = geom_id),
position = "pile”, size = 3, shape = c(4, 4),
intron_types = "CDS"
)
geom_gene_label Draw feat/link labels
Description
These geom_. . ._label() functions able the user to plot labels/text at individual features and/or
links. Users have to indicate how to label the features/links by specifying label = ... oraes(label = ...

Position of labels can be adjusted with arguments such as vjust, hjust, angle, nudge_y, etc. Also
check out geom_bin_label(), geom_seq_label() or geom_feat_text() given their resemblance.

Usage

geom_gene_label(
mapping = NULL,
data = genes(),

angle = 45,
hjust = 0,
nudge_y = 0.1,
size = 6,

geom_feat_label(
mapping = NULL,
data = feats(),
angle = 45,

geom_gene_label 43

hjust = 0,
nudge_y =
size = 6,

0.1,

) .

geom_link_label(
mapping = NULL,
data = links(),

angle = 0,
hjust = 0.5,
vjust = 0.5,
size = 4,

repel = FALSE,

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot ().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

angle Defines the angle in which the text will be placed. *Note

hjust Moves the text horizontally

nudge_y Moves the text vertically an entire contig/sequence. (e.g. nudge_y =1 places
the text to the contig above)

size of the label

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

* Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red"” or linewidth
=3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

44 geom_link

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_x() function, the ..
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =0.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

vjust Moves the text vertically
repel use ggrepel to avoid overlaps
Details

These labeling functions use ggplot2: :geom_text () under the hood. Any changes to the aesthet-
ics of the text can be performed in a ggplot2 manner.

Value

Gene labels are added as a text layer/component to the plot.

geom_link Draw links between genomes

Description

Draws connections between genomes, such as genome/gene/protein alignments and gene/protein
clusters. geom_link() draws links as filled polygons, geom_link_line() draws a single connect-

ing line.
Note that by default only links between adjacent genomes are computed and shown. To compute
and show all links between all genomes, set gggenomes(. .., adjacent_only=FALSE).
Usage
geom_link(

mapping = NULL,

data = links(),

stat = "identity"”,
position = "identity"”,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
offset = 0.15,

geom_link

)

45

geom_link_line(
mapping = NULL,
data = links(),
stat = "identity"”,

position

na.rm

"identity”,
FALSE,

show.legend = NA,

inherit.aes

Arguments

mapping

data

stat

position

= TRUE,

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

The statistical transformation to use on the data for this layer. When using a
geom_x () function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

» For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

 For more information and other ways to specify the position, see the layer
position documentation.

46 geom_link

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

offset distance between seq center and link start. Use two values c(<offset_top>, <offset_bottom>)
for different top and bottom offsets

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

« Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red” or linewidth
=3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_x*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =0.5). The
stat’s documentation lists which parameters it can accept.

e The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

Details

The function calls upon the data stored within the 1ink track. Data frames added to this track have
seq_id and seq_id2 as required variables. Optional and recommended variables include start,
start2, end, end2, bin_id, bin_id2 and strand.

Note, when start/end is not specified, links will be created between the entire contigs of seq_id and
seq_id2.

Value

A ggplot2 layer with links.

geom_seq 47

Examples

po <- gggenomes(seqs = emale_seqs, links = emale_ava) + geom_seq()

default links
pl <- p@ + geom_link()

change offset from seqs and color
p2 <- p@ + geom_link(aes(fill = de, color = de), offset = 0.05) +
scale_fill_viridis_b() + scale_colour_viridis_b()

combine with flip
p3 <- po |> flip(3, 4, 5) +
geom_link()

compute & show all links among all genomes
usually not useful and not recommended for large dataset
p4 <- gggenomes(links = emale_ava, adjacent_only = FALSE) + geom_link()

library(patchwork) # combine plots in one figure
pl + p2 + p3 + p4 + plot_layout(nrow = 1)
g0 <- gggenomes(emale_genes, emale_seqs) |>
add_clusters(emale_cogs) +
geom_seq() + geom_gene()

link gene clusters with polygon
gl <- g0 + geom_link(aes(fill = cluster_id))

link gene clusters with lines
g2 <- g0 + geom_link_line(aes(color = cluster_id))

gl + g2 + plot_layout(nrow = 1, guides = "collect”)

geom_seq draw seqs

Description

geom_seq() draws contigs for each sequence/chromosome supplied in the seqs track. Several
sequences belonging to the same bin will be plotted next to one another.

If seqs track is empty, sequences are inferred from the feats or 1inks track respectively.

(The length of sequences can be deduced from the axis and is typically indicated in base pairs.)

Usage

geom_seq(mapping = NULL, data = seqgs(), arrow = NULL, ...)

48 geom_seq

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data seq_layout: Uses the first data frame stored in the seqs track, by default.
arrow set to non-NULL to generate default arrows

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

* Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red” or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_x() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =@.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

Details

geom_seq() uses ggplot2: :geom_segment () under the hood. As aresult, different aesthetics such
as alpha, linewidth, color, etc. can be called upon to modify the visualization of the data.

Note: The segs track indicates the length/region of the sequence/contigs that will be plotted. Feats
or links data that falls outside of this region are ignored!

Value

Sequence data drawn as contigs is added as a layer/component to the plot.

Examples

Simple example of geom_seq
gggenomes(seqs = emale_seqs) +
geom_seq() + # creates contigs
geom_bin_label() # labels bins/sequences

geom_seq_break 49

No sequence information supplied, will inform/warn that seqs are inferred from feats.
gggenomes(genes = emale_genes) +

geom_seq() + # creates contigs

geom_gene() + # draws genes on top of contigs

geom_bin_label() # labels bins/sequences

Sequence data controls what sequences and/or regions will be plotted.
Here one sequence is filtered out, Notice that the genes of the removed
sequence are silently ignored and thus not plotted.
missing_seqs <- emale_seqs |>
dplyr::filter(seq_id != "Cflag_017B") |>
dplyr::arrange(seq_id) # “arrange” to restore alphabetical order.

gggenomes(seqs = missing_seqs, genes = emale_genes) +
geom_seq() + # creates contigs
geom_gene() + # draws genes on top of contigs
geom_bin_label() # labels bins/sequences

Several sequences belonging to the same xbin* are plotted next to one another
seqs <- tibble::tibble(

bin_id = c("A", "A", "A", "B", "B", "B", "B", "C", "C"),

seq_id = C(”A1 II’ IIA2II, IIA3II, IIB1 II, NBZM, IIB3II’ IIB4II’ IIC1 II’ IIC2II),

start = c(0, 100, 200, 0, 50, 150, 250, 0, 400),

end = c(100, 200, 400, 50, 100, 250, 300, 300, 500),

length = c(100, 100, 200, 50, 50, 100, 50, 300, 100)

gggenomes(seqs = seqs) +
geom_seq() +
geom_bin_label() + # label bins
geom_seq_label() # label individual sequences

Wrap bins uptill a certain amount.
gggenomes(seqs = seqs, wrap = 300) +
geom_seq() +
geom_bin_label() + # label bins
geom_seq_label() # label individual sequences

Change the space between sequences belonging to one bin
gggenomes(seqs = seqs, spacing = 100) +

geom_seq() +

geom_bin_label() + # label bins

geom_seq_label() # label individual sequences

geom_seq_break Decorate truncated sequences

Description

geom_seq_break() adds decorations to the ends of truncated sequences. These could arise from

50 geom_seq_break

zooming onto sequence loci with focus (), or manually annotating sequences with start > 1 and/or
end < length.

Usage

geom_seq_break(
mapping_start = NULL,
mapping_end = NULL,
data_start = seqgs(start > 1),
data_end = seqgs(end < length),

label = "/",
size = 4,

hjust = 0.75,
family = "sans",

stat = "identity”,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,

Arguments

mapping_start optional start mapping

mapping_end optional end mapping

data_start seq_layout of sequences for which to decorate the start. default: seqs(start
>1)

data_end seq_layout of sequences for which to decorate the end. default: seqs(end <
length)

label the character to decorate ends with. Provide two values for different start and

end decorations, e.g. label=c("]", "[").

size of the text

hjust Moves the text horizontally

family font family of the text

stat The statistical transformation to use on the data for this layer. When using a

geom_x () function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as

"count”.
* For more information and other ways to specify the stat, see the layer stat
documentation.
na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,

missing values are silently removed.

geom_seq_break

51

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

Value

.. Unknown arguments that are not part of the 4 categories below are ignored.

Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red"” or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =0.5). The
stat’s documentation lists which parameters it can accept.

The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

A ggplot2 layer with sequence breaks.

Examples

decorate breaks created with focus()

gggenomes (emale_genes, emale_seqs) |>
focus(.expand = 1e3, .max_dist = 1e3) +
geom_seq() + geom_gene() +

geom_seq_break()

customize decorations
gggenomes (emale_genes, emale_seqs) |>
focus(.expand = 1e3, .max_dist = 1e3) +
geom_seq() + geom_gene() +
geom_seq_break(label = c("[", "]1"), size = 3, color = "#1b9%e77")

decorate manually truncated sequences
s@ <- tibble::tribble(

52 geom_seq_label

start/end define regions, i.e. truncated contigs

~pbin_id, ~seq_id, ~length, ~start, ~end,

"complete_genome"”, "chromosome_1_long_trunc_2side"”, 1e5, 1e4, 2.1e4,
"fragmented_assembly”, "contig_1_trunc_1side”, 1.3e4, .9e4, 1.3e4,
"fragmented_assembly”, "contig_2_short_complete”, 0.3e4, 1, 0.3e4,
"fragmented_assembly”, "contig_3_trunc_2sides”, 2e4, le4, 1.4e4

10 <- tibble::tribble(
~seq_id, ~start, ~end, ~seq_id2, ~start2, ~end2,
"chromosome_1_long_trunc_2side”, 1.1e4, 1.4e4,
"contig_1_trunc_1side"”, le4, 1.3e4,
"chromosome_1_long_trunc_2side”, 1.4e4, 1.7e4,
"contig_2_short_complete”, 1, 0.3e4,
"chromosome_1_long_trunc_2side"”, 1.7e4, 2e4,
"contig_3_trunc_2sides"”, 1e4, 1.3e4

gggenomes(seqs = s@, links = 10) +
geom_seq() + geom_link()
geom_seq_label(nudge_y = -.05) +
geom_seq_break()

+

geom_seq_label Draw seq labels

Description

This function will put labels at each individual sequence. By default it will plot the seq_id as label,
but users are able to change this manually.

Position of the label/text can be adjusted with the different arguments (e.g. vjust, hjust, angle,
etc.)

Usage

geom_seq_label(
mapping = NULL,
data = seqgs(),
hjust = 0,
vjust = 1,
nudge_y = -0.15,
size = 2.5,

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

geom_seq_label

data

hjust
vjust

nudge_y

size

Details

53

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

Moves the text horizontally
Moves the text vertically

Moves the text vertically an entire contig/sequence. (e.g. nudge_y =1 places
the text to the contig above)

of the label

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

* Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red"” or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =0.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

This labeling function uses ggplot2: :geom_text () under the hood. Any changes to the aesthetics
of the text can be performed in a ggplot2 manner.

Value

Sequence labels are added as a text layer/component to the plot.

54

Examples

example data
seqs <- tibble::tibble(

bin_id - C(”A”, ”A", "A”, an’ "B”, an, an’ "C”, ”C”),
Seq_id - C(::A-Iu’ ”AZ”, "A3", "81", nan, 1IB3H’ "B4", "C1", “CZ“),

start = c(0, 100, 200, ©, 50, 150, 250, 0, 400),

end = c(100, 200, 400, 50, 100, 250, 300, 300, 500),

length = c(100, 100, 200, 50, 50, 100, 50, 300, 100)
)

example plot using geom_seq_label
gggenomes(seqs = seqs) +

geom_seq() +

geom_seq_label ()

changing default label to ~length™ column
gggenomes(seqs = seqs) +

geom_seq() +

geom_seq_label(aes(label = length))

with horizontal adjustment

gggenomes(seqs = seqs) +
geom_seq() +
geom_seq_label(hjust = -5)

with wrapping at 300
gggenomes(seqs = seqs, wrap = 300) +
geom_seq() +
geom_seq_label ()

geom_variant

geom_variant Draw place of mutation

Description

geom_variant allows the user to draw points at locations where a mutation has occured. Data on
SNPs, Insertions, Deletions and more (often stored in a variant call format (VCF)) can easily be

visualized this way.

Usage

geom_variant(

mapping = NULL,

data = feats(),

stat = "identity"”,
position = "identity"”,
geom = "variant”,
na.rm = FALSE,
show.legend = NA,

geom_variant 55

inherit.aes = TRUE,
offset = 0,

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data Data from the first feats track is used for this function by default. When several
feats tracks are present within the gggenomes track system, make sure that the
wanted data is used by calling data = feats(*df=*) within the geom_variant
function.

stat Describes what statistical transformation is used for this layer. By default it uses
"identity", indicating no statistical transformation.

position Describes how the position of different plotted features are adjusted. By default
ituses "identity”, but different position adjustments, such as position_variant(),
ggplot2’ "jitter"” or "pile” can be used as well.

geom Describes what geom is called upon by the function for plotting. By default the
function uses "variant”, a modified geom_point object. For larger sequences
with abundant mutations/variations, it is recommended to use "ticks"” (a mod-
ified geom_point object with different default shape and alpha, which plots the
points as small "ticks"), but in theory any other ggplot2 geom can be called here
as well.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

offset Numeric value describing how far the points will be drawn from the base/sequence.
By default it is set on of fset = 0.

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

* Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red"” or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

56 geom_variant

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =0.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

Details

geom_variant uses ggplot2: :geom_point under the hood. As a result, different aesthetics such as
alpha, size, color, etc. can be called upon to modify the data visualization.

the function gggenomes: : read_feats is able to read VCF files and converts them into a format
that is applicable within the gggenomes’ track system. Keep in mind: The function uses data from
the feats’ track.

Value

A ggplot2 layer with variant information.

Examples

Creation of example data.
(Note: These are mere examples and do not fully resemble data from VCF-files)
Small example data set
f1 <- tibble::tibble(
seq_id = c(rep(c("A", "B"), 4)), start = c(1, 10, 15, 15, 30, 40, 40, 50),
end = c(2, 11, 20, 16, 31, 41, 50, 51), length = end - start,
type = c("SNP", "SNP", "Insertion”, "Deletion”, "Deletion”, "SNP"”, "Insertion”, "SNP"),
ALT = c("A", "T", "CAT", ".", "." "G", "GG", "G"),
REF = c(”C", "G", "C", "A", "A", "C", "G", "T")
)
s1 <- tibble::tibble(seq_id = c("A", "B"), start = c(@, 0), end = c(55, 55), length = end - start)

larger example data set
f2 <- tibble::tibble(
seq_id = c(rep("A", 667)),
start = c(
seq(from = 1, to = 500, by = 2),
seq(from = 500, to = 2500, by = 50),

seq(from = 2500, to = 4000, by = 4)
),
end = start + 1, length = end - start,
type = c(

rep("SNP", 100),
rep("Deletion”, 20),
rep("SNP", 180),

geom_variant 57

rep("Deletion”, 67),
rep("SNP”, 100),
rep("Insertion”, 50),
rep("SNP", 150)

),
ALT = c(
sample(x = c("A", "C", "G", "T"), size = 100, replace = TRUE),
rep(".", 20), sample(x = c("A", "C", "G", "T"), size = 180, replace = TRUE),
rep("."”, 67), sample(x = c("A", "C", "G", "T"), size = 100, replace = TRUE),
sample(x = c(
"AA", "AC", "AG", "AT", "CA", "CC", "CG", "CT", "GA", "GC",
"GG", "GT", "TA", "TC", "TG", "TT"
), size = 50, replace = TRUE),
sample(x = c("A", "C", "G", "T"), size = 150, replace = TRUE)
)
)

Basic example plot with geom_variant
gggenomes(seqs = s1, feats = f1) +
geom_seq() +
geom_variant()

Improving plot elements, by changing shape and adding bin_label
gggenomes(seqs = s1, feats = f1) +
geom_seq() +
geom_variant(aes(shape = type), offset = -0.1) +
scale_shape_variant() +
geom_bin_label()

Positional adjustment based on type of mutation: position_variant
gggenomes(seqs = s1, feats = f1) +
geom_seq() +
geom_variant(
aes(shape = type),
position = position_variant(offset = c(Insertion = -0.2, Deletion = -0.2, SNP = 0))
) +
scale_shape_variant() +
geom_bin_label()

Plotting larger example data set with Changing default geom to
“geom = "ticks"”™ using positional adjustment based on type (“position_variant™)
gggenomes (feats = f2) +
geom_variant(aes(color = type), geom = "ticks", alpha = 0.4, position = position_variant()) +
geom_bin_label()

Changing geom to ~"text"”™, to plot ALT nucleotides
gggenomes(seqs = s1, feats = f1) +
geom_seq() +
geom_variant (aes(shape = type), offset = -0.1) +
scale_shape_variant() +
geom_variant(aes(label = ALT), geom = "text", offset = -0.25) +
geom_bin_label()

58

gggenomes

get_seqs Get/set the seqs track

Description

Get/set the seqs track

Usage

get_seqs(x)
set_seqs(x, value)

Arguments

X a gggenomes or gggenomes_layout objekt

value to set for seqs

Value

a gggenomes_layout track tibble

gggenomes Plot genomes, features and synteny maps

Description

gggenomes () initializes a gggenomes-flavored ggplot object. It is used to declare the input data for

gggenomes’ track system.

(See for more details on the track system, gggenomes vignette or the Details/Arguments section)

Usage
gggenomes (
genes = NULL,
seqs = NULL,
feats = NULL,
links = NULL,
.id = "file_id",
spacing = 0.05,
wrap = NULL,

adjacent_only = TRUE,
infer_bin_id = seq_id,

infer_start = min(start, end),
infer_end = max(start, end),

gggenomes 59

infer_length = max(start, end),
theme = c("clean”, NULL),
.layout = NULL,

)
Arguments
genes, feats A data.frame, a list of data.frames, or a character vector with paths to files con-
taining gene data. Each item is added as feature track.
For a single data.frame the track_id will be "genes" and "feats", respectively.
For a list, track_ids are parsed from the list names, or if names are missing from
the name of the variable containing each data.frame. Data columns:
* required: seq_id,start,end
 recognized: strand,bin_id, feat_id,introns
seqgs A data.frame or a character vector with paths to files containing sequence data.
Data columns:
* required: seq_id, length
* recognized: bin_id, start,end, strand
links A data.frame or a character vector with paths to files containing link data. Each
item is added as links track. Data columns:
* required: seq_id,seq_id2
* recognized: start,end,bin_id,start2,end2,bin_id2,strand
.id The name of the column for file labels that are created when reading directly
from files. Defaults to "file_id". Set to "bin_id" if every file represents a different
bin.
spacing between sequences in bases (>1) or relative to longest bin (<1)
wrap wrap bins into multiple lines with at most this many nucleotides per lin.

adjacent_only Indicates whether links should be created between adjacent sequences/chromosomes
only. By default it is set to adjacent_only = TRUE. If FALSE, links will be cre-
ated between all sequences
(not recommended for large data sets)

infer_length, infer_start, infer_end, infer_bin_id
used to infer pseudo seqs if only feats or links are provided, or if no bin_id
column was provided. The expressions are evaluated in the context of the first
feat or link track.
By default subregions of sequences from the first to the last feat/link are gener-
ated. Set infer_start to O to show all sequences from their true beginning.

theme choose a gggenomes default theme, NULL to omit.
.layout a pre-computed layout from layout_genomes (). Useful for developmental pur-
poses.

additional parameters, passed to layout

60 gggenomes

Details

gggenomes: :gggenomes () resembles the functionality of ggplot2: :ggplot(). It is used to con-
struct the initial plot object, and is often followed by "+" to add components to the plot (e.g. "+
geom_gene()").

A big difference between the two is that gggenomes has a multi-track setup (’seqs’, ’feats’,
"genes’ and ’links’). gggenomes() pre-computes a layout and adds coordinates (y, x, xend) to
each data frame prior to the actual plot construction. This has some implications for the usage of
gggenomes:

* Data frames for tracks have required variables. These predefined variables are used during
import to compute x/y coordinates (see arguments).

* gggenomes’ geoms can often be used without explicit aes () mappings This works because
we always know the names of the plot variables ahead of time: they originate from the pre-
computed layout, and we can use that information to set sensible default aesthetic mappings
for most cases.

Value

gggenomes-flavored ggplot object

Examples

Compare the genomic organization of three viral elements
EMALEs: endogenous mavirus-like elements (example data shipped with gggenomes)
gggenomes (emale_genes, emale_seqs, emale_tirs, emale_ava) +
geom_seq() + geom_bin_label() + # chromosomes and labels
geom_feat(size = 8) + # terminal inverted repeats
geom_gene(aes(fill = strand), position = "strand"”) + # genes
geom_link(offset = 0.15) # synteny-blocks

with some more information

gggenomes (emale_genes, emale_seqs, emale_tirs, emale_ava) %>%
add_feats(emale_ngaros, emale_gc) %>%
add_clusters(emale_cogs) %>%
sync() +
geom_link(offset = 0.15, color = "white") + # synteny-blocks
geom_seq() + geom_bin_label() + # chromosomes and labels
thistle4, salmon4, burlywood4

geom_feat(size = 6, position = "identity") + # terminal inverted repeats
geom_feat(

data = feats(emale_ngaros), color = "turquoise4”, alpha = .3,

position = "strand”, size = 16
) +

geom_feat_note(aes(label = type),
data = feats(emale_ngaros),

position = "strand”, nudge_y = .3
) +
geom_gene(aes(fill = cluster_id), position = "strand”) + # genes
geom_wiggle(aes(z = score, linetype = "GC-content”), feats(emale_gc),

fill = "lavenderblush4”, position = position_nudge(y = -.2), height = .2

) +

if_reverse

#

scale_fill_brewer("Conserved genes", palette = "Dark2"”, na.value

initialize plot directly from files

gggenomes (

#

ex("emales/emales.gff"),

ex("emales/emales.gff"),

ex("emales/emales-tirs.gff"),

ex("emales/emales.paf”)

+ geom_seq() + geom_gene() + geom_feat() + geom_link()

multi-contig genomes wrap to fixed width

61

= "cornsilk3")

s@ <- read_seqs(list.files(ex("cafeteria”), "Cr.*\\.fa.fai$", full.names = TRUE))
s1 <- s@ %>% dplyr::filter(length > 5e5)
gggenomes(seqgs = s1, infer_bin_id = file_id, wrap = 5e6) +

geom_seq() + geom_bin_label() + geom_seq_label()

if_reverse Vectorised if_else based on strandedness

Description

Vectorised if_else based on strandedness

Usage

if_reverse(strand, reverse, forward)

Arguments
strand vector with strandedness information
reverse value to use for reverse elements
forward value to use for forward elements
Value

vector with values based on strandedness

introduce Introduce non-existing columns

Description

Works like dplyr: :mutate() but without changing existing columns, but only adding new ones.
Useful to add possibly missing columns with default values.

62 in_range

Usage
introduce(.data, ...)
Arguments
.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.
<data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:
* A vector of length 1, which will be recycled to the correct length.
* A vector the same length as the current group (or the whole data frame if
ungrouped).
¢ NULL, to remove the column.
* A data frame or tibble, to create multiple columns in the output.
Value

a tibble with new columns

Examples

no,n

ensure columns "y" and "z" exist
tibble::tibble(x = 1:3) %>%
introduce(y = "a", z = paste@(y, dplyr::row_number()))
ensure columns "y" and "z" exist, but do not overwrite "y"
tibble::tibble(x = 1:3, y = c("c", "d", "e")) %>%
introduce(y = "a", z = paste@(y, dplyr::row_number()))

in_range Do numeric values fall into specified ranges?

Description

Do numeric values fall into specified ranges?

Usage
in_range(x, left, right, closed = TRUE)

Arguments
X a numeric vector of values
left, right boundary values or vectors of same length as x
closed wether to include (TRUE) or exclude (FALSE) the endpoints. Provide 2 values

for different behaviors for lower and upper boundary, e.g. c(TRUE, FALSE) to
include only the lower boundary.

is_reverse

Value

a logical vector of the same length as the input

Examples

in_range(1:5, 2, 4)
in_range(1:5, 2, 4, closed = c(FALSE, TRUE)) # left-open
in_range(1:5, 6:2, 3) # vector of boundaries, single values recycle

plays nicely with dplyr
df <- tibble::tibble(x = rep(4, 5), left = 1:5, right = 3:7)
dplyr: :mutate(df,
closed = in_range(x, left, right, TRUE),
open = in_range(x, left, right, FALSE)
)

63

is_reverse Check whether strand is reverse

Description

Check whether strand is reverse

Usage

is_reverse(strand, na = FALSE)

Arguments
strand some representation for strandedness
na what to use for NA

Value

logical vector indicating whether the strand is reverse

64 layout_seqs
layout Re-layout a genome layout
Description
Re-layout the tracks and update the scales after seqs have been modified
Usage
layout(x, ...)
Arguments
X layout
additional data
Value
layout with updated scales
layout_seqgs Layout sequences
Description
Layout sequences
Usage
layout_seqs(
X ’
spacing = 0.05,
wrap = NULL,
spacing_style = c("regular”, "center”, "spread"),
keep = "strand”
)
Arguments
X seq_layout
spacing between sequences in bases (>1) or relative to longest bin (<1)
wrap wrap bins into multiple lines with at most this many nucleotides per lin.

"non "non

spacing_style one of "regular", "center", "spread"

keep keys to keep (default: "strand")

pick 65

Value

a tbl_df with plot coordinates

pick Pick bins and seqs by name or position

Description

Pick which bins and seqs to show and in what order. Uses dplyr::select()-like syntax, which
means unquoted genome names, positional arguments and selection helpers, such as tidyselect: :starts_with()
are supported. Renaming is not supported.

Usage
pick(x, ...)
pick_seqs(x, ..., .bins = everything())
pick_seqs_within(x, ..., .bins = everything())

pick_by_tree(x, tree, infer_bin_id = .data$label)

Arguments
X gggenomes object
bins/seqs to pick, select-like expression.
.bins scope for positional arguments, select-like expression, enclose multiple argu-
ments with c()!
tree a phylogenetic tree in ggtree::ggtree or ape: : ape—-package-"phylo" format.

infer_bin_id an expression to extract bin_ids from the tree data.

Details

Use the dots to select bins or sequences (depending on function suffix), and the .bins argument
to set the scope for positional arguments. For example, pick_seqs(1) will pick the first sequence
from the first bin, while pick_seqs(1, .bins=3) will pick the first sequence from the third bin.

Value

gggenomes object with selected bins and seqs.
gggenomes object with selected seqs.
gggenomes object with selected seqs.

gggenomes object with seqs selected by tree order.

https://tidyselect.r-lib.org/reference/language.html

66 pick

Functions

* pick(): pick bins by bin_id, positional argument (start at top) or select-helper.

* pick_seqgs(): pick individual seqs seq_id, positional argument (start at top left) or select-
helper.

* pick_seqgs_within(): pick individual seqs but only modify bins containing those seqs, keep
rest as is.

* pick_by_tree(): align bins with the leaves in a given phylogenetic tree.

Examples

s@ <- tibble::tibble(
bin_id = c(”A”, "B", "B", "B", "C", "C", "C"),
seq_id = c(”al”, "b1”, "b2", "b3", "c1”, "c2", "c3"),
length = c(1e4, 6e3, 2e3, 1e3, 3e3, 3e3, 3e3)

p <- gggenomes(seqs = s@) + geom_seq(aes(color = bin_id), size = 3) +
geom_bin_label() + geom_seq_label() +
expand_limits(color = c("A", "B", "C"))

remove
p %>% pick(-B)

select and reorder, by ID and position
p %>% pick(C, 1)

use helper function
p %>% pick(starts_with("B"))

pick just some seqs
p %% pick_seqs(1, c3)

pick with .bin scope
p %>% pick_seqs(3:1, .bins = C)

change seqgs in some bins, but keep rest as is
p %>% pick_segs_within(3:1, .bins = B)

same w/o scope, unaffected bins remain as is
p %>% pick_seqs_within(b3, b2, b1)

Align sequences with and plot next to a phylogenetic tree
library(patchwork) # arrange multiple plots
library(ggtree) # plot phylogenetic trees

load and plot a phylogenetic tree

emale_mcp_tree <- read.tree(ex("emales/emales-MCP.nwk"))

t <- ggtree(emale_mcp_tree) + geom_tiplab(align = TRUE, size = 3) +
x1im(@, 0.05) # make room for labels

position_strand 67

p <- gggenomes(seqs = emale_seqs, genes = emale_genes) +
geom_seq() + geom_seq() + geom_bin_label()

3+

plot next to each other, but with
different order in tree and genomes
+ p + plot_layout(widths = c(1, 5))

o+ 3

ES

reorder genomes to match tree order
with a warning caused by mismatch in y-scale expansions
t + p %% pick_by_tree(t) + plot_layout(widths = c(1, 5))

H

extra genomes are dropped with a notification

emale_seqs_more <- emale_seqs

emale_seqs_more[7,] <- emale_seqs_more[6,]

emale_seqs_more$seq_id[7] <- "One more genome”

p <- gggenomes(seqs = emale_seqs_more, genes = emale_genes) +
geom_seq() + geom_seq() + geom_bin_label()

t + p %% pick_by_tree(t) + plot_layout(widths = c(1, 5))

try({
no shared ids will cause an error
p <- gggenomes(seqs = tibble::tibble(seq_id = "foo", length = 1)) +
geom_seq() + geom_seq() + geom_bin_label()
t + p %% pick_by_tree(t) + plot_layout(widths = c(1, 5))

extra leafs in tree will cause an error
emale_seqs_fewer <- slice_head(emale_seqgs, n = 4)
p <- gggenomes(seqs = emale_seqs_fewer, genes = emale_genes) +
geom_seq() + geom_seq() + geom_bin_label()
t + p %% pick_by_tree(t) + plot_layout(widths = c(1, 5))
»

position_strand Stack features

Description

position_strand() offsets forward feats upward and reverse feats downward. position_pile()
stacks overlapping feats upward. position_strandpile() stacks overlapping feats up-/downward
based on their strand. position_sixframe() offsets the feats based on their strand and reading
frame.

Usage

position_strand(offset = 0.1, flip = FALSE, grouped = NULL, base = offset/2)
position_pile(offset = 0.1, gap = 1, flip = FALSE, grouped = NULL, base = @)

position_strandpile(

68 position_strand

offset = 0.1,
gap = 1,
flip = FALSE,

grouped = NULL,
base = offset * 1.5

position_sixframe(offset = 0.1, flip = FALSE, grouped = NULL, base = offset/2)

Arguments
offset Shift overlapping feats up/down this much on the y-axis. The y-axis distance
between two sequences is 1, so this is usually a small fraction, such as 0.1.
flip stack downward, and for stranded versions reverse upward.
grouped if TRUE feats in the same group are stacked as a single feature. Useful to move
CDS and mRNA as one unit. If NULL (default) set to TRUE if data appears to
contain gene-ish features.
base How to align the stack relative to the sequence. 0 to center the lowest stack level
on the sequence, 1 to put forward/reverse sequence one half offset above/below
the sequence line.
gap If two feats are closer together than this, they will be stacked. Can be negative
to allow small overlaps. NA disables stacking.
Value

A ggproto object to be used in geom_gene().

Examples

library(patchwork)
p <- gggenomes(emale_genes) %>%
pick(3:4) + geom_seq()

fo <- tibble::tibble(

seqg_id = pull_seqs(p)$seq_id[1],

start = 1:20 * 1000,

end = start + 2500,

strand = rep(c("+", "-"), length(start) / 2)
)

sixframe <- function(x, strand) as.character((x %% 3 + 1) * strand_int(strand))

pl <- p + geom_gene()

p2 <- p + geom_gene(aes(fill = strand), position = "strand”)
p3 <- p + geom_gene(aes(fill = strand), position = position_strand(flip = TRUE, base = 0.2))
p4 <- p + geom_gene(aes(fill = sixframe(x, strand)), position = "sixframe")

p5 <- p %>% add_feats(fo) + geom_gene() + geom_feat(aes(color = strand))
p6 <- p %>% add_feats(f@) + geom_gene() + geom_feat(aes(color = strand), position = "strandpile”)
pl + p2 + p3 + p4 + p5 + p6 + plot_layout(ncol = 3, guides = "collect”) & ylim(2.5, 0.5)

position_variant 69

position_variant Plot types of mutations with different offsets

Description

position_variant() allows the user to plot the different mutation types (e.g. del, ins, snps) at
different offsets from the base. This can especially be useful to highlight in which regions cer-
tain types of mutations have higher prevalence. This position adjustment is most relevant for the
analysis/visualization of VCF files with the function geom_variant().

Usage

position_variant(offset = c(del = 0.1, snp = @, ins = -0.1), base = 0)

Arguments
offset Shifts the data up/down based on the type of mutation. By default offset =
c(del=0.1, snp=0@, ins=-0.1). The user can supply an own vector to of fset
to indicate at which offsets the different mutation types should be plotted. Types
of mutations that have not been specified within the vector, will be plotted with
an offset of 0.
base How to align the offsets relative to the sequence. At base = 0, plotting of the
offsets starts from the sequence. base thus moves the entire feature up/down.
Value

A ggproto object to be used in geom_variant().

Examples

Creation of example data.
testposition <- tibble::tibble(
type = c("ins", "snp”, "snp”, "del"”, "del”, "snp”, "snp", "ins", "snp”, "ins", "snp"),
start = c(10, 20, 30, 35, 40, 60, 65, 90, 90, 100, 120),
end = start + 1,
seqg_id = c(rep("A", 11))

)
testseq <- tibble::tibble(
seq_id = "A",
start = 0,
end = 150,
length = end - start
)

p <- gggenomes(seqs = testseq, feats = testposition)

This first plot shows what is being plotted when only geom_variant is called
p + geom_variant()

70

read_alitv

Next lets use position_variant, and change the shape aesthetic by column "type~
p + geom_variant(aes(shape = type), position = position_variant())

Now lets create a plot with different offsets by inserting a self-created vector.

p + geom_variant(

aes(shape = type),

position = position_variant(c(del = 0.4, ins = -0.4))
) + scale_shape_variant()

Changing the base will shift all points up/down relatively from the sequence.

p + geom_variant(

aes(shape = type),

position = position_variant(base = 0.5)
+ geom_seq()

~—

read_alitv Read AliTV .json file

Description

this file contains sequences, links and (optionally) genes

Usage

read_alitv(file)

Arguments

file path to json

Value

list with seqs, genes, and links

Examples

ali <- read_alitv("https://alitvteam.github.io/AliTV/d3/data/chloroplasts.json”)
gggenomes (ali$genes, ali$seqs, links = ali$links) +
geom_seq() +
geom_bin_label() +
geom_gene(aes(fill = class)) +
geom_link()
p <- gggenomes(ali$genes, ali$seqs, links = ali$links) +
geom_seq() +
geom_bin_label() +
geom_gene(aes(color = class)) +
geom_link(aes(fill = identity)) +
scale_fill_distiller(palette = "RdY1IGn", direction = 1)
p %>%

read_bed 71

flip_seqs(5) %>%
pick_seqgs(1, 3, 2, 4, 5, 6, 7, 8)

read_bed Read a BED file

Description

BED files use 0-based coordinate starts, while gggenomes uses 1-based start coordinates. BED file
coordinates are therefore transformed into 1-based coordinates during import.

Usage

read_bed(file, col_names = def_names("bed"), col_types = def_types("bed"), ...)

Arguments

file Either a path to a file, a connection, or literal data (either a single string or a raw
vector).

Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and
decompressed.

Literal data is most useful for examples and tests. To be recognised as literal
data, the input must be either wrapped with I(), be a string containing at least
one new line, or be a vector containing at least one string with a new line.

Using a value of clipboard() will read from the system clipboard.
col_names column names to use. Defaults to def_names("bed") compatible with canoni-

cal bed files. def_names () can easily be combined with extra columns: col_names
= c(def_names("bed"), "more”, "things").

col_types One of NULL, a cols() specification, or a string. See vignette("readr") for
more details.

If NULL, all column types will be inferred from guess_max rows of the input,
interspersed throughout the file. This is convenient (and fast), but not robust. If
the guessed types are wrong, you’ll need to increase guess_max or supply the
correct types yourself.

Column specifications created by 1ist() or cols() must contain one column
specification for each column. If you only want to read a subset of the columns,
use cols_only().

Alternatively, you can use a compact string representation where each character
represents one column:

* ¢ = character
* i=integer

* n = number
e d =double

72 read_blast

* I =logical
» f={factor
* D =date
» T =date time
* t=time
e ? =guess
e _or-=skip
By default, reading a file without a column specification will print a message

showing what readr guessed they were. To remove this message, set show_col_types
= FALSE or set options(readr.show_col_types = FALSE).

additional parameters, passed to read_tsv

Value

tibble

read_blast Read BLAST tab-separated output

Description

Read BLAST tab-separated output

Usage

read_blast(
file,
col_names = def_names("blast"”),
col_types = def_types("blast"”),
comment = "#",
swap_query = FALSE,

Arguments

file Either a path to a file, a connection, or literal data (either a single string or a raw
vector).
Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and
decompressed.
Literal data is most useful for examples and tests. To be recognised as literal
data, the input must be either wrapped with I(), be a string containing at least
one new line, or be a vector containing at least one string with a new line.
Using a value of clipboard() will read from the system clipboard.

read_context 73

col_names column names to use. Defaults to def_names(”blast"”) compatible with blast
tabular output (--outfmt 6/7 in blast++ and -m8 in blast-legacy). def_names ()
can easily be combined with extra columns: col_names = c(def_names("blast"),
"more”, "things").

col_types column types to use. Defaults to def_types("gff3") (see def_types).
comment character
swap_query if TRUE swap query and subject columns using swap_query () on import.

additional parameters, passed to read_tsv

Value

a tibble with the BLAST output

read_context Read files in different contexts

Description

Powers read_seqs(), read_feats(), read_links()

Usage

read_context(
files,
context,
.id = "file_id",
format = NULL,
parser = NULL,

)
Arguments

files files to reads. Should all be of same format. In many cases, compressed files
(.gz, .bz2, .xz, or .zip) are supported. Similarly, automatic download of re-
mote files starting with http(s):// or ftp(s):// works in most cases.

context the context ("seqs", "feats", "links") in which a given format should be read.

.id the column with the name of the file a record was read from. Defaults to
"file_id". Set to "bin_id" if every file represents a different bin.

format specify a format known to gggenomes, such as gff3, gbk, ... to overwrite au-
tomatic determination based on the file extension (see def_formats() for full
list).

parser specify the name of an R function to overwrite automatic determination based

on format, e.g. parser="read_tsv".

additional arguments passed on to the format-specific read function called down
the line.

74 read_gbk

Value

a tibble with the combined data from all files

Functions

* read_context(): bla keywords internal

read_gbk Read genbank files

Description

Genbank flat files (.gb/.gbk/.gbff) and their ENA and DDBJ equivalents have a particularly grue-
some format. That’s why read_gbk() is just a wrapper around a Perl-based gh2gff converter and
read_gff3().

Usage

read_gbk(file, sources = NULL, types = NULL, infer_cds_parents = TRUE)

Arguments

file Either a path to a file, a connection, or literal data (either a single string or a raw
vector).
Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and
decompressed.
Literal data is most useful for examples and tests. To be recognised as literal
data, the input must be either wrapped with I(), be a string containing at least
one new line, or be a vector containing at least one string with a new line.

Using a value of clipboard() will read from the system clipboard.
sources only return features from these sources

types only return features of these types, e.g. gene, CDS, ...

infer_cds_parents
infer the mRNA parent for CDS features based on overlapping coordinates. De-
fault TRUE for gff2/gtf, FALSE for gff3. In most GFFs this is properly set, but
sometimes this information is missing. Generally, this is not a problem, how-
ever, geom_gene calls parse the parent information to determine which CDS and
mRNAs are part of the same gene model. Without the parent info, mRNA and
CDS are plotted as individual features.

Value

tibble

read_gtf3

75

read_gff3

Read features from GFF3 (and with some limitations GFF2/GTF) files

Description

Files with ##FASTA section work but result in parsing problems for all lines of the fasta section. Just
ignore those warnings, or strip the fasta section ahead of time from the file.

Usage

read_gff3(
file,
sources =

types = NULL,

NULL,

infer_cds_parents = is_gff2,
sort_exons = TRUE,

col_names
col_types
keep_attr

def_names("gff3"),
def_types("gff3"),
FALSE,

fix_augustus_cds = TRUE,
is_gff2 = NULL

Arguments

file

sources

types

Either a path to a file, a connection, or literal data (either a single string or a raw
vector).

Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and
decompressed.

Literal data is most useful for examples and tests. To be recognised as literal
data, the input must be either wrapped with I(), be a string containing at least
one new line, or be a vector containing at least one string with a new line.

Using a value of clipboard() will read from the system clipboard.
only return features from these sources

only return features of these types, e.g. gene, CDS, ...

infer_cds_parents

infer the mRNA parent for CDS features based on overlapping coordinates. De-
fault TRUE for gff2/gtf, FALSE for gff3. In most GFFs this is properly set, but
sometimes this information is missing. Generally, this is not a problem, how-
ever, geom_gene calls parse the parent information to determine which CDS and
mRNAs are part of the same gene model. Without the parent info, mRNA and
CDS are plotted as individual features.

76 read_paf

sort_exons make sure that exons/introns appear sorted. Default TRUE. Set to FALSE to
read CDS/exon order exactly as present in the file, which is less robust, but
faster and allows non-canonical splicing (exonl-exon3-exon2).

col_names column names to use. Defaults to def_names("gff3") (see def_names).

col_types column types to use. Defaults to def_types("gff3") (see def_types).

keep_attr keep the original attributes column also after parsing tag=value pairs into tidy
columns.

fix_augustus_cds
If true, assume Augustus gff with bad CDS IDs that need fixing

is_gff2 set if file is in gff2 format
Value
tibble
read_paf Read a .paf file (minimap/minimap?2).
Description

Read a minimap/minimap2 .paf file including optional tagged extra fields. The optional fields will
be parsed into a tidy format, one column per tag.

Usage

read_paf(
file,
max_tags = 20,
col_names = def_names("paf"),
col_types = def_types("paf"),

Arguments

file Either a path to a file, a connection, or literal data (either a single string or a raw
vector).
Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and
decompressed.
Literal data is most useful for examples and tests. To be recognised as literal
data, the input must be either wrapped with I(), be a string containing at least
one new line, or be a vector containing at least one string with a new line.

Using a value of clipboard() will read from the system clipboard.

read_seq_len 77

max_tags maximum number of optional fields to include
col_names column names to use. Defaults to def_names("gff3") (see def_names).
col_types column types to use. Defaults to def_types("gff3") (see def_types).

additional parameters, passed to read_tsv

Details

Because readr: :read_tsv expects a fixed number of columns, but in .paf the number of optional
fields can differ among records, read_paf tries to read at least as many columns as the longest
record has (max_tags). The resulting warnings for each record with fewer fields of the form "32
columns expected, only 22 seen" should thus be ignored.

From the minimap2 manual

+—+ + + |Col | Type | Description | +—-+—

+ + 1 1 I string | Query sequence name | | 2 | int |
Query sequence length | | 3 | int | Query start coordinate (0-based) | | 4 | int | Query end coordinate
(0-based) | | 5 | char | “+* if query/target on the same strand; ‘-’ if opposite | | 6 | string | Target

sequence name | | 7 | int | Target sequence length | | 8 | int | Target start coordinate on the original
strand | 19 | int | Target end coordinate on the original strand | | 10 | int | Number of matching bases in
the mapping | | 11 | int | Number bases, including gaps, in the mapping | | 12 | int | Mapping quality
(0-255 with 255 for missing) | +—+ + +

+—+ + + |Tag | Type | Description | +—-+——
+ + 1 tp | A | Type of aln: P/primary, S/secondary and
Li/inversion | | cm | i | Number of minimizers on the chain | | s1 | i | Chaining score | | s2 | i |
Chaining score of the best secondary chain | | NM | i | Total number of mismatches and gaps in the
alignment | | MD | Z | To generate the ref sequence in the alignment | | AS | i | DP alignment score
1 ms | il DP score of the max scoring segment in the alignment | | nn | i | Number of ambiguous
bases in the alignment | | ts | A | Transcript strand (splice mode only) | | cg | Z | CIGAR string
(only in PAF) | | cs | Z | Difference string | | dv | f | Approximate per-base sequence divergence |

+. =+ +. 4+
T T T T

From https://samtools.github.io/hts-specs/SAMtags.pdf type may be one of A (character), B (gen-
eral array), f (real number), H (hexadecimal array), i (integer), or Z (string).

Value

tibble

read_seqg_len Read sequence index

Description

Read sequence index

78 read_seq_len

Usage
read_seqg_len(file)

read_fai(file, col_names = def_names(”"fai"), col_types = def_types("fai”), ...)
Arguments

file with sequence length information

col_names Either TRUE, FALSE or a character vector of column names.

If TRUE, the first row of the input will be used as the column names, and will
not be included in the data frame. If FALSE, column names will be generated
automatically: X1, X2, X3 etc.

If col_names is a character vector, the values will be used as the names of the
columns, and the first row of the input will be read into the first row of the output
data frame.
Missing (NA) column names will generate a warning, and be filled in with dummy
names .. .1, ...2 etc. Duplicate column names will generate a warning and be
made unique, see hame_repair to control how this is done.

col_types One of NULL, a cols() specification, or a string. See vignette("readr") for
more details.
If NULL, all column types will be inferred from guess_max rows of the input,
interspersed throughout the file. This is convenient (and fast), but not robust. If
the guessed types are wrong, you’ll need to increase guess_max or supply the
correct types yourself.
Column specifications created by 1ist() or cols() must contain one column
specification for each column. If you only want to read a subset of the columns,
use cols_only().
Alternatively, you can use a compact string representation where each character
represents one column:

e ¢ = character
* i=integer
e n = number

* d =double

* | =logical

e f=factor

e D =date

e T = date time
e t=time

e ? =guess

e _or-=skip

By default, reading a file without a column specification will print a message
showing what readr guessed they were. To remove this message, set show_col_types
= FALSE or set options(readr.show_col_types = FALSE).

additional parameters, passed to read_tsv

read_tracks 79

Value

tibble with sequence information

tibble with sequence information

Functions

* read_seq_len(): read seqs from a single file_name in fasta, gbk or gff3 format.

* read_fai(): read seqs from a single file in segkit/samtools fai format.

read_tracks Read files in various standard formats (FASTA, GFF3, GBK, BED,
BLAST, ...) into track tables

Description

Convenience functions to read sequences, features or links from various bioinformatics file formats,
such as FASTA, GFF3, Genbank, BLAST tabular output, etc. See def_formats() for full list. File
formats and the corresponding read-functions are automatically determined based on file extensions.
All these functions can read multiple files in the same format at once, and combine them into a single
table - useful, for example, to read a folder of gff-files with each file containing genes of a different

genome.

Usage
read_feats(files, .id = "file_id", format = NULL, parser = NULL, ...)
read_subfeats(files, .id = "file_id"”, format = NULL, parser = NULL, ...)
read_links(files, .id = "file_id"”, format = NULL, parser = NULL, ...)
read_sublinks(files, .id = "file_id", format = NULL, parser = NULL, ...)

read_seqs(
files,
.id = "file_id",
format = NULL,
parser = NULL,
parse_desc = TRUE,

Arguments

files files to reads. Should all be of same format. In many cases, compressed files
(.gz, .bz2, .xz, or .zip) are supported. Similarly, automatic download of re-
mote files starting with http(s):// or ftp(s):// works in most cases.

80

.1id

format

parser

parse_desc

Value

read_tracks

the column with the name of the file a record was read from. Defaults to
"file_id". Set to "bin_id" if every file represents a different bin.

specify a format known to gggenomes, such as gff3, gbk, ... to overwrite au-
tomatic determination based on the file extension (see def_formats() for full
list).

specify the name of an R function to overwrite automatic determination based
on format, e.g. parser="read_tsv".

additional arguments passed on to the format-specific read function called down
the line.

turn key=some value pairs from seq_desc into key-named columns and re-
move them from seq_desc.

A gggenomes-compatible sequence, feature or link tibble

tibble with features
tibble with features
tibble with links
tibble with links

tibble with sequence information

Functions

* read_feats(): read files as features mapping onto sequences.

* read_subfeats(): read files as subfeatures mapping onto other features

* read_links(): read files as links connecting sequences

* read_sublinks(): read files as sublinks connecting features

* read_seqs(): read sequence ID, description and length.

Examples

read genes/features from a gff file
read_feats(ex("eden-utr.gff"))

read all gff files from a directory
read_feats(list.files(ex("emales/"), "x.gff$", full.names = TRUE))

read remote files

gbk_phages <- c(
PSSP7 = paste@(

"ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/",
"000/858/745/GCF_000858745.1_ViralProj15134/",
"GCF_000858745.1_ViralProj15134_genomic.gff.gz"

read_vcf 81

),

PSSP3 = paste@(
"ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/",
"000/904/555/GCF_000904555.1_ViralProj195517/",
"GCF_000904555.1_ViralProj195517_genomic.gff.gz"

)

)
read_feats(gbk_phages)

read sequences from a fasta file.
read_seqs(ex("emales/emales.fna"), parse_desc = FALSE)

read sequence info from a fasta file with “parse_desc=TRUE"~ (default). “key=value~
pairs are removed from “seq_desc™ and parsed into columns with “key™ as name
read_seqs(ex("emales/emales.fna"))

read sequence info from samtools/segkit style index
read_seqs(ex("emales/emales.fna.seqgkit.fai"))

read sequence info from multiple gff file
read_seqs(c(ex("emales/emales.gff"), ex("emales/emales-tirs.gff")))

read_vcf Read a VCF file

Description

VCEF (Variant Call Format) file format is used to store variation data and its metadata. Based on the
used analysis program (e.g. GATK, freebayes, etc...), details within the VCF file can slightly differ.
For example, type of mutation is not mentioned as output for certain variant analysis programs. the
"read_vcf" function, ignores the first header/metadata lines and directly converts the data into a tidy
dataframe. The function will extract the type of mutation. By absence, it will derive the type of
mutation from the "ref" and "alt" column.

Usage

read_vcf(
file,
parse_info = FALSE,
col_names = def_names("vcf"),
col_types = def_types("vcf")
)

Arguments

file Either a path to a file, a connection, or literal data (either a single string or a raw
vector).

82 require_vars

Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and
decompressed.

Literal data is most useful for examples and tests. To be recognised as literal
data, the input must be either wrapped with I(), be a string containing at least
one new line, or be a vector containing at least one string with a new line.

Using a value of clipboard() will read from the system clipboard.

parse_info if set to "TRUE’, the read_vcf function will split all the metadata stored in
the "info" column and stores it into separate columns. By default it is set to
"FALSE’.
col_names column names to use. Defaults to def_names("vcf") (see def_names).
col_types column types to use. Defaults to def_types("vcf") (see def_types).
Value
dataframe
require_vars Require variables in an object
Description

Require variables in an object

Usage

require_vars(x, vars, warn_only = FALSE)

Arguments
X object
vars required variables
warn_only don’t die on missing vars
Value

the original tibble if all vars are present or warning only

scale_color_variant 83

scale_color_variant Default colors and shapes for mutation types.

Description

The user can call upon an convenient function called scale_color_variant, which changes the
color of (SNP) points, based on their nucleotides (A, C, G, T). By default the function uses a
colorblind friendly palette, but users can manually overwrite these colors. (Within the plotting
function (e.g. geom_variant), coloring of the column should still be mentioned (aes(color =

o))

The function scale_shape_variant changes the shape of plotted points based on the type of mu-
tation. The user can also manually decide which shape, each specific type of mutation should
have. By default, SNPs are diamond shaped, Deletions triangle downwards and Insertions triangle
upwards. (These default settings make most sense when using geom_variant(offset = -0.2)).
(User should still manually call which column is used for the shape aesthetic)

Usage

scale_color_variant(
values = c(A = "#e66101", C = "#b2abd2", G = "#5e3c99", T = "#fdb863"),
na.value = "white",

)...

scale_shape_variant(
values = c(SNP = 23, Deletion = 25, Insertion = 24),
na.value = 1,
characters = FALSE,

Arguments
values A vector indicating how to color/shape different variables. The functions scale_color_variant()
and scale_shape_variant() have a default setting, which can be overwritten.
na.value The aesthetic value (color/shape/etc.) to use for non matching values.
Additional parameters, passed to scale_color_manual
characters When TRUE, it changes the default shapes of scale_shape_variant() to be-
come the letters of the nucleotides.
Value

A ggplot2 scale object for color or shape.

84 scale_color_variant

Examples

Creation of example data.
testposition <- tibble::tibble(
type = c(
"Insertion”, "SNP", "SNP", "Deletion",
"Deletion”, "SNP", "SNP", "Insertion"”, "SNP", "Insertion"”, "SNP"

)Y
start = c(10, 20, 30, 35, 40, 60, 65, 90, 90, 100, 120),
ALT = C(I’ATII’ IIGH, IICIV’ II'VI, VI'II’ IITII’ IICH, IICATII, VIGII’ IITCII’ IIAII)’

REF = c("A”, "T", "G", "A", "A", "G", "A", "C", "A", "T", "G"Y,
end = start + 1,
seq_id = c(rep("A", 11))

)
testseq <- tibble::tibble(
seq_id = "A",
start = 0,
end = 150,
length = end - start

pl <- gggenomes(seqs = testseq, feats = testposition)
p2 <- p1 + geom_seq()

Scale_color_variant()

Changing the color aesthetics in geom_variant: colors all mutations

(In this example, All ALT (alternative) nucleotides are being colored)
pl + geom_variant(aes(color = ALT))

Color all SNPs with default colors using scale_color_variant().
(SNPs are 1 nucleotide long, other mutations such as Insertions
and Deletions have either more ore less nucleotides within the
ALT column and are thus not plotted)
pl + geom_variant(aes(color = ALT)) +

scale_color_variant()

Manually changing colors with scale_color_variant()
pl + geom_variant(aes(color = ALT)) +
scale_color_variant(values = c(A = "purple”, T = "darkred”, TC = "black”, AT = "pink"))

Scale_shape_variant()
Changing the “shape” aesthetics in geom_variant
p2 + geom_variant(aes(shape = type), offset = -0.1)

Calling upon scale_shape_variant() to change shapes
p2 + geom_variant(aes(shape = type), offset = -0.1) +
scale_shape_variant()

Manually changing shapes with scale_shape_variant()
p2 + geom_variant(aes(shape = type), offset = -0.1) +
scale_shape_variant(values = c(SNP = 14, Deletion = 18, Insertion = 21))

scale_x_bp 85

Plotting (nucleotides) characters instead of shapes
p2 + geom_variant(aes(shape = ALT), offset = -0.1, size = 3) +
scale_shape_variant(characters = TRUE)

Alternative way to plot nucleotides (of ALT) by using ~geom=text™ within ~geom_variant()"
gggenomes(seqs = testseq, feats = testposition) +

geom_seq() +

geom_variant (aes(shape = type), offset = -0.1) +

scale_shape_variant() +

geom_variant(aes(label = ALT), geom = "text", offset = -0.25) +

geom_bin_label()

Combining scale_color_variant() and scale_shape_variant()

p2 + geom_variant(aes(shape = ALT, color = ALT), offset = -0.1, size = 3, show.legend = FALSE) +
geom_variant(aes(color = ALT)) +
scale_color_variant(na.value = "black") +
scale_shape_variant(characters = TRUE)

scale_x_bp X-scale for genomic data

Description

scale_x_bp() is the default scale for genomic x-axis. It wraps ggplot2: : scale_x_continuous()
using label_bp() as default labeller.

Usage
scale_x_bp(..., suffix = "", sep = "", accuracy = 1)
label_bp(suffix = "", sep = "", accuracy = 1)
Arguments
Arguments passed on to ggplot2::scale_x_continuous()
suffix unit suffix e.g. "bp"
sep between number and unit prefix+suffix
accuracy A number to round to. Use (e.g.) 0.01 to show 2 decimal places of precision. If
NULL, the default, uses a heuristic that should ensure breaks have the minimum
number of digits needed to show the difference between adjacent values.
Applied to rescaled data.
Value

A ggplot2 scale object with bp labels

A labeller function for genomic data

86 set_class

Examples

scale_x_bp invoked by default
gggenomes (emale_genes) + geom_gene()

customize labels
gggenomes (emale_genes) + geom_gene() +
scale_x_bp(suffix = "bp"”, sep = " ")

Note: x1im will overwrite scale_x_bp() with ggplot2::scale_x_continuous()
gggenomes (emale_genes) + geom_gene() +
x1im(@, 3e4d)

set limits explicitly with scale_x_bp() to avoid overwrite
gggenomes (emale_genes) + geom_gene() +
scale_x_bp(limits = c(@, 3e4))

set_class Modify object class attriutes

Description

Set class of an object. Optionally append or prepend to exiting class attributes. add_class is short
for set_class(x, class, "prepend”). strip_class removes matching class strings from the
class attribute vector.

Usage

set_class(x, class, add = c("overwrite"”, "prepend”, "append"))
add_class(x, class)

strip_class(x, class)

Arguments

X Object to assign new class to.

class Class value to add/strip.

add Possible values: "overwrite", "prepend", "append"
Value

Object x as class value.

shift 87

shift Shift bins left/right

Description

Shift bins along the x-axis, i.e. left or right in the default plot layout. This is useful to align feats of
interest in different bins.

Usage

shift(x, bins = everything(), by = @, center = FALSE)

Arguments
X gggenomes object
bins to shift left/right, select-like expression
by shift each bin by this many bases. Single value or vector of the same length as
bins.
center horizontal centering
Value

gggenomes object with shifted seqs

Examples

p0 <- gggenomes(emale_genes, emale_seqs) +
geom_seq() + geom_gene()

Slide one bin left and one bin right
pl <- p@ |> shift(2:3, by = c(-8000, 10000))

align all bins to a target gene
mcp <- emale_genes |>
dplyr::filter(name == "MCP") |>
dplyr::group_by(seq_id) |>
dplyr::slice_head(n = 1) # some have fragmented MCP gene, keep only first

p2 <- p@ |> shift(all_of(mcp$seq_id), by = -mcp$start) +
geom_gene(data = genes(name == "MCP"), fill = "#@1b9af")

library(patchwork)
po + pl + p2

88

strand_int

strand_chr Convert strand to character

Description

Convert strand to character

Usage

strand_chr(strand, na = NA)

Arguments
strand some representation for strandedness
na what to use for NA

Value

strand vector as character

strand_int Convert strand to integer

Description

Convert strand to integer

Usage

strand_int(strand, na = NA)

Arguments
strand some representation for strandedness
na what to use for NA

Value

strand vector as integer

strand_lIgl 89

strand_1gl Convert strand to logical

Description

Convert strand to logical

Usage
strand_lgl(strand, na = NA)

Arguments
strand some representation for strandedness
na what to use for NA

Value

strand vector as logical

swap_if Swap values of two columns based on a condition

Description

Swap values of two columns based on a condition

Usage
swap_if(x, condition, ...)
Arguments
X a tibble
condition an expression to be evaluated in data context returning a TRUE/FALSE vector
the two columns bewteen which values are to be swapped in dplyr::select-like
syntax
Value

a tibble with conditionally swapped start and end

Examples

x <- tibble::tibble(start = c(10, 100), end = c(30, 50))
ensure start of a range is always smaller than the end
swap_if(x, start > end, start, end)

90 theme_gggenomes_clean

swap_query Swap query and subject in blast-like feature tables

Description

Swap query and subject columns in a table read with read_feats() or read_links(), for example,
from blast searches. Swaps columns with name/name2, such as ’seq_id/seq_id2’, ’start/start2’, ...

Usage

swap_query(x)

Arguments

X tibble with query and subject columns

Value

tibble with swapped query/subject columns

Examples

feats <- tibble::tribble(
~seq_id, ~seq_id2, ~start, ~end, ~strand, ~start2, ~end2, ~evalue,
"A", "B", 100, 200, "+", 10000, 10200, 1e-5

)

make B the query

swap_query(feats)

theme_gggenomes_clean gggenomes default theme

Description

gggenomes default theme

Usage

theme_gggenomes_clean(
base_size = 12,
base_family = "",
base_line_size = base_size/30,

base_rect_size = base_size/30

track_ids 91

Arguments
base_size base font size, given in pts.
base_family base font family

base_line_size base size for line elements

base_rect_size base size for rect elements

Value

ggplot2 theme with gggenomes defaults

track_ids Named vector of track ids and types

Description

Named vector of track ids and types

Usage
track_ids(x, track_type, ...)
Arguments
X A gggenomes or gggenomes_layout object
track_type restrict to any combination of "seqs", "feats" and "links".
unused
Value

a named vector of track ids and types

track_info Basic info on tracks in a gggenomes object

Description
Use track_info() to call on a gggenomes or gggenomes_layout object to return a short tibble with
ids, types, index and size of the loaded tracks.

Usage

track_info(x, ...)

92 unnest_exons

Arguments
X A gggenomes or gggenomes_layout object
unused
Details

The short tibble contains basic information on the tracks within the entered gggenomes object.
* id : Shows original name of inputted data frame (only when more than one data frames are
present in a track).
e type : The track in which the data frame is present.
* i (index) : The chronological order of data frames in a specific track.

* n (size) : Amount of objects plotted from the data frame. (not the amount of objects in the
inputted data frame)

Value

Short tibble with ids, types, index and size of loaded tracks.

Examples

gggenomes (
seqs = emale_segs,
feats = list(emale_genes, emale_tirs, emale_ngaros),
links = emale_ava
) 1>
track_info()

unnest_exons Unnest exons

Description

Unnest exons

Usage

unnest_exons(x)

Arguments

X data

Value

data with unnested exons

vars_track 93

vars_track Tidyselect track variables

Description

Based on tidyselect: :vars_pull. Powers track selection in pull_track(). Catches and modi-
fies errors from vars_pull to track-relevant info.

Usage

vars_track(
X,
track_id,
track_type = c("seqs”, "feats"”, "links"),
ignore = NULL

)
Arguments
X A gggenomes or gggenomes_layout object
track_id a quoted or unquoted name or as positive/negative integer giving the position
from the left/right.
track_type restrict to these types of tracks - affects position-based selection
ignore names of tracks to ignore when selecting by position.
Value

The selected track_id as an unnamed string

width The width of a range

Description

Always returns a positive value, even if start > end. width@ is a short handle for width(...,
base=0)

Usage

width(start, end, base = 1)

width@(start, end, base = 0)

94

Arguments

start, end

base

Value

start and end of the range

the base of the coordinate system, usually 1 or 0.

a numeric vector

write_gft3

write_gff3

Write a gff3 file from a tidy table

Description

Write a gff3 file from a tidy table

Usage
write_gff3(
feats,
file,
seqs NULL,
type NULL,
source = ".",
score = ".",
strand = ".",
phase = ".",
id_var = "feat_id",
parent_var = "parent_ids",
head = "##gff-version 3",
ignore_attr = c("introns"”, "geom_id")
)
Arguments
feats tidy feat table
file name of output file
seqgs a tidy sequence table to generate optional ##sequence-region directives in the
header
type if no type column exists, use this as the default type
source if no source column exists, use this as the default source
score if no score column exists, use this as the default score
strand if no strand column exists, use this as the default strand
phase if no phase column exists, use this as the default phase
id_var the name of the column to use as the GFF3 ID tag

write_gft3 95

parent_var the name of the column to use as GFF3 Parent tag

head additional information to add to the header section

ignore_attr attributes not to be included in GFF3 tag list. Defaults to internals: introns, geom_id
Value

No return value, writes to file

Examples

filename <- tempfile(fileext = ".gff")
write_gff3(emale_genes, filename, emale_seqs, id_var = "feat_id")

Index

+ datasets
emale_ava, 11
emale_cogs, 11
emale_gc, 12
emale_genes, 13
emale_ngaros, 14
emale_prot_ava, 15
emale_segs, 15
emale_tirs, 16
GeomFeatText, 24
position_strand, 67

add_class (set_class), 86
add_clusters (add_feats), 3
add_feats, 3

add_links (add_feats), 3

add_segs, 5

add_subfeats (add_feats), 3
add_sublinks (add_feats), 3
add_tracks (add_feats), 3

aes(), 25,28, 31, 35, 39,43, 45, 48, 52, 55
alpha, 40

base: :max, 29

base: :min, 29

bins (feats), 17
borders(), 29, 31, 37,40, 46, 51, 55

check_strand, 5
clipboard(), 71, 72, 74-76, 82
colour, 41

cols(), 71,78

cols_only(), 71,78
combine_strands, 6

def_formats, 6
def_formats(), 73, 79, 80
def_names, 8, 76, 77, 82
def_names(), 71, 73
def_types, 73, 76, 77, 82

def_types (def_names), 8
dplyr::filter, I8
dplyr::filter(), 17
dplyr::mutate(), 61
dplyr::pull(), 17
dplyr::select(), 65
drop_feat_layout, 9
drop_layout, 9
drop_link_layout, 10
drop_seq_layout, 10

emale_ava, 11
emale_cogs, 11
emale_gc, 12
emale_genes, 13
emale_ngaros, 14
emale_prot_ava, 15
emale_segs, 15
emale_tirs, 16
ex, 17

feats, 17

featso (feats), 17

fill, 41

flip, 19

flip_seqgs (flip), 19
flip_strand, 21

focus, 21
fortify(), 25, 28, 35, 39, 43,45, 53

genes (feats), 17

geom_bin_label, 25
geom_bin_label (), 42
geom_coverage, 27

geom_feat, 30

geom_feat_label (geom_gene_label), 42
geom_feat_note (geom_feat_text), 33
geom_feat_tag (geom_feat_text), 33
geom_feat_text, 33
geom_feat_text(), 42

INDEX

geom_gene, 38

geom_gene_label, 42

geom_gene_note (geom_feat_text), 33
geom_gene_tag (geom_feat_text), 33
geom_gene_text (geom_feat_text), 33
geom_link, 44

geom_link_label (geom_gene_label), 42
geom_link_line (geom_link), 44
geom_seq, 47

geom_seq_break, 49
geom_seq_label, 52
geom_seq_label(), 42
geom_variant, 54

geom_wiggle (geom_coverage), 27
GeomFeatText, 24

get_segs, 58

gggenomes, 58
gegplot(), 25, 28, 35, 39, 43,45, 53
ggplot2::aes(), 40
ggplot2::after_scale(), 40
ggplot2::geom_line(), 30
ggplot2::geom_linerange(), 30
ggplot2: :geom_point(), 30

ggplot2: :geom_ribbon(), 30
ggplot2: :geom_text(), 44, 53
ggplot2::scale_x_continuous(), 85
ggtree: :ggtree, 65

group, 41

Hmisc: :smedian.hilow, 29

if_reverse, 61
in_range, 62
introduce, 61
is_reverse, 63

key glyphs, 26, 29, 32, 36, 44, 46, 48, 51, 53,
56

label_bp (scale_x_bp), 85

layer geom, 28

layer position, 28, 36, 40, 45

layer stat, 28, 31, 36, 39, 45, 50

layer(), 26, 29, 32, 36, 43, 44, 46,48, 51, 53,
55, 56

layout, 64

layout_genomes(), 59

layout_segqs, 64

linetype, 41

97

links (feats), 17
list(), 71,78
locate (focus), 21

pick, 65

pick_by_tree (pick), 65

pick_seqgs (pick), 65

pick_seqs_within (pick), 65

position_pile (position_strand), 67

position_sixframe (position_strand), 67

position_strand, 67

position_strandpile (position_strand),
67

position_variant, 69

PositionPile (position_strand), 67

PositionSixframe (position_strand), 67

PositionStrand (position_strand), 67

PositionStrandpile (position_strand), 67

pull_bins (feats), 17

pull_feats (feats), 17

pull_genes (feats), 17

pull_links (feats), 17

pull_seqgs (feats), 17

pull_track (feats), 17

read_alitv, 70

read_bed, 71

read_blast, 72
read_context, 73

read_fai (read_seq_len), 77
read_feats (read_tracks), 79
read_feats(), 73, 90
read_gbk, 74

read_gbk(), 74

read_gff3,75
read_gff3(), 74

read_links (read_tracks), 79
read_links(), 73, 90
read_paf, 76
read_seq_len, 77

read_seqs (read_tracks), 79
read_seqs(), 73
read_subfeats (read_tracks), 79
read_sublinks (read_tracks), 79
read_tracks, 79

read_vcf, 81
readr::read_tsv(), 8
require_vars, 82

98 INDEX

scale_color_variant, 83

scale_shape_variant
(scale_color_variant), 83

scale_x_bp, 85

seqs (feats), 17

set_class, 86

set_seqs (get_seqs), 58

shift, 87

strand_chr, 88

strand_int, 88

strand_1gl, 89

strip_class (set_class), 86

swap_if, 89

swap_query, 90

swap_query(), 73

sync (flip), 19

theme_gggenomes_clean, 90
tidyselect::starts_with(), 65
tidyselect::where(), 20

track (feats), 17

track_ids, 91

track_info, 91

unnest_exons, 92
vars_track, 93

width, 93
widthe (width), 93
write_gff3, 94

X, 40
xend, 40

y, 40

	add_feats
	add_seqs
	check_strand
	combine_strands
	def_formats
	def_names
	drop_feat_layout
	drop_layout
	drop_link_layout
	drop_seq_layout
	emale_ava
	emale_cogs
	emale_gc
	emale_genes
	emale_ngaros
	emale_prot_ava
	emale_seqs
	emale_tirs
	ex
	feats
	flip
	flip_strand
	focus
	GeomFeatText
	geom_bin_label
	geom_coverage
	geom_feat
	geom_feat_text
	geom_gene
	geom_gene_label
	geom_link
	geom_seq
	geom_seq_break
	geom_seq_label
	geom_variant
	get_seqs
	gggenomes
	if_reverse
	introduce
	in_range
	is_reverse
	layout
	layout_seqs
	pick
	position_strand
	position_variant
	read_alitv
	read_bed
	read_blast
	read_context
	read_gbk
	read_gff3
	read_paf
	read_seq_len
	read_tracks
	read_vcf
	require_vars
	scale_color_variant
	scale_x_bp
	set_class
	shift
	strand_chr
	strand_int
	strand_lgl
	swap_if
	swap_query
	theme_gggenomes_clean
	track_ids
	track_info
	unnest_exons
	vars_track
	width
	write_gff3
	Index

