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library(knitr)
opts_chunk$set (
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Summary

Description

The ggenealogy package provides tools to examine genealogical data, generating basic statistics on
their graphical structures using parent and child connections, and displaying the results. The geneal-
ogy can be drawn in relation to additional variables, such as development year, and the shortest path
distances between genetic lines can be determined and displayed. Production of pairwise distance
matrices and phylogenetic diagrams constrained by generation count are also available in the visual-
ization toolkit. This vignette is intended to walk readers through the different methods available in
the ggenealogy package.

Caution

igraph must be used with version >= 0.7.1

Introduction

Installation

R is an open source software project for statistical computing, and can be freely downloaded from
the Comprehensive R Archive Network (CRAN) website. The link to contributed documentation on
the CRAN website offers practical resources for an introduction to R , in several languages. After
downloading and installing R , the installation of additional packages is straightforward. To install the
ggenealogy package from R , use the command:

> install.packages ("ggenealogy")

The ggenealogy package should now be successfully installed. Next, to render it accessible to the
current R session, simply type:

> library(ggenealogy)

To access help pages with example syntax and documentation for the available functions of the
ggenealogy package, please type:



> help(package="ggenealogy")

To access more detailed information about a specific function in the ggenealogy package, use the
following help command on that function, such as:

> help(getChild)

The above command will return the help file for the getChild function. The help file often includes
freestanding example syntax to illustrate how function commands are executed. In the case of the
getChild function, the example syntax is the following three lines, which can be pasted directly into
an R session.

> data(sbGeneal)
> getChild("Tokyo", sbGeneal)
> getChild("Essex", sbGeneal)

Preprocessing pipeline

In the ggenealogy package, there is an example dataset containing genealogical information on soybean
varieties called sbGeneal .rda. It may be helpful to load that example file so that you can follow along
with the commands and options introduced in this vignette. To ensure that you have uploaded the
correct, raw sbGeneal . rda file, you can observe the first six lines of the file, and determine its dimension
and structure:

> data(sbGeneal)
> head(sbGeneal)

child devYear yield yearImputed parent

1 5601T 1981 NA TRUE Hutcheson
2 Adams 1948 2734 FALSE Dunfield
3 A K. 1910 NA TRUE <NA>
4 A.X. (Harrow) 1912 2665 FALSE A K.
5 Altona 1968 NA FALSE Flambeau
6 Amcor 1979 2981 FALSE Amsoy 71

> dim(sbGeneal)

[1] 390 5

> str(sbGeneal)

'data.frame': 390 obs. of 5 variables:
$ child : chr "5601T" "Adams" "A.K." "A.K. (Harrow)"



$ devYear : num 1981 1948 1910 1912 1968 ...

$ yield : int NA 2734 NA 2665 NA 2981 2887 2817 NA NA ...
$ yearImputed: logi TRUE FALSE TRUE FALSE FALSE FALSE ...
$ parent : chr "Hutcheson" "Dunfield" NA "A.K."

We see that the sbGeneal data file is a data frame structure with 390 rows (observations) and 5 columns
(variables). Each row contains a child node character label and parent node character label. Each
row also contains a numeric value corresponding to the date (year) the child node was introduced, an
integer value of the protein yield of the child node, and a logical value date . imputed, which indicates
whether or not the year of introduction of the child node was imputed.

Now that the sbGeneal file has been loaded as a data frame, it must next be converted into a graph
object using the dfToIG() function. The dfToIG() function requires a data frame as input, and
that data frame should be structured such that each row represents an edge with a child and parent
relationship. For more information, try using the help command on the function:

> help(dfToIG)

We see that the function takes optional parameter arguments, such as vertexinfo (a list of columns
of the data frame which provide information for the starting “child" vertex, or a separate data frame
containing information for each vertex with the first column as the vertex name), edgeweights (a
column that contains edge values, with a default value of unity), and isDirected (a boolean value
that describes whether the graph is directed (true) or undirected (false); the default is false).

In this example, we want to produce an undirected graph object that contains all edge weight values
of one, because our goal is to set an edge value of unity for every pair of vertices (individuals) that
are related as parent and child. The dfToIG() function uses the software igraph to convert the data
frame into a graph object. For clarity, we will assign the outputted graph object the name ig (for
igraph object), and then examine its class type:

> ig <- dfToIG(sbGeneal)
> class(ig)

[1] "igraph"

Above, we confirmed that the ig object is of class type igraph. The ig object is required as input in
many ggenealogy functions, which will be demonstrated below.

General (non-plotting) methods of genealogical data

The ggenealogy package offers several functions that result in useful information beside plots. Below
is a brief introduction to some of the available non-plotting functions.



Functions for individual vertices

The ggenealogy package offers several functions that you can use to obtain information for individual
vertices. First, the function isParent () can return a logical variable to indicate whether or not the
second variety is a parent of the first variety.

> isParent ("Young", "Essex",sbGeneal)

[1] TRUE

> isParent ("Essex", "Young",sbGeneal)

[1] FALSE

We see that “Essex" is a parent of “Young", and not vice-versa. Similarly, the function isChild () can
return a logical variable to indicate whether or not the first variety is a child of the second variety.

> isChild("Young", "Essex",sbGeneal)

[1] TRUE

> isChild("Essex", "Young",sbGeneal)

[1] FALSE

We see that, as expected, “Young" is a child of “Essex", and not vice-versa. It is also possible to derive
the year of a given variety using the getVariable() function:

> getVariable("Young", sbGeneal, "devYear")

[1] 1968

> getVariable("Essex", sbGeneal, "devYear")

[1] 1962

Fortunately, the returned year values are consistent, as the “Young" variety (1968) is a child to the
“Essex" variety (1962) by an age difference of 6 years. In some cases, you may wish to obtain a complete
list of all the parents of a given variety. This can be achieved using the getParent () function:

> getParent ("Young",sbGeneal)



[1] "Davis" "Essex"

> getParent ("Tokyo",sbGeneal)

character (0)

> getVariable("Tokyo", sbGeneal,"devYear")

[1] 1907

We learn from this that “Essex" is not the only parent of “Young"; “Young" also has a parent “Davis".

We also see that “Tokyo" does not have any documented parents in this dataset, and has an older year
of introduction (1907) than other varieties we have examined thus far. Likewise, in other cases, you
may wish to obtain a complete list of all the children of a given variety. This can be achieved using
the getChild () function:

> getChild("Tokyo",sbGeneal)

[1] "Ogden" "Volstate"

> getChild("Ogden",sbGeneal)

[1] "c1069" "C1079" "D51-2427"
[4] "D55-4090" "D55-4159" "D55-4168"
[7] "Kent" "N44-92" "N45-745"
[10] "N48-1101" "Ogden x CNS" "Ralsoy x Ogden"

We find that even though the “Tokyo" variety is a grandparent of the dataset, it only has two children,
“Ogden" and “Volstate". However, one of its children, “Ogden", produced 12 children.

If we want to obtain a list that contains more than just one generation past or previous to a given
variety, then we can use the getAncestors() and getDescendants() functions, where we specify the
number of generations we wish to view. This will return a data frame to us with the labels of each
ancestor or descendant, along with the number of generations each one is from the given variety.

If we only look at one generation of ancestors of the “Young" variety, we should see the same information
we did earlier when we used the getParent () function of the Young variety:

> getAncestors("Young",sbGeneal,1)

label gen
2 Davis 1
1 Essex 1



Indeed, we consistently see that the “Young" variety has only 2 ancestors within one generation, “Davis"
and “Essex". However, if we view the first five generations of ancestors of the “Young" variety, we can
view four more generations of ancestors past simply the parents:

> getAncestors("Young",sbGeneal,5)

label gen
27 Davis 1
26 Essex 1
23 Lee 2
25 Ralsoy x Ogden 2
24 Roanoke x (Ogden x CNS) 2
22 S855-7075 2
17 CNS 3
15 N48-1248 3
21 Ogden 3
19 Ogden x CNS 3
14 Perry 3
20 Ralsoy 3
18 Roanoke 3
16 S 100 3
11 CNS 4
9 Clemson 4
8 I1lini 4
7 N45-745 x (Ogden x CNS) 4
10 Ogden 4
13 PI 54610 4
6 Roanoke 4
12 Tokyo 4
2 A XK. 5
5 Clemson 5
1 Ogden x CNS 5
4 PI 54610 5
3 Tokyo 5

> nrow(getAncestors("Young",sbGeneal,5))

[11 27

In the second line of code above, we determined the dimensions of the returned data frame, and see
that there are 27 ancestors within the first five ancestral generations of the “Young" variety.
Similarly, if we only look at the first generation of descendants of the “Ogden" variety, we should see

the same information as we did earlier when we used the getChild () function on the “Ogden" variety:

> getDescendants ("Ogden",sbGeneal, 1)



label gen
12 C1069
11 C1079
10 D51-2427
9 D55-4090
8 D55-4159
7 D55-4168
6 Kent
5 N44-92
4 N45-745
3 N48-1101
2 Ogden x CNS
1 Ralsoy x (Ogden
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Indeed, we see again that “Ogden" has 12 children. Additionally, if we want to view not only the
children, but also the grandchildren, of the “Ogden" variety, then we can use this function, only now
specifying two generations of descendants:

> getDescendants ("Ogden",sbGeneal,2)

label gen
28 C1069 1
27 C1079 1
26 D51-2427 1
25 D55-4090 1
24 D55-4159 1
23 D55-4168 1
22 Kent 1
21 N44-92 1
20 N45-745 1
19 N48-1101 1
18 Ogden x CNS 1
17 Ralsoy x Ogden 1
9 Beeson 2
14 C1266R 2
8 Calland 2
16 Columbus 2
15 Cutler 2
5 D52-810 2
10 D59-9289 2
11 D60-7965 2
12 D60-7965 2
1 Davis 2
7 Hood 2
4 N45-745 x (Ogden x CNS) 2
6 N48-1867 2
3 R54-168 2
2 Roanoke x (Ogden x CNS) 2
13 Semmes 2



We see that variety “Ogden" has 16 grandchildren from its 12 children.

For users who wish to apply obtain the ancestors or descendants across generations for not just one,
but for a list, of individuals, please note that getAncestors() and getDescendants() can be run with
a list of individuals as input. For example, here we can obtain ancestors for the past five generations
for the last four members in the sbGeneal object (“Williams 82", “York", “Young", and “Zane"):

> nr = nrow(sbGeneal)

> listInd = sbGeneal[(nr-3):nr,]$child

> listAnc = sapply(listInd, function(x) getAncestors(x, sbGeneal, 5))
> listAnc

Williams 82 York Young Zane
label character,21 character,11 character,27 character,55
gen numeric,21 numeric,11 numeric,27 numeric,55

Note that we verify our earlier finding that “Young" has 27 ancestors across five generations. To
view the entire structure of ancestors across five generations for these four members, we can include a
simplify = F option:

> listAnc = sapply(listInd, function(x) getAncestors(x, sbGeneal, 5), simplify=F)
> listAnc

$"Williams 82"

label gen
21 Kingwa 1
20 Williams 1
19 L57-0034 2
18 Wayne 2
17 Adams 3
15 Clark 3
16 Clark 3
14 L49-4091 3
13 Dunfield 4
12 I1lini 4
9 Lincoln 4
11 Lincoln 4
7 Lincoln x CNS 4
6 Lincoln x Richland 4
8 Richland 4
10 Richland 4
5 A XK. 5
4 CNS 5
2 Lincoln 5
3 Lincoln 5
1 Richland 5
$York
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label gen

11 Dorman 1
10 Hood 1
9 Arksoy 2
8 Dunfield 2
7 N45-745 2
6  Roanoke 2
5 CNS 3
4 Ogden 3
3 Clemson 4
2 PI 54610 4
1 Tokyo 4
$Young
label gen

27 Davis 1
26 Essex 1
23 Lee 2
25 Ralsoy x Ogden 2
24 Roanoke x (Ogden x CNS) 2
22 S855-7075 2
17 CNS 3
15 N48-1248 3
21 Ogden 3
19 Ogden x CNS 3
14 Perry 3
20 Ralsoy 3
18 Roanoke 3
16 S 100 3
11 CNS 4
9 Clemson 4
8 I1lini 4
7 N45-745 x (Ogden x CNS) 4
10 Ogden 4
13 PI 54610 4
6 Roanoke 4
12 Tokyo 4
2 A XK. 5
5 Clemson 5
1 Ogden x CNS 5
4 PI 54610 5
3 Tokyo 5
$Zane

label gen
55 Cumberland 1
54 Pella 1
51 Calland 2
53 Corsoy 2
50 L66L-137 2
52 Williams 2
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Functions for pairs of vertices

Say you have a pair of vertices, and you wish to determine the degree of the shortest path between
them, where edges represent parent-child relationships. You can accomplish that with the getDegree ()
function.

> getDegree ("Tokyo", "Ogden", ig, sbGeneal)
[11 1

> getDegree ("Tokyo", "Holladay", ig, sbGeneal)
[11 7

As expected, the shortest path between the “Tokyo" and “Ogden" varieties has a value of 1, as we
already determined that they have a direct parent-child relationship. However, the shortest path
between “Tokyo" and one of its descendants, “Holladay", has a much higher degree of 7.

Note that degree calculations in this case are not limited to one linear string of parent-child relation-
ships; cousins and siblings and products thereof will also have computable degrees via nonlinear strings
of parent-child relationships.

Functions for the full genealogical structure

There are many parameters about the full genealogical structure that you may wish to know that
cannot easily be obtained through images and tables. The function getBasicStatistics() will re-
turn graph theoretical measurements of the full genealogy. For instance, is the full genealogy con-
nected? If not, how many separated components does it contain? In addition to these parameters,
the getBasicStatistics() function will also return the number of nodes, the number of edges, the
average path length, the graph diameter, among others:

> getBasicStatistics(ig)

$isConnected
[1] FALSE

$numComponents
[11 11

$avePathLength
[1] 5.333746

$graphDiameter
[1] 13
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$numNodes
[1] 230

$numEdges
[1] 340

$logN
[1] 5.438079

In this case, we learn that our full genealogical structure is not all connected by parent-child edges.
Instead, it is composed of 11 separate components. The average path length of the full genealogy is
5.333746, that the graph diameter is 13, and that the logN value is 5.438079. We also see that the
number of nodes in the full genealogy is 230, and the number of edges in the full genealogy is 340.

But can we view a list of these nodes and edges? To do so, we can call the getNodes () and getEdges ()
commands to obtain lists of all the unique nodes and edges in the full genealogical structure. Here,
we obtain a list of the 340 edges (with each row containing the names of the two connected vertices,
and an edge weight, if existent). We will simply view the first six rows of the object, and determine
the number of edges by counting the number of rows (340):

> eList = getEdges(ig, sbGeneal)
> head(eList)

child parent
[1,] "5601T" "Hutcheson"
[2,] "Adams" "Dunfield"
[3,] "A.K. (Harrow)" "A.K."
[4,] "Altona" "Flambeau"
[5,1 "Amcor" "Amsoy 71"
[6,]1 "Amsoy" "Adams"

> nrow(eList)
[1] 340

We then obtain a list of the 230 nodes. Again, we only view the first six rows of the object, and
determine the number of nodes by counting the number of indices (230).

> nList = getNodes (sbGeneal)
> head(nList)

[1] "5601T" "Adams" "A.K."
[4] "A.K. (Harrow)" "Altona" "Amcor"

> length(nList)
[1] 230
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Figure 1: Ancestors and descendants of the “Lee" variety, constrained on the horizontal axis by gen-
erational separation from “Lee".

Plotting methods of genealogical data

Until this point, the vignette has introduced functions that return lists, data frames, and statistics
about the genealogical dataset. However, the ggenealogy package also contains visualization tools
for genealogical datasets. Access to various types of visual plots and diagrams of the lineage can
allow genealogical researchers to more efficiently and accurately explore an otherwise complicated data
structure. Below, we introduce functions in ggenealogy that produce visual outputs of the dataset.

Plotting the ancestors and descendants of a vertex

One visualization tool, plotAncDes (), allows the user to view the ancestors and descendants of a given
variety. The inputted variety is highlighted in the center of the plot, ancestors are displayed to the
left of the center, and descendants are displayed to the right of the center. The further left or right
from the center, the larger the number of generations that particular ancestor/descendant is from the
inputted and centered variety.

As such, this plotting command does not provide visual information about specific years associated
with each related variety (as is done in some of the visualization tools introduced later), but it does
group all varieties from each generation group onto the same position of the horizontal axis. Here, we
specify that we want to plot 5 ancestor generations and 4 descendant generations of the variety “Lee":

> plotAncDes("Lee", sbGeneal,5,4)

We immediately see in Figure 1 that this visual representation of the ancestors and descendants of
a given variety can often provide enhanced readability compared to the list output provided in the
previous functions, getAncestors() and getDescendants(). We notice that even though we specified
for 5 generations of ancestors, the extent of documented ancestors of “Lee" includes only 3 generations.

We also see now that some node labels are repeated. For instance, the “5601T" variety appears twice,
once as a great-grandchild (third generation descendant) of “Lee", and once as a great-great-grandchild
(fourth generation descendant) of “Lee". This is because there are two separate parent-child pathways
between “Lee" and “5601T", one pathway with only two nodes (“Essex" and “Hutchson") between
them, and one pathway with three nodes (“Essex", “T80-69", and “TN89-39") between them.

Why does this happen? In this visual tool, we are constraining the horizontal axis to generation count.
Without allowing nodes to repeat, this data information cannot be clearly and succinctly presented.
Most graph visualization software that genealogists might use to view their datasets do not allow for
repeated nodes, as per the definition of a graph. Hence, the plotAncDes() function is one of the more
unique visual tools of the ggenealogy package.

It should be noted that the plotAncDes () function, by default, highlights the centered variety label in
pink. However, the user can alter this color, as we will show next. Furthermore, the user can specify
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Figure 2: Ancestors and descendants of the “Tokyo" variety, constrained on the horizontal axis by
generational separation from “Tokyo".

additional grammar of graphics plotting tools (from the ggplot2 package) to tailor the output of the
plotAncDes () function, which we also show below.

For example, we will now change the color of the center variety label vColor to be highlighted in
blue. Also, we will add a horizontal axis label called “Generation index", using the ggplot2 syntax.
Note that this time we do not specify the generational count for ancestors and descendants, and so
the default value of three generations is applied to both cases. Remember, to determine such default
values, as well as all function parameters, simply run the help command on the function of interest.

> plotAncDes("Tokyo", sbGeneal, vColor = "blue") + ggplot2::labs(
+ x="Generation index",y="")

We verify immediately from Figure 2 that the “Tokyo" variety does not have any ancestors in this
dataset, an observation consistent with what we discovered earlier. We also see the “Tokyo" variety
only has two children, but has many more grandchildren, and great-grand children.

Plotting the shortest path between two vertices

As this data set deals with soybean lineages, it may be useful for agronomists to track how two varieties
are related to each other via parent-child relationships. Then, any dramatic changes in protein yield,
SNP varieties, and other measures of interest between the two varieties can be tracked across their
genetic timeline, and pinpointed to certain paths within their historical lineage.

The ggenealogy software allows users to select two varieties of interest, and determine the shortest
pathway of parent-child relationships between them, using the getPath() function. This will return a
list path object that contains the variety names and their years in the path. The returned path object
can then be plotted using the plotPath() function, which we now demonstrate.

The getPath() function determines the shortest path between the two inputted vertices, and takes
into account whether or not the graph is directed with the parameter isDirected, which defaults to
false. The getPath() function will check both directions and return the path if it exists:

> getPath("Brim", "Bedford", sbIG, sbGeneal, "devYear", isDirected = FALSE)

$pathVertices
[1] "Brim" "Young" "Essex" "T80-69" "J74-40"
[6] "Forrest" "Bedford"

$variableVertices
[1] "1977" "1968" "1962" "1975" "1975" "1973" "1978"

We see that there is a path between “Brim" and “Bedford" varieties, with 5 varieties separating them.
We are not considering direction, however, because the ig object is undirected. However, to demon-
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strate the importance of direction, we will recompute the path where the direction matters. We first
produce a directed igraph object dirIG, and then try to determine the path between the same two
vertices, “Brim" and “Bedford".

> dirIG = dfToIG(sbGeneal, isDirected = TRUE)
> getPath("Brim", "Bedford", dirIG, sbGeneal, "devYear", isDirected = TRUE)

Now that we are considering the direction, we are only considering paths where each edge represents
a parent-child relationship in the same direction as the one before it. We now would receive an error
warning that we cannot compute a directed path on an undirected graph. We next try to reverse the
input order of the vertices, as shown below, but we will receive the same error message:

> getPath("Bedford", "Brim", dirIG, sbGeneal, "devYear", isDirected=TRUE)

We can derive from the errors returned in the last two commands that the varieties “Brim" and
“Bedford" are not connected by a linear sequence of parent-child relationships. Rather, the path
between them branches at some point, involving siblings and/or cousins.

Hence, unless you are working with a dataset that must be analyzed as a directed graph, it is best to
use the getPath() function with the default third parameter indicating lack of direction, and to use
an igraph object without direction, such as our original ig object. We do just that, and save the path
between these two varieties to a variable called path:

> pathBB = getPath("Bedford","Brim", ig, sbGeneal, "devYear", isDirected=FALSE)

Now that we have a non-empty pathBB object that consists of two lists (for variety names and years),
we can plot the relationship between the two using the plotPath() function.

> plotPath(pathBB, sbGeneal, "devYear")

Notice that the horizontal label by default uses the general label of the input column name (in this
case “devYear"). We can tailor this plot by appending basic ggplot syntax. For instance, if we wish
to change the horizontal label to the more specific value of “Year", then we can do as follows:

> plotPath(pathBB, sbGeneal, "devYear") + ggplot2::xlab("Year")

This produces a neat visual (see Figure 4) that informs us of all the varieties involved in the shortest
path between “Brim" and “Bedford". In this plot, the years of all varieties involved in the path are
indicated on the horizontal axis, while the vertical axis has no meaning other than to simply to display
the labels evenly spaced vertically.

Figure 3: The shortest path between varieties “Brim" and “Bedford" is not strictly composed of
unidirectional parent-child relationships, but instead, includes cousin-like relationships.
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Although a call to the ggenealogy function getVariable () indicates that “Bedford" was developed in
1978 and “Brim" in 1977, we quickly determine from the plot that “Brim" is not a parent, grandparent,
nor any great-grandparent of “Bedford". Instead, we see that these two varieties are not related through
a unidirectional parent-child lineage, but have a cousin-like relationship. The oldest common ancestor
between “Bedford" and “Brim" is the variety “Essex", which was developed in 1962.

However, there are other cases of pairs of varieties that are connected by a linear, unidirectional
combination of parent-child relationships, as we see below:

> pathNT = getPath("Narow", "Tokyo", ig, sbGeneal, "devYear", isDirected=FALSE)
> plotPath(pathNT, sbGeneal, "devYear")

From the output, shown in Figure 5, we see that the variety “Tokyo" is an ancestor of “Narow" via
four linear parent-child relationships.

Plotting shortest paths superimposed on full genealogical structure

Now that we can create and plot path objects, we may wish to know how those paths are positioned
in comparison to the genealogical lineage of the entire data structure. For instance, of the documented
soybean cultivar lineage varieties, where does the shortest path between two varieties of interest exist?
Are these two varieties comparatively older compared to the overall data structure? Are they newer?
Or, do they span the entire structure, and represent two extreme ends of documented time points?

There is a function available in the ggenealogy package, plotPathOnAll (), that allows users to quickly
visualize their path of interest superimposed over all varieties and edges present in the whole data
structure. Here we will produce a plot of the previously-determined shortest path between varieties
“Tokyo" and “Narow" across the entire dataset (in this particular dataset, some edges are not plotted,
as they contain NA values):

> plotPathOnAll(pathNT, sbGeneal, ig, "devYear", bin = 3)

The resulting plot is shown in Figure 6.

While the first three explicit parameters to the function plotPathOnAl1() have been introduced
earlier, the fourth parameter (bin) requires some explanation. The motivation of the plotPathOnAll ()
function is to write variety text labels on a plot, with the center of each variety label constricted on

Figure 4: The shortest path between varieties “Brim" and “Bedford" is not strictly composed of
unidirectional parent-child relationships, but instead, includes cousin-like relationships. We changed
the horizontal axis label from Figure 4 to now be “Year".

Figure 5: The shortest path between varieties “Narow" and “Tokyo" is strictly composed of a unidi-
rectional sequence of parent-child relationships.
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Figure 6: Plot of the shortest path, highlighted in green, between the varieties “Tokyo" and ‘“Narow"
superimposed on the full genealogical structure, using a bin size of 3.

the horizontal axis to its developmental year. As is the case for the plots before, the vertical axis has
no specific meaning. Unfortunately, for large datasets, this motivation can be a difficult task because
the text labels of the varieties can overlap if they are assigned a similar y coordinate, have a similar
year (x coordinate), and have labels with large numbers of characters (width of x coordinate).

For each variety, the x coordinate (year) and width of the x coordinate (text label width) cannot be
altered, as they provide useful information. However, the vertical coordinate is arbitrary. Hence, in an
attempt to mitigate text overlap, the plotPathOnA11l () function does not randomly assign the vertical
coordinate. Instead, it allows users to specify the number of bins (bin), which partially controls the
vertical positions.

If the user determines to produce a plot using three bins, as in the example code above, then the
varieties are all grouped into three bins based on their years of development. In other words, there will
be bin 1 (the “oldest bin") which includes the one-third of all varieties with the oldest developmental
years, bin 2 (the “middle bin"), and bin 3 (the “youngest bin").

Then, in order to decrease text overlap, consecutively increasing vertical positions are alternatively
assigned to the three bins (For example: bin 1, then bin 2, then bin 3, etc.) repeatedly until all
varieties are accounted. This algorithm means that there are at least two vertical positions separating
any pair of varieties from the same bin.

In this plot, edges not on the path of interest are thin and gray, whereas edges on the path of interest
are bolded and green, by default. Also, variety labels in the path of interest are boldfaced, by default.

Using the plot, we immediately recognize that the path spans most of the years in the full data
structure: “Tokyo" appears to be the oldest variety in the data, and “Narow" appears to be among the
youngest. We note that many varieties have development years between 1950 and 1970.

However, this plot has significant empty spaces between the distinct bins, and almost all text labels
are overlapping, causing decreased readability. To force variety text labels into these spaces, the user
may consider choosing a larger number of bins. Hence, we next examine a bin size of six:

> plotPathOnAll (pathNT, sbGeneal, ig, "devYear", bin = 6) + ggplot2::xlab("Year")

Figure 7 shows that the bin size of six successfully mitigated text overlap compared to Figure 6,
which had a bin size of three. Most of the remaining textual overlap is confined to the range of years
(1950-1970) of which the most varieties had development years.

Notice from Figure 6, that the default horizontal axis label for the plotPath() method has a value of
“Date". Given that the “Date" variable in this example dataset is on the timescale of years, we wanted
to change the default value of the horizontal axis label to “Year". We did this in the code above for
Figure 7 by appending appended ggplot2 syntax.

Figure 7: Plot of the shortest path, highlighted in green, between the varieties “Tokyo" and “Narow"
superimposed on the full genealogical structure, using a bin size of 6.
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Plotting pairwise distance matrices between a set of vertices

It may also be of interest to generate matrices where the cell colors indicate the magnitude of a variable
(such as the degree of the shortest path) between all pairwise combinations of inputted varieties. The
package ggenealogy also provides a function plotDegMatrix () for that purpose.

Here, we plot a distance matrix for a set of 8 varieties, defining both the x- and y- axes titles as “Soybean
label", and the legend label as “Degree". Syntax from the ggplot2 package can be appended to tailor
the output of the plotDegMatrix () function. In this case, we denote pairs with small degrees to be
colored white, and pairs with large degrees to be colored dark green, using scale_fill_continuous:

varieties=c("Brim", "Bedford", "Calland", "Narow", "Pella", "Tokyo", "Young", "Zane")
p = plotDegMatrix(varieties, ig, sbGeneal)
p + ggplot2::scale_fill_continuous(low = "white", high = "darkgreen") +
ggplot2: :theme(legend.title = ggplot2::element_text(size = 15), legend.text =
ggplot2: :element_text(size = 15)) + ggplot2::labs(x = "Variety", y = "Variety")

+ + VvV v VvV

plotDegMatrix(varieties, sbIG, sbGeneal)

Figure 8: Colored matrix plot showing the degrees of the shortest paths between all pair combinations
from a set of eight varieties of interest.
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Figure 8 shows that the degree of the shortest path between varieties “Bedford" and “Zane" seems to
be the largest in the dataset, which should be around 10. We can verify this simply with:

> getDegree ("Bedford", "Zane", ig, sbGeneal)
[1] 10

Indeed, the degree of the shortest path between “Bedford" and “Zane" is 10. The distance matrix plot
provides us additional information: The degree of 10 may be a comparatively large degree within the
given soybean dataset sbGeneal, seeing that the degrees of the shortest paths for the other 27 pairwise
combinations of the eight varieties that we explored here are less than 10.

In a similar function plotYearMatrix (), the difference in years between all pairwise combinations of
vertices can be constructed and viewed:

> varieties=c("Brim", "Bedford", "Calland", "Narow", "Pella", "Tokyo", "Young", "Zane")
> plotDegMatrix(varieties, ig, sbGeneal)

Figure 9: Colored matrix plot showing the year differences between all pair combinations from a set
of eight varieties of interest.

Here, we did not change any defaults. As such, the resulting plot in Figure 9 contains the default
values of “Variety" for the x-and y-axis labels, and “Difference in dates" for the legend label. It also
uses the default colors of dark blue for small year difference and light blue for large year difference.

Running this function on this particular set of eight vertices suggests that most combinations of
varieties are only one or two decades apart in year introduction, with the exception of the “Tokyo"
variety, which appears to be separated from each of the other seven varieties by about six decades.
This is not surprising, because we have seen throughout the tutorial that the “Tokyo" variety is the
oldest variety in the dataset.

Interactive plotting methods of genealogical data

There is a second example dataset included in the ggenealogy package of the academic genealogy of
statisticians. More information about this example dataset can be found in the R/data-statGeneal.R
file. We can load the example dataset of academic genealogy of statisticians (statGeneal) and examine
its structure.

> data("statGeneal")
> dim(statGeneal)

[1] 8165 6
> colnames (statGeneal)

21



[1] "child" "parent" = ‘"gradYear
[6] "thesis"

country" "school"

As this example academic genealogy dataset is much larger than the example soybean dataset, we can
begin by creating a plot of ancestors and descendants. The ability to plot ancestors and descendants
by generation was demonstrated using the plant breeding genealogy in Figure 1 and 2. As we believe
this is the most novel plotting tool in the ggenealogy package, we will test it again here using the
academic genealogy.

We need to choose a central individual of interest in order to create this plot. Perhaps we can use the
academic statistician in the dataset that has the largest number of “descendants". To determine the
name of this individual, below we use the ggenealogy function getNode () to create a vector indVec
that contains the names of all individuals in the dataset. We then use the dplyr package to apply
the ggenealogy function getDescendants() on each individual in the indVec vector. We set the
parameter gen to a conservatively large value of 100 as this dataset is unlikely to have any individuals
with more than 100 generations of “descendants".

After that, we can generate a table to examine all values of “descendant" counts in the dataset,
along with the number of individuals who have each of those values of “descendant" counts. Of
the 8165 individuals in this dataset, 6252 of them have zero “descendants", 322 of them have one
“descendant", and 145 of them have two “descendants". There are only 17 individuals who have more
than 30 “descendants", and there is one individual who has the largest value of 159 “descendants".
We determine that this individual is the prominent British statistician Sir David Cox, who is known
for the Box-Cox transformation and Cox processes, as well as for mentoring many younger researchers
who later became notable statisticians themselves.

> indVec <- getNodes (statGeneal)

> indVec <- indVec[which(indVec != "", )]

> dFunc <- function(var) nrow(getDescendants(var, statGeneal, gen = 100))
> numDesc <- sapply(indVec, dFunc)

> table(numDesc)

numDesc

0 1 2 3 4 5 6 7 8 9 10 11
6251 322 145 88 58 36 31 22 23 14 17 13
12 13 14 15 16 17 18 19 20 21 22 23
14 10 9 6 4 3 2 5 7 4 3 3
24 26 26 2 29 30 34 37 38 40 41 44
2 2 6 1 1 3 2 1 1 1 1 1

45 48 49 60 61 75 77 84 159

1 1 2 1 1 1 1 1 1

> which(numDesc == 159)

David Cox
1980

We can now visualize how these 159 “descendants" are related to Sir David Cox by calling the
plotAncDes () function of ggenealogy. As such, we create Figure 10 using the code below.
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> plotAncDes("David Cox", statGeneal, mAnc = 6, mDes = 6, vCol = "blue")

We see from Figure 10 that Sir David Cox had 42 “children", many of them becoming notable statisti-
cians themselves, such as Basilio Pereira, Valerie Isham, Gauss Cordeiro, Peter McCullagh, and Henry
Wynn. Of his “children", the one who produced the most “children" of their own was Peter Bloomfield,
who has 26 “children" and 49 “descendants". In total, Sir David Cox had five generations of academic
statistics mentees in this dataset.

> length(getChild ("Peter Bloomfield", statGeneal))

[1] 26

> nrow(getDescendants ("Peter Bloomfield", statGeneal, gen = 100))

[1] 49

At this point, it would be insightful to examine a more detailed view of one of the longest strings of
“parent-child" relationships between Sir David Cox and one of the two individuals who are his fifth
generation “descendants". We do so with the code below, choosing his fifth generation “descendant"
to be Petra Buzkova. We set the fontFace variable of the plotPath() to a value of 4, indicating we
wish to boldface and italicize the two varieties of interest.

> statIG <- dfToIG(statGeneal)

> pathCB <- getPath("David Cox", "Petra Buzkova", statIG, statGeneal, "gradYear", isDirected = FALSE)
> plotPath(pathCB, statGeneal, "gradYear", fontFace = 4) + ggplot2::theme(axis.text =

+ ggplot2::element_text(size = 10), axis.title = ggplot2::element_text(size = 10)) + ggplot2::sca

This code results in Figure 11. We see that the shortest path between Sir David Cox and Petra Buzkova
is strictly composed of five unidirectional “parent-child" relationships that span about 55 years. We
see that the time difference between when an advisor and student earned their degrees is not consistent
across this path: The three statisticians who earned their degrees earliest in this path span more than
30 years in degree acquisition, whereas the three statisticians who earned their degrees later in this
path only span less than ten years in degree acquisition.

We also notice in Figure 11 that Sir David Cox received his statistics degree in about 1950, and
Petra Buzkova received her statistics degree in about 2005. This genealogy only contains historical
information about obtained degrees, and does not project into the future. Hence, we can be assured that
Petra Buzkova is one of the younger individuals in the dataset, at least in the sense that the youngest
individual could only have received his or her degree ten years after Petra Buzkova. However, we
cannot be assured that Sir David Cox is one of the oldest individuals in the dataset. As such, it would
be informative to superimpose this path of interest onto the entire dataset, using the plotPathOnAll ()
function of the ggenealogy package, as we did for the soybean genealogy in Figures 6 and 7.

We can achieve this using the below code. After trial and error, we use a bin of size 200, and append
ggplot2 syntax to define suitable x-axis limits. The output of this process is illustrated in Figure 12.

23



i
i

i

EE:{Q_.__';E;::':-"' ey

Pl
s B
fe 1

C UL Ak
St e e Tealsl Bngrace!

Figure 10: The 159 academic statistidian “descendants" of Sir David Cox.



Figure 11: The shortest path between Sir David Cox and one of his fifth generation “descendants",
Petra Buzkova.
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Figure 12: The shortest path between Sir David Cox and Petra Buzkova, superimposed over the data
structure, using a bin size of 200.

> plotPathOnAll(pathCB, statGeneal, statIG, '"gradYear", bin = 200) +
+ ggplot2: :theme(axis.text = ggplot2::element_text(size = 8), axis.title =
+ ggplot2::element_text(size = 8)) + ggplot2::scale_x_continuous(expand = c(.1, .2))

We see from the resulting Figure 12 that almost all text labels for individuals who received their
graduate-level statistics degrees between 1950 and 2015 are undecipherable. We also see that the year
Sir David Cox acquired his statistics degree is somewhere in the later half of the variable date for
this dataset, as the oldest dates for acquisition of statistics degrees in this dataset occur around 1860.
However, the number of individuals who are documented as receiving their statistics degrees between
1860 and 1950 are few enough so that their text labels are somewhat readable.

The text labels are so numerous in Figure 12 that simply trying different values for the input parameter
bin will not solve the text overlapping problem. Instead, one approach we can try is to reconstruct the
plot using the same ggenealogy function plotPathOnAll(), only now specifying variables to render
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Figure 13: The shortest path between Sir David Cox and Petra Buzkova, superimposed over the data
structure, using a bin size of 200. Individuals on the shortest path are labeled in large and black
text and connected by dark green edges; all other individuals are labeled in small and gray text and
connected by light gray edges.

the size (2.5) and color (default of black) of the text for nodes that are on the path of interest to be
more noticeable than the size (0.5) and color (dark gray) of the text for nodes that are not on the path
of interest. Moreover, we can make the edges that are not on the path of interest to be represented
in a less noticeable color (light gray) than the edges that are on the path of interest (default of dark
green). The variable names and options for these aesthetics is further detailed in the help manual of
the function. We provide one example code that alters the defaults of the text color and sizes of nodes
and edges below, which results in Figure 13.

> plotPathOnAll(pathCB, statGeneal, statIG, "gradYear", bin = 200, nodeSize
+ pathNodeSize = 2.5, nodeCol = "darkgray", edgeCol = "lightgray") +

+ gegplot2: :theme (axis.text = ggplot2::element_text(size = 8), axis.title
+ ggplot2: :element_text(size = 8)) + ggplot2::scale_x_continuous(expand = c(.1, .2))

.5,

In Figure 13, we can now see each individual on the path of interest, and how their values for the
variable date are overlaid on the entire genealogy structure. We can also more clearly see that, even
though only ten years span between the youngest individual in the genealogy and Petra Buzkova, there
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are many individuals in that last decade. Indeed, the decade from 2005 to 2015 appears to be the
densest in this dataset in terms of acquisition of statistics degrees.

We could still improve upon Figure 13. Even though we may be primarily interested in understanding
how the path of interest is overlaid across the entire genealogical structure, we could, upon viewing
the entire structure, also develop an interest in nodes that are not on the path of interest but are
revealed to stand out among the rest of the genealogical structure. For instance, in Figure 13, it may
be of interest for us to determine the names of the few individuals who obtained their statistics degrees
before 1900. Fortunately, within the plotPathOnA11() function, there is a variable animate that we
can set to a value of TRUE to create an interactive version of the figure that allows us to hover over
individual illegible labels and immediately receive their labels in a readable format. This interactive
functionality comes from methods in the plotly package. The code below would create an animated
version of Figure 13.

> plotPathOnAll(pathCB, statGeneal, statIG, "gradYear", bin = 200, nodeSize = .5,
+ pathNodeSize = 2.5, nodeCol = '"darkgray", edgeCol = "lightgray", animate =
+ TRUE)

Branch parsing and calculations

It may be helpful for users to search through descendant branches of a certain individual to compare
and contrast how a variable of interest changes along those branches. For instance, which descending
branches of a particular soybean variety are producing the highest yields? Which branches are devel-
oping new varieties in recent years? Which descending branches of a particular academic statistician
have large proportions of students graduating from certain universities or countries? Which branches
are graduating new students in recent years? Which branches have the highest proportion of thesis
titles containing a word of interest?

Answering these questions in a straightforward manner requires more than basic data frame manipula-
tion: It also requires methods that can easily traverse parent-child relationships. The ggenealogy pack-
age has two methods that can answer these questions using branch traversal. The getBranchQuant ()
function can be used to track a quantitative variable across branches and the getBranchQual () method
can be used to track a qualitative variable across branches.

Quantitative variable parsing and calculations

We can demonstrate the getBranchQuant () function by examining the quantitative variable “yield"
across the descendant branches of the soybean variety A.K. To understand more about the output of
this function, please consult the ggenealogy package documentation. In the code below, we remove
the output column “DesNames" because it verbosely lists all descendant names, which is not necessary
for this demonstration.

> AKBranchYield <- getBranchQuant("A.K.", sbGeneal, "yield", 15)
> dplyr::select (AKBranchYield, -DesNames)
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Name Mean SD Count NACount
1 A.K. (Harrow) 2932.154 197.0092 54 41
2 I1lini 2856.667 210.7801 131 125

We see from the output that A.K. has two children named A.K. (Harrow) and I1lini. Descendants
from the A.K. (Harrow) branch have a higher mean yield than the I11ini branch (2932.154 versus
2856.667). However, we should recognize that even though the branches contain a large number of
descendants (54 and 131), most of these descendants did not come with a yield value (41 and 125). As
a result, the mean values were calculated from a small proportion of the descendants.

As another example, we can examine the mean graduation year for the “descendant" branches of
the academic statistician David Cox. We know from earlier that David Cox had 42 “children", so as
expected, the CoxBranchYear object below contains 42 rows. However, only 8 of these rows have any
“descendants" of their own. As a result, only the first 8 rows of the CoxBranchYear object contain
branch information.

> CoxBranchYear <- getBranchQuant ("David Cox", statGeneal, "gradYear", 15)
> head(dplyr: :select (CoxBranchYear, -DesNames), 10)
Name Mean SD Count

1 Mark Berman 2007.200 6.340347 5

2 Henry Wynn 2005.333 7.637626 3

3 Rodney Wolff 2003.500 2.121320 2

4 Jane Hutton 2003.000 NA 1

5 Gauss Cordeiro 2002.643 7.722167 14

6 Peter McCullagh 2001.231 8.778645 26

7 Basilio Pereira 2000.647 10.074356 17

8 Peter Bloomfield 1999.918 11.707969 49

9 Adelchi Azzalini NaN NA 0

10 Amy Berrington de Gonzales NaN NA 0
NACount

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

In this case, we see that of the 8 “children" of David Cox who had “children" of their own, Mark
Berman had the “descendants" (n=5) who have on average graduated the most recently (2007.200),
whereas Peter Bloomfield has the “descendants" (n=49) who on average have graduated the least
recently (1999.918). We see that, for all branches, there are no “descendants" who contain a NA value
for graduation year.
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Qualitative variable parsing and calculations

The getBranchQual () function requires similar inputs as the getBranchQuant () function above, ex-
cept that it also requires an input parameter called rExpr. The user must initialize this input parameter
to a regular expression that can be applied to the column containing the qualitative variable of interest.
The regular expression syntax must work on a data frame column of type character. It must be saved
as a double quotation string, and any quotation marks within it must be single quotations. The term
geneal$colName must be used in the regular expression.

We can demonstrate the getBranchQual() function by examining the qualitative variable “thesis"
across the “descendant” branches of the academic statistician David Cox. Since one of the primary
research areas for David Cox was stochastic processes, we can determine if any descendant branches
of his “children" contained thesis titles that included the word “stochastic".

> v1 = "David Cox"; geneal = statGeneal; colName = "thesis'"; gen = 15
> rExpr = "grepl('(?7i)Stochastic', geneal$collName)"

> CoxBranchStochastic <- getBranch@ual(vl, geneal, colName, rExpr, gen)
> head(dplyr: :select(CoxBranchStochastic, -DesNames))

Name CountTrue Count NACount

1 Peter Bloomfield 4 49 0
2 Basilio Pereira 1 17 0
3 Adelchi Azzalini 0 0 0
4 Amy Berrington de Gonzales 0 0 0
5 Andrew Roddam 0 0 0
6 Angela Mariotto 0 0 0

We see that only two “children" of David Cox had any “descendants" with thesis titles containing the
word “Stochastic" (4 out of 49 “descendants" of Peter Bloomfield and 1 out of 17 “descendants"
of Basilio Periera). We see again that none of the “descendants" from either branches contained
values that were NA for the variable “thesis".

In many string parsing applications, the choice of the regular expression can be tricky. This is true when
the string variable we are parsing is thesis titles. For instance, notice that in our regular expression,
we accounted for all instances of the substring “Stochastic". Hence, words that contain "Stochastic"
(such as “Stochastics" and “Stochastically") will also be returned. In addition, we defined our regular
expression to return matches whether the first letter was upper or lower case. When initializing the
rExpr parameter, users would need to consider what nuances of their search criteria they would like
to define as matches.

We will demonstrate one more example of the getBranchQual() function by searching the qualita-
tive variable “school" across the “descendant” branches of the academic statistician David Cox. The
Mathematics Genealogy Project coding system for the “school" variable was non-ambiguous, and so
we do not have to worry about all the various ways the same school could be coded in the dataset.
As a result, we no longer have to search for various substrings; we can simply use a regular expression
that equates to one value.

It may be interesting to examine the school that is represented the most among all descendants of
David Cox. To determine what school this is, we use the getDescendants () function to create a data
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frame called desDC that contains the names of all 159 “descendants" of David Cox. Then, we use the
base R function match() to match the school names from the original genealogy dataset to each of
the 159 “descendants" in the desDC data frame. After that, we use the base R functions sort() and
table () to examine the five schools that were represented the most throughout the 159 “descendants".

> desDC <- getDescendants("David Cox", statGeneal, 15)
> tableDC <- table(statGeneal[match(desDC$label, statGeneal$child), ]$school)
> tail(sort(tableDC), 5)

The Johns Hopkins University

9

Universidade Federal do Rio de Janeiro
17

North Carolina State University

18

Universidade de S&o Paulo

28

University of London

35

We see from this table that the most common school of the 159 “descendants" of David Cox was the
University of London with a count of 35. We can now determine which of the branches from the 42
“children" of David Cox have the largest proportion of “descendants" graduating from the University
of London.

> colName = "school"
> rExpr = "geneal$colName=='University of London
> DCBranchUL <- getBranch@ual(vl, geneal, colName, rExpr, gen)

rn

> head(dplyr::select (DCBranchUL, -DesNames))

Name CountTrue Count NACount
1 Peter McCullagh 1 26 0
2 Adelchi Azzalini 0 0 0
3 Amy Berrington de Gonzales 0 0 0
4 Andrew Roddam 0 0 0
5 Angela Mariotto 0 0 0
6 Basil Springer 0 0 0

We see that Peter McCullagh is the only “child" of David Cox that has a “descendant" branch with
one student graduating from the University of London; the rest of the 41 children of David Cox have
“descendant" branches with zero students graduating from the University of London. This must mean
the other 34 “descendants" of David Cox that graduated from the University of London were direct
“children" of David Cox. We can verify this below:

> DCChild <- statGeneal[match(getChild("David Cox", statGeneal), statGeneal$child), ]
> sum(DCChild$school == "University of London")
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[1] 34

The examples above demonstrate that users can quickly and flexibly parse descendant branches.
The swiftness comes from ggenealogy functions that allow for fast parent-child traversals, such as
getChild(), getDescendants(), getBranchQuant (), and getBranchQual(). The flexibility comes
from data frame manipulation functions in base R that can be used in conjunction with the parent-
child traversal methods.

Bug reports and feature requests

Please post questions, feature requests, and bug reports under the Issues tab on GitHub at https:
//github.com/lindsayrutter/ggenealogy.
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