Package ‘getDTeval’

October 13, 2022

Title Translating Coding Statements using get() and eval() for
Improved Run-Time Coding Efficiency

Version 0.0.2
Depends R (>= 3.6.0)

Description The getDTeval() function facilitates the translation of the original coding state-
ment to an optimized form for improved runtime efficiency without compromising on the pro-
grammatic coding design.
The function can either provide a translation of the coding statement, directly evaluate the trans-
lation to return a coding result, or provide both of these outputs.

License GPL-3

Encoding UTF-8

RoxygenNote 7.1.1

Suggests knitr, rmarkdown, dplyr, testthat (>= 2.1.0), covr, devtools
Imports stats, data.table, formulaic, microbenchmark, utils
VignetteBuilder knitr

NeedsCompilation no

Author David Shilane [aut],
Mayur Bansal [ctb, cre],
Anderson Nelson [ctb],
Caffrey Lee [ctb],
Zichen Huang [ctb]

Maintainer Mayur Bansal <mb4511@columbia.edu>
Repository CRAN
Date/Publication 2021-06-21 06:10:04 UTC

R topics documented:

benchmark.getDTeval 2
function.ending.point 3
getDTeval e 3
translate.fn.callso o o 4
Index 6

2 benchmark.getDTeval

benchmark.getDTeval benchmark.getDTeval

Description

Performs a benchmarking experiment for data.table coding statements that use get() or eval() for
programmatic designs. The a) original statement is compared to b) passing the original statement
through getDTeval and also to c) an optimized coding statement. The results can demonstrate the
overall improvement of using the coding translations offered by getDTeval()

Usage

benchmark.getDTeval(
the.statement,

times = 30,
seed = 47,
envir = .GlobalEnv,
)
Arguments

the.statement refers to the original coding statement which needs to be translated to an op-
timized form. This value may be entered as either a character value or as an

expression.
times The number of iterations to run the benchmarking experiment
seed an integer value specifying the seed of the pseudorandom number generator.
envir The environment in which the calculation takes place, with the global environ-

ment .GlobalEnv set as the default.

provision for additonal arguments

Examples

#Benchmarking runtime performances in calculating mean age

dat<-formulaic::snack.dat

age.name<-'Age'

benchmark.getDTeval (the.statement = "dat[, . (mean_age=mean(get(age.name)))]", times =5, seed = 10)

function.ending.point

function.ending.point function.ending.point

Description

An Internal function to return the ending index

Usage

function.ending.point(all.chars, beginning.index,

Arguments

all.chars all the characters of the statement
beginning.index
specifies the index of the first character

provision for additional arguments

getDTeval getDTeval

Description

The getDTeval() function facilitates the translation of the original coding statement to an optimized
form for improved runtime efficiency without compromising on the programmatic coding design.
The function can either provide a translation of the coding statement, directly evaluate the transla-

tion to return a coding result, or provide both of these outputs

Usage

getDTeval(
the.statement,
return.as = "result”,
coding.statements.as = "character”,
eval.type = "optimized”,
envir = .GlobalEnv,

4 translate.fn.calls

Arguments

the.statement refers to the original coding statement which needs to be translated to an op-
timized form. This value may be entered as either a character value or as an
expression.

return.as refers to the mode of output. It could return the results as a coding statement
(return.as = "code"), an evaluated coding result (return.as = "result", which is
the default value), or a combination of both (return.as = "all").

coding.statements.as
determines whether the coding statements provided as outputs are returned as
expression objects (return.as = "expression") or as character values (return.as =
"character", which is the default).

eval.type a character value stating whether the coding statement should be evaluated in its
current form (eval.type = "as.is") or have its called to get() and eval() translated
(eval.type = "optimized", the default setting).

envir Specify the environment for the required function. .GlobalEnv is set as default

provision for additional arguments

Examples

Using getDTeval to calculate mean age
dat<-formulaic::snack.dat
age.name<-'Age'

getDTeval (the.statement = 'dat[,.(mean_age=mean(get(age.name)))]',return.as = 'result')
translate.fn.calls translate.fn.calls
Description

Internal Function that translates programmatic designs into optimized coding statements for faster
calculations

Usage

translate.fn.calls(
the.statement,
function.name = "get(",
envir = .GlobalEnv,

translate.fn.calls

Arguments

the.statement

function.name

envir

original coding statement to perform the required calculation. Must be provided
as a character value.

Name of the function to be translated to an optimized form. Parameter values
should be either "get(’ or "eval(’. *get(’ is set as default

Specify the environment for the required function. .GlobalEnv is set as default

provision for additional arguments

Index

benchmark.getDTeval, 2
function.ending.point, 3
getDTeval, 3

translate.fn.calls, 4

	benchmark.getDTeval
	function.ending.point
	getDTeval
	translate.fn.calls
	Index

