Package 'geodata'

June 10, 2024

Type Package

Title Download Geographic Data
Version 0.6-2
Date 2024-06-06
Depends R (>= 3.5.0), terra (>= 1.6.41)
Encoding UTF-8
Suggests jsonlite, R.utils, httr, archive
Author Robert J. Hijmans [cre, aut], Márcia Barbosa [ctb], Aniruddha Ghosh [ctb], Alex Mandel [ctb]
Maintainer Robert J. Hijmans <r.hijmans@gmail.com>
Description Functions for downloading of geographic data for use in spatial analysis and mapping. The package facilitates access to climate, crops, elevation, land use, soil, species occurrence, accessibility, administrative boundaries and other data.

License GPL (>= 3)

BugReports https://github.com/rspatial/geodata/issues/

NeedsCompilation no

Repository CRAN

Date/Publication 2024-06-10 09:00:02 UTC

Contents

odata-package
_oracle
ip6
intry_codes
pland
p_calendar_sacks
p_monfreda
p_spam
vation
otprint
1m

geodata-package

	32
worldclim	 30
world	
travel_time	 27
sp_occurrence	 25
soil_world_vsi	 24
soil_world	 22
soil_af_water	 21
soil_af_isda	 19
soil_af_elements	 18
soil_af	 16
rice_calendar	
population	 15
osm	 14
landcover	 13
geodata_path	 13

Index

geodata-package

Download Geographic Data

Description

Functions for downloading of geographic data for use in spatial analysis and mapping. The package facilitates access to climate, crops, elevation, land use, soil, species occurrence, accessibility, administrative boundaries and other data.

Function	Description
bio_oracle	Marine data from bio-oracle
cmip6_world	Downscaled and calibrated CMIP6 projected future climate data
cmip6_tile	Downscaled and calibrated CMIP6 data by tile
country_codes	Country codes
<pre>crop_calendar_sacks</pre>	Sachs crop calendar data
crop_monfreda	Monfreda crop data (area, yield)
crop_spam	SPAM crop data (area, yield, value)
cropland	Cropland density for the world from three sources
elevation_3s	Elevation data for tile (3 seconds resolution)
elevation_30s	Elevation data for by country (30 seconds resolution)
elevation_global	Global elevation data (various resolutions)
gadm	Administrative boundaries for any country in the world
world	Boundaries for the countries in the world
landcover	Global landcover data
footprint	Human footprint data
osm	OpenStreetMap data by country
population	Download population density data
soil_af	Chemical and physical soil properties data for Africa for different soil depths
soil_af_water	Physical soil properties for Africa for water balance computations
<pre>soil_af_elements</pre>	Soil element concentration data for Africa

bio_oracle

<pre>soil_af_isda</pre>	Soil data for Africa derived from the iDSA data set
soil_world_vsi	Virtually connect to the global soilgrids data
soil_world	Global soils data
sp_occurrence	Species occurrence data from the Global Biodiversity Information Facility
<pre>travel_time</pre>	Travel time to cities and ports
worldclim_global	Global climate data
worldclim_country	Climate data by country
<pre>worldclim_tile</pre>	Climate data by tile

bio_oracle

Marine data

Description

Marine data from Bio-Oracle

Usage

```
bio_oracle(path, var, stat, benthic=FALSE,
depth="Mean", time="Present", rcp, ...)
```

Arguments

path	character. Path for storing the downloaded data. See geodata_path
var	character. Variable of interest. One of 'Calcite', 'Chlorophyll', 'Cloud.cover', 'Current.Velocity', 'Diffuse.attenuation', 'Dissolved.oxygen', 'Ice.cover', 'Ice.thickness', 'Iron', 'Light.bottom', 'Nitrate', 'Par', 'pH', 'Phosphate', 'Phytoplankton', 'Primary.productivity', 'Salinity', 'Silicate', 'Temperature'
stat	character. Statistic of interest. One of 'Lt.max', 'Lt.min', 'Max', 'Mean', 'Min', 'Range'. It should be "" if var is "pH"
benthic	logical. If FALSE surface data are returned
depth	character. Either "Min", "Mean", or "Max". Only relevant if benthic is TRUE
time	character. Either "Present", "2150" or "2100"
rcp	character. Either "26", "45", "60", or "85"
	additional arguments passed to download.file

Value

SpatRaster

References

Assis, J., Tyberghein, L., Bosh, S., Verbruggen, H., Serrão, E.A., & De Clerck, O. (2017). Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Global Ecology and Bio-geography 27: 277-284.

cmip6

See Also

https://bio-oracle.org/

Examples

```
# this is a large download
x <- bio_oracle(path=tempdir(), "Salinity", "Max",
benthic=TRUE, depth="Mean", time="Present")
```

cmip6

CMIP6 climate model data

Description

Download downscaled and calibrated CMIP6 climate data for projected future climates. Either for the entire world or for a 30 degrees tile. For more information see https://www.worldclim.org/

Usage

```
cmip6_world(model, ssp, time, var, res, path, ...)
cmip6_tile(lon, lat, model, ssp, time, var, path, ...)
```

Arguments

model	character. Climate model abbrevation. One of "ACCESS-CM2", "ACCESS-ESM1-5", "AWI-CM-1-1-MR", "BCC-CSM2-MR", "CanESM5", "CanESM5-CanOE", "CMCC-ESM2", "CNRM-CM6-1", "CNRM-CM6-1-HR", "CNRM-ESM2-1", "EC-Earth3-Veg", "EC-Earth3-Veg-LR", "FIO-ESM-2-0", "GFDL-ESM4", "GISS-E2-1-G", "GISS-E2-1-H", "HadGEM3-GC31-LL", "INM-CM4-8", "INM-CM5-0", "IPSL-CM6A-LR", "MIROC-ES2L", "MIROC6", "MPI-ESM1-2-HR", "MPI-ESM1-2-LR", "MRI-ESM2-0", "UKESM1-0-LL"
ssp	character. A valid Shared Socio-economic Pathway code: "126", "245", "370" or "585".
time	character. A valid time period. One of "2021-2040", "2041-2060", or "2061-2080" $$
var	character. Valid variables names are "tmin", "tmax", "tavg", "prec" and "bioc"
res	numeric. Valid resolutions are 10, 5, 2.5 (minutes of a degree)
path	character. Path for storing the downloaded data. See geodata_path
	additional arguments passed to download.file
lon	numeric. Longitude
lat	numeric. Latitude

4

country_codes

Value

SpatRaster

See Also

vrt to combine tiles

Examples

```
# download of large files takes a while
tmin10 <- cmip6_world("CNRM-CM6-1", "585", "2061-2080",
var="tmin", res=10, path=tempdir())
```

country_codes Get country codes

Description

Get country codes for all countries in the world.

Usage

```
country_codes(query=NULL)
```

Arguments

query character. A single word that can be used to subset the returned data.frame

Value

data.frame

```
cc <- country_codes()
head(cc)
p <- country_codes(query="Per")
p</pre>
```

cropland

Description

Cropland distribution data at a 30-seconds spatial resolution from three sources:

worldcover is derived from the ESA WorldCover data set at 0.3-seconds resolution. (License CC BY 4.0), see https://esa-worldcover.org/en. Values were aggregated and represent the fraction cropland in each cell.

glad is derived from the "Global cropland expansion in the 21st century" (Potatov et al) data available here. Values were aggregated and resampled. They represent the fraction cropland in each cell. There are five layers representing the following years: 2003, 2007, 2011, 2015, and 2019.

QED has cropland distribution data for Africa. The values are probabilities of cropland presence estimated with a neural network that was trained on an initial 1-million point Geosurvey conducted in 2015. License: CC-BY-SA 4.0; https://about.maps.ged.ai/

Usage

cropland(source, path, year, ...)

Arguments

source	character. One of "WorldCover", "GLAD", or "QED"
path	character. Path for storing the downloaded data. See geodata_path
year	numeric. Optional for the GLAD dataset to get data for a single year. One of 2003, 2007, 2011, 2015, and 2019
	additional arguments passed to download.file

Value

SpatRaster

References

WorldCover: Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N., Brockmann, C., Quast, R., Wevers, J., Grosu, A., Paccini, A., Vergnaud, S., Cartus, O., Santoro, M., Fritz, S., Georgieva, I., Lesiv, M., Carter, S., Herold, M., Li, Linlin, Tsendbazar, N.E., Ramoino, F., Arino, O., 2021. ESA WorldCover 10 m 2020 v100. doi:10.5281/zenodo.5571936.

GLAD: Potapov, P., S. Turubanova, M.C. Hansen, A. Tyukavina, V. Zalles, A. Khan, X.-P. Song, A. Pickens, Q. Shen, J. Cortez, 2021. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nature Food. doi:10.1038/s43016-021-00429-z

See Also

landcover

Description

Download Sacks crop calendar data. The crops available are returned by sacksCrops

Usage

```
crop_calendar_sacks(crop="", path, ...)
```

sacksCrops()

Arguments

crop	character. Crop name. See sacksCrops for valid names
path	character. Path for storing the downloaded data. See geodata_path
	additional arguments passed to download.file

Value

SpatRaster

References

Sacks, W.J., D. Deryng, J.A. Foley, and N. Ramankutty, 2010. Crop planting dates: an analysis of global patterns. Global Ecology and Biogeography 19: 607-620. doi:10.1111/j.1466-8238.2010.00551.x.

See Also

https://sage.nelson.wisc.edu/data-and-models/datasets/crop-calendar-dataset/

```
# download may take > 5s
cas <- crop_calendar_sacks("cassava", path=tempdir())</pre>
```

crop_monfreda

Description

Monfreda global crop data (area, yield) for 175 crops.

Data may be freely used for research, study, or teaching, but must be cited appropriately (see below). Re-release of the data, or incorporation of the data into a commercial product, is allowed only with explicit permission.

Usage

```
monfredaCrops()
crop_monfreda(crop="", var="area_ha", path, ...)
```

Arguments

crop	character. Crop name(s). See monfredaCrops for valid names
var	character. The variable(s) of interest. Choose from "area_ha" (crop area in ha per cell), "area_f" (crop area as a fraction of each cell), "area_q" (quality of the crop area data), "yield" (crop yield in Mg/ha), "yield_q" (quality of the yield data), "prod" (production per grid cell in Mg), or "all"
path	character. Path for storing the downloaded data. See geodata_path
	additional arguments passed to download.file

Value

SpatRaster

References

Monfreda, C., N. Ramankutty, and J. A. Foley (2008), Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000, Global Biogeochem. Cycles, 22, GB1022, doi:10.1029/2007GB002947.

See Also

http://www.earthstat.org/harvested-area-yield-175-crops/

```
# download may take > 5s
mcas <- crop_monfreda("cassava", path=tempdir())
mcas
names(mcas)</pre>
```

crop_spam

Description

SPAM crop data. For each of 42 crops or crop groups get a 10-minute spatial resolution raster with the crop area, yield, production or value by cropping system (rainfed or irrigated, and subsistence, low-input or high-input).

The global data are for 2010. The Africa dataset is for 2017.

Usage

```
spamCrops()
crop_spam(crop="", var="area", path, africa=FALSE, ...)
```

Arguments

crop	character. See spamCrops for valid names
var	character. variable of interest. Must be one of "yield", "harv_area" (harvested area), "phys_area" (physical area), "prod" (production) or "val_prod" (value of production)
path	character. Path for storing the downloaded data. See geodata_path
africa	logical. retrieve the (more up to date) data for Africa instead of global data
	additional arguments passed to download.file

Value

SpatRaster

References

International Food Policy Research Institute, 2019. Global Spatially-Disaggregated Crop Production Statistics Data for 2010 Version 2.0. https://doi.org/10.7910/DVN/PRFF8V, Harvard Dataverse, V4.

International Food Policy Research Institute, 2020. Spatially-Disaggregated Crop Production Statistics Data in Africa South of the Sahara for 2017. https://doi.org/10.7910/DVN/FSSKBW, Harvard Dataverse, V3.

See Also

https://www.mapspam.info/data/

```
# downloads a large file
cas <- crop_spam("cassava", "area", path=tempdir(), TRUE)</pre>
```

elevation

Description

Elevation data for any country. The main data source is Shuttle Radar Topography Mission (SRTM), specifically the hole-filled CGIAR-SRTM (90 m resolution) from https://srtm.csi.cgiar.org/. These data are only available for latitudes between -60 and 60.

The 1 km (30 arc seconds) data were aggregated from SRTM 90 m resolution data and supplemented with the GTOP30 data for high latitudes (>60 degrees).

Usage

```
elevation_3s(lon, lat, path, ...)
elevation_30s(country, path, mask=TRUE, subs="", ...)
elevation_global(res, path, ...)
```

Arguments

lon	numeric. Longitude
lat	numeric. Latitude
path	character. Path for storing the downloaded data. See geodata_path
country	character. Country name or code
mask	logical. set grid cells outside of the country boundaries to NA
subs	character
res	numeric. Valid resolutions are 10, 5, 2.5, and 0.5 (minutes of a degree)
	additional arguments passed to download.file

Value

SpatRaster

Examples

be <- elevation_30s(country="BEL", path=tempdir())</pre>

footprint

Description

The "human footprint" is an estimate of the direct and indirect human pressures on the environment. The human pressure is measured using eight variables including built-up environments, population density, electric power infrastructure, crop lands, pasture lands, roads, railways, and navigable waterways. It is expressed on a scale of 0 (low) to 50 (high footprint).

See https://www.nature.com/articles/sdata201667 for the details.

The original data are available here:

https://sedac.ciesin.columbia.edu/data/collection/wildareas-v3

Data are available for two years: 1993 and 2009, for all terrestrial areas except Antarctica. The footprint of seas and oceans was set to zero. The original data was in the Mollweide projection at a 1000 m spatial resolution. The data available through this function was transformed to a longitude/latitude grid at 30-seconds resolution.

Users are free to use, copy, distribute, transmit, and adapt the work for commercial and noncommercial purposes, without restriction, as long as clear attribution of the source is provided.

Usage

footprint(year=2009, path, ...)

Arguments

year	character. "1993" or "2009"
path	character. Path for storing the downloaded data. See geodata_path
	additional arguments passed to download.file

Value

SpatRaster

References

Venter, O., E. W. Sanderson, A. Magrach, J. R. Allan, J. Beher, K. R. Jones, H. P. Possingham, W. F. Laurance, P. Wood, B. M. Fekete, M. A. Levy, and J. E. Watson. 2016. Sixteen Years of Change in the Global Terrestrial Human Footprint and Implications for Biodiversity Conservation. Nature Communications 7:12558. https://doi.org/10.1038/ncomms12558.

See Also

landcover

gadm

Description

Get administrative boundaries for any country in the world. Data are read from files that are down-loaded if necessary.

Usage

```
gadm(country, level=1, path, version="latest", resolution=1, ...)
```

Arguments

country	character. Three-letter ISO code or full country name. If you provide multiple names they are all downloaded and rbind-ed together
level	numeric. The level of administrative subdivision requested. (starting with 0 for country, then 1 for the first level of subdivision)
path	character. Path for storing the downloaded data. See geodata_path
version	character. Either "latest" or GADM version number (can be "3.6", "4.0" or "4.1")
resolution	integer indicating the level of detail. Only for version 4.1. It should be either 1 (high) or 2 (low)
	additional arguments passed to download.file

Details

The data are from https://gadm.org

Value

SpatVector

See Also

world

Examples

bel <- gadm(country="BEL", level=1, path=tempdir())</pre>

geodata_path

Description

This function allows you set or get the default download path for the geodata package. By setting this path you can avoid downloading the same data many times over. This also guards against website service interruptions.

The default path is ignored if you use the path variable in a function.

To save the default path across sessions, you can add a line like this:

options(geodata_default_path = "c:/your/geodata/path")

to the file returned by

file.path(R.home(), "etc/Rprofile.site")

Alternatively, you can also set a system variable "GEODATA_PATH" to the desired path.

Usage

geodata_path(path)

Arguments

path character. Path name where the data should be downloaded to. If missing, the current default path is returned

Value

character

Examples

geodata_path()

landcover

Landcover data

Description

Landcover data at 30-seconds spatial resolution for (most of) the world. Values are the fraction of a landcover class in each cell. The values are derived from the ESA WorldCover data set at 0.3-seconds resolution. (License CC BY 4.0). See https://esa-worldcover.org/en for more information.

Usage

landcover(var, path, ...)

Arguments

var	character. One of "trees", "grassland", "shrubs", "cropland", "built", "bare", "snow", "water", "wetland", "mangroves", "moss"
path	character. Path for storing the downloaded data. See geodata_path
	additional arguments passed to download.file

Value

SpatRaster

References

Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N., Brockmann, C., Quast, R., Wevers, J., Grosu, A., Paccini, A., Vergnaud, S., Cartus, O., Santoro, M., Fritz, S., Georgieva, I., Lesiv, M., Carter, S., Herold, M., Li, Linlin, Tsendbazar, N.E., Ramoino, F., Arino, O., 2021. ESA WorldCover 10 m 2020 v100. doi:10.5281/zenodo.5571936.

See Also

landcover

osm

OpenStreetMap data

Description

Get OpenStreetMap (OSM) data

Usage

```
osm(country, var, path, proxy=FALSE, ...)
```

Arguments

country	character. Three-letter ISO code or full country name	
var	character. Currently it can be one of "places", "highways", or "railway"	
path	character. Path for storing the downloaded data. See geodata_path	
proxy	logical. Return a SpatVectorProxy?	
	additional arguments passed to download.file	

Details

License: Open Data Commons Open Database License (ODbL). See https://www.openstreetmap.org/copyright

population

Value

SpatVector

Examples

aruba <- osm(country="Aruba", "places", path=tempdir())</pre>

population *population density*

Description

Download population density data.

Source: Gridded Population of the World (GPW), v4. Documentation:

http://sedac.ciesin.columbia.edu/data/collection/gpw-v4/documentation

Usage

```
population(year, res, path, ...)
```

Arguments

year	numeric. One of 2000, 2005, 2010, 2015, 2020
res	numeric. Valid resolutions are 10, 5, 2.5, and 0.5 (minutes of a degree)
path	character. Path for storing the downloaded data. See geodata_path
	additional arguments passed to download.file

Value

SpatRaster

References

Center for International Earth Science Information Network - CIESIN - Columbia University. 2018. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). doi:10.7927/H49C6VHW. Accessed 6 July 2021.

```
# download may take > 5s
pop <- population(2020, 10, path=tempdir())</pre>
```

rice_calendar

Description

Get crop calendar and production data for rice

Usage

```
rice_calendar(path, ...)
```

Arguments

path	character. Path for storing the downloaded data. See geodata_path
	additional arguments passed to download.file

Value

SpatVectorCollection

References

Laborte, A.G.; Gutierrez, M.A.; Balanza, J.G.; Saito, K.; Zwart, S.J.; Boschetti, M.; Murty, MVR; Villano, L.; Aunario, J.K.; Reinke, R.; Koo, J.; Hijmans, R.J.; Nelson, A., 2017. RiceAtlas, a spatial database of global rice calendars and production. Scientific Data 4: 170074 doi:10.1038/sdata.2017.74

Examples

```
# first time api call takes a while
rice <- rice_calendar(path=tempdir())
cal <- rice[1]</pre>
```

soil_af

Soil data for Africa

Description

Download chemical soil properties data for Africa for different soil depths. The spatial resolution is 30 arc-seconds (about 1 km2), aggregated from the original 250m resolution.

There are more recent estimations for some of the properties available in other data sets. See soil_af_isda and soil_world.

For more info, see https://www.isric.org/projects/soil-property-maps-africa-250-m-resolution

The data have a CC-BY 4.0 NC license

soil_af

Usage

soil_af(var, depth, path, ...)

Arguments

var	character. Variables name such as "pH" or "clay". See Details
depth	numeric. One of 5, 15, 30, 60, 100, 200. This is shorthand for the following depth ranges: 0-5, 5-15, 15-30, 30-60, 60-100, 100-200 cm. Or one of 20, 50 for 0-20 or 20-50 cm
path	character. Path for storing the downloaded data. See geodata_path
	additional arguments passed to download.file

Details

var clay sand silt	description Soil texture fraction clay Soil texture fraction sand Soil texture fraction silt	unit % % %
coarse SOC BLKD poros AWpF2.0 AWpF2.3 AWpF2.5	Coarse fragments volumetric Organic carbon Bulk density (fine earth) Porosity (volum. fraction) based on PTF Avail. soil water capacity (vol. frac.) for FC = pF 2.0 Avail. soil water capacity (vol. frac.) for FC = pF 2.3 Avail. soil water capacity (vol. frac.) for FC = pF 2.4 Avail. soil water capacity (vol. frac.) at wilting point (pF 4.2)	$g \cdot kg^{-1} (\%) \\ kg \cdot m^{-3} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $
BDR pH ECN acid-exch bases-exch CEC Al-extr Al-exch Ca-exch K-exch Mg-exch Na-exch Ntot	Depth to bedrock $pH(H_2O)$ Electrical conductivity Exchangeable acidity Sum of exchangeable bases Cation Exchange Capacity Extractable Aluminum (Mehlich 3) Exchangeable Aluminum Exchangeable Calcium Exchangeable Potassium Exchangeable Potassium Exchangeable Magnesium Exchangeable Sodium Total nitrogen	$\begin{array}{c} {\rm cm} \\ & \\ {\rm mS/m} \left(?\right) \\ cmol(+) \cdot kg^{-1} \\ cmol(+) \cdot kg^{-1} \\ cmol(+) \cdot kg^{-1} \\ mg \cdot kg^{-1} \left({\rm ppm}\right) \\ cmol(+) \cdot kg^{-1} \\ g \cdot kg^{-1} \end{array}$

Value

SpatRaster

References

Hengl T, Heuvelink GBM, Kempen B, Leenaars JGB, Walsh MG, Shepherd KD, et al. (2015) Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 10(6): e0125814. doi:10.1371/journal.pone.0125814

See Also

soil_af_elements, soil_af_isda, soil_world_vsi

Examples

```
# downloads a large file
aph <- soil_af(var="ph", depth=5, path=tempdir())</pre>
```

soil_af_elements Soil elements data for Africa

Description

Connect to or download chemical soil element concentration (for the 0-30 cm topsoil) data for Africa. The spatial resolution is 30 arc-seconds (about 1 km2), aggregated from the original 250 m spatial resolution.

The data have an Open Data Commons Open Database License (ODbL)

For more information, see https://www.isric.org/projects/soil-property-maps-africa-250-m-resolution

Usage

```
soil_af_elements(var, path, ...)
```

Arguments

var	character. Variables name. One of: "Al", "B", "Ca", "Cu", "Fe", "K", "Mg", "Mn", "N", "Na", "P", "Ptot", "Zn". See Details
path	character. Path for storing the downloaded data. See geodata_path
	additional arguments passed to download.file

Details

var	description	unit
Al	Extractable aluminum	$mg \cdot kg^{-1}$ (ppm)
В	Extractable boron	$mg \cdot kg^{-1}$ (ppm)
Ca	Extractable calcium	$mg \cdot kg^{-1}$ (ppm)
Cu	Extractable copper	$mg \cdot kg^{-1}$ (ppm)
Fe	Extractable iron	$mg \cdot kg^{-1}$ (ppm)

Κ	Extractable potassium	$mg \cdot kg^{-1}$ (ppm)
Mg	Extractable magnesium	$mg \cdot kg^{-1}$ (ppm)
Mn	Extractable manganese	$mg \cdot kg^{-1}$ (ppm)
Ν	Organic nitrogen	$mg \cdot kg^{-1}$ (ppm)
Na	Extractable sodium	$mg \cdot kg^{-1}$ (ppm)
Р	Extractable phosphorus	$mg \cdot (100 \cdot kg^{-1})$
Ptot	Total phosphorus	$mg \cdot (100 \cdot kg^{-1})$
Zn	Extractable zinc	$mg \cdot kg^{-1}$ (ppm)

Value

SpatRaster

References

Hengl T, Heuvelink GBM, Kempen B, Leenaars JGB, Walsh MG, Shepherd KD, et al. (2015) Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 10(6): e0125814. doi:10.1371/journal.pone.0125814

See Also

soil_af, soil_af_isda, soil_world

Examples

```
# downloads a large file
fe <- soil_af_elements("Fe", path=tempdir(), quiet=TRUE)</pre>
```

soil_af_isda iSDA soil data for Africa

Description

Download soil data for Africa derived from the iDSA data set. The original data were aligned and aggregated to 30 arc-seconds (about 1 km2). The original spatial resolution was 30m.

For more info see:

```
https://envirometrix.nl/isdasoil-open-soil-data-for-africa/
```

```
https://zenodo.org/search?page=1&size=20&q=iSDAsoil
```

Usage

```
soil_af_isda(var, depth=20, error=FALSE, path, virtual=FALSE, ...)
```

Arguments

var	character. The variables name, one of: "Al", "bdr", "clay", "C.tot", "Ca", "db.od", "eCEC.f", "Fe", "K", "Mg", "N.tot", "oc", "P", "pH.H2O", "sand", "silt", "S", "texture", "wpg2", "Zn".see Details
depth	numeric. One of 20 (for 0-20 cm) and 50 (for 20-50 cm). Ignored if var="bdr" for which the depth is always 0-200 cm
error	logical. If TRUE the error estimates are returned
path	character. Path for storing the downloaded data. See geodata_path
virtual	logical. If TRUE a virtual connection to the file is returned. This is useful if you want to extract a small area without downloading the entire raster
	additional arguments passed to download.file

Details

var	description	unit
Al	extractable aluminum	$mg \cdot kg^{-1}$
bdr	bed rock depth	cm
clay	clay content	%
C.tot	total carbon	kg^{-1}
Ca	extractable calcium	$mg \cdot kg^{-1}$
db.od	bulk density	$kg\cdot m^3$
eCEC.f	effective cation exchange capacity	$cmol(+)\dot{k}g^{-1}$
Fe	extractable iron	$mg \cdot kg^{-1}$
Κ	extractable potassium	$mg \cdot kg^{-1}$
Mg	extractable magnesium	$mg \cdot kg^{-1}$
N.tot	total organic nitrogen	$g \cdot kg^{-1}$
OC	Organic Carbon	$g \cdot kg^{-1}$
Р	Phosphorus content	$mg \cdot kg^{-1}$
pH.H2O	pH (H_2O)	-
sand	Sand content	%
silt	Silt content	%
S	Extractable sulfer	$mg \cdot kg^{-1}$
texture	texture class	-
wpg2	stone content	%
Zn	Extractable zinc	$mg\cdot kg^{-1}$

Value

SpatRaster

soil_af_water

References

Tomislav Hengl, Matthew A. E. Miller, Josip Križan, Keith D. Shepherd, Andrew Sila, Milan Kilibarda, Ognjen Antonijevic, Luka Glušica, Achim Dobermann, Stephan M. Haefele, Steve P. McGrath, Gifty E. Acquah, Jamie Collinson, Leandro Parente, Mohammadreza Sheykhmousa, Kazuki Saito, Jean-Martial Johnson, Jordan Chamberlin, Francis B.T. Silatsa, Martin Yemefack, John Wendt, Robert A. MacMillan, Ichsani Wheeler & Jonathan Crouch, 2021. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Scientific Reports 11: 6130.

See Also

soil_af_elements, soil_af, soil_world

Examples

```
# downloads a large file
afph <- soil_af_isda("ph.h2o", path=tempdir(), quiet=TRUE)</pre>
```

soil_af_water Soil data for water balance computation (Africa only)

Description

Download physical soil properties data for Africa that can be used in water balance computation. The values are for a soil depth of 0 to 30 cm. The spatial resolution is 30 arc-seconds (about 1 km2), aggregated from the original 250m resolution.

For other properties see soil_af, soil_af_elements, soil_af_isda.

For more info, see https://www.isric.org/projects/soil-property-maps-africa-250-m-resolution

The data have a CC-BY 4.0 NC license

Usage

soil_af_water(var, depth = "30cm", path, ...)

Arguments

var	character. Variables name such as "awcpf23" or "pwp". See Details
depth	character. Either "30cm" or "erzd" (the effective rooting zone depth of maize)
path	character. Path for storing the downloaded data. See geodata_path
	additional arguments passed to download.file

Details

soil_world

var	description	unit
awcpf23	Available water capacity of the fine earth at field capacity (pF 2.3)	volumetric %
pwp	Moisture content of the fine earth at permanent wilting point (pF 4.2)	volumetric %
tetas	Moisture content of the fine earth at saturation	volumetric %
tawcpf23	Absolute total available water capacity	cm?
tawcpf23mm	Absolute total available water capacity in mm	mm
erzd	Effective root zone depth (for maize)	cm

Value

SpatRaster

See Also

soil_af_elements, soil_af_isda, soil_world

Examples

```
# this downloads a large file
tetaS <- soil_af_water(var="tetas", depth="erzd", path=tempdir())</pre>
```

soil_world Global soil data

Description

Download global soils data. The data are derived from the SoilGRIDS database. The data were aggregated and transformed to a longitude/latitude coordinate reference system with 30-second spatial resolution.

See https://www.isric.org/explore/soilgrids for more info.

data license: CC-BY 4.0

Usage

```
soil_world(var, depth, stat="mean", name="", path, ...)
```

Arguments

var	character. Variables name. One of: "bdod", "cfvo", "clay", "nitrogen", "ocd",
	"ocs", "phh2o", "sand", "silt", "soc", "wrb". See Details
depth	numeric. One of 5, 15, 30, 60, 100, 200. This is shorthand for the following depth ranges: 0-5, 5-15, 15-30, 30-60, 60-100, 100-200 cm. Ignored if var="wrb"

stat	character. One of "mean", "uncertainty", "Q0.05", "Q0.5", "Q0.95". Ignored if var="wrb"
name	character. One of "Acrisols", "Albeluvisols", "Alisols", "Andosols", "Arenosols", "Calcisols", "Cambisols", "Chernozems", "Cryosols", "Durisols", "Ferralsols", "Fluvisols", "Gleysols", "Gypsisols", "Histosols", "Kastanozems", "Leptosols", "Lixisols", "Luvisols", "Nitisols", "Phaeozems", "Planosols", "Plinthosols", "Pod- zols", "Regosols", "Solonchaks", "Solonetz", "Stagnosols", "Umbrisols", "Ver- tisols". Only used when var="wrb"
path	character. Path for storing the downloaded data. See geodata_path
	additional arguments passed to download.file

Details

var	description	unit
bdod	Bulk density of the fine earth fraction	$kg \cdot dm^{-3}$
cec	Cation Exchange Capacity of the soil	$cmol(+)\dot{k}g^{-1}$
cfvo	Vol. fraction of coarse fragments (> 2 mm)	%
nitrogen	Total nitrogen (N)	$g \cdot kg^{-1}$
phh2o	$pH(H_2O)$	-
sand	Sand (> 0.05 mm) in fine earth	%
silt	Silt (0.002-0.05 mm) in fine earth	%
clay	Clay (< 0.002 mm) in fine earth	%
SOC	Soil organic carbon in fine earth	$g \cdot kg^{-1}$
ocd	Organic carbon density	$\begin{array}{c} s & kg \\ kg \cdot m^{-3} \\ kg \cdot m^{-2} \end{array}$
ocs	Organic carbon stocks	$kg\cdot m^{-2}$

Value

SpatRaster

References

Poggio L., de Sousa L.M., Batjes N.H., Heuvelink G.B.M., Kempen B., Ribeiro E., Rossiter D., 2021. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil 7:217-240, 2021. doi:10.5194/soil-7-217-2021

See Also

For virtual access to the original data: soil_world_vsi For Africa: soil_af_isda, soil_af, soil_af_elements

```
# this downloads a large file
gph <- soil_world(var="phh2o", depth=5, path=tempdir())</pre>
```

soil_world_vsi soil grids_vsi

Description

Virtually connect to the global soilgrids data. See https://www.isric.org/explore/soilgrids for more info.

data license: CC-BY 4.0

Usage

soil_world_vsi(var, depth, stat="mean", name="")

Arguments

var	character. Variables name. One of: "bdod", "cfvo", "clay", "nitrogen", "ocd", "ocs", "phh2o", "sand", "silt", "soc", "wrb". See Details
depth	numeric. One of 5, 15, 30, 60, 100, 200. This is shorthand for the following depth ranges: 0-5, 5-15, 15-30, 30-60, 60-100, 100-200 cm. Ignored if $var="wrb"$
stat	character. One of "mean", "uncertainty", "Q0.05", "Q0.5", "Q0.95". Ignored if var="wrb"
name	character. One of 'Acrisols', 'Albeluvisols', 'Alisols', 'Andosols', 'Arenosols', 'Calcisols', 'Cambisols', 'Chernozems', 'Cryosols', 'Durisols', 'Ferralsols', 'Flu- visols', 'Gleysols', 'Gypsisols', 'Histosols', 'Kastanozems', 'Leptosols', 'Lix- isols', 'Luvisols', 'Nitisols', 'Phaeozems', 'Planosols', 'Plinthosols', 'Podzols', 'Regosols', 'Solonchaks', 'Solonetz', 'Stagnosols', 'Umbrisols', 'Vertisols'. Only used when var="wrb"

Details

The below table lists the variable names, a description, and the units of the variables. Note that these units are not standard units, and are different from the data for other soil data available through this package.

var	description	unit
bdod	Bulk density of the fine earth fraction	$cg \cdot cm^{-3}$
cec	Cation Exchange Capacity of the soil	$mmol(+)\dot{k}g^{-1}$
cfvo	Vol. fraction of coarse fragments (> 2 mm)	% o
nitrogen	Total nitrogen (N)	$cg\cdot kg^{-1}$
phh2o	$pH(H_2O)$	-
sand	Sand (> 0.05 mm) in fine earth	%0
silt	Silt (0.002-0.05 mm) in fine earth	%0
clay	Clay (< 0.002 mm) in fine earth	%0
SOC	Soil organic carbon in fine earth	$dg \cdot kg^{-1}$
ocd	Organic carbon density	$hg \cdot m^{-3}$

sp_occurrence

ocs Organic carbon stocks

 $hg\cdot m^{-2}$

Value

SpatRaster

References

Poggio, L., de Sousa, L.M., Batjes, N.H., Heuvelink, G.B.M., Kempen, B., Ribeiro, E., and Rossiter, D., 2021. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil 7:217-240, 2021. doi:10.5194/soil-7-217-2021

See Also

soil_world to download these data at 30-seconds spatial resolution.

For Africa: soil_af_isda, soil_af, soil_af_elements

Examples

```
ph <- soil_world_vsi(var="phh2o", depth=5)
ph</pre>
```

sp_occurrence

Download species occurrence data from GBIF

Description

Download data from the Global Biodiversity Information Facility (GBIF) data portal.

sp_genus returns a data.frame with all the species names associated with a genus.

sp_occurrence downloads species occurrence records. You can download data for a single species or for an entire genus by using species="". Note that the maximum number of records that can be downloaded for a single search is 100,000.

You can check the number of records returned by using the option download=FALSE.

To avoid getting more than 100,000 records, you can do separate queries for different geographic areas. This has been automated in sp_occurrence_split. This function recursively splits the area of interest into smaller areas until the number of records in an area is less than 50,000. It then downloads these records and saves them in a folder called "gbif". After all areas have been evaluated, the data are combined into a single file and returned as a data.frame). If the function is interrupted, it can be run again, and it will resume where it left off.

If you want to download data for an entire genus, first run sp_genus and then download data for the returned species names one by one.

Before using this function, please first check the GBIF data use agreement and see the note below about how to cite these data.

Usage

```
sp_genus(genus, simple=TRUE, ...)
```

```
sp_occurrence(genus, species="", ext=NULL, args=NULL, geo=TRUE,
removeZeros=FALSE, download=TRUE, ntries=5, nrecs=300,
start=1, end=Inf, fixnames=TRUE, ...)
```

```
sp_occurrence_split(genus, species="", path=".", ext=c(-180,180,-90,90),
args=NULL, geo=TRUE, removeZeros=FALSE, ntries=5, nrecs=300,
fixnames=TRUE, prefix=NULL, ...)
```

Arguments

genus	character. genus name
species	character. species name. Can be left blank to get the entire genus
ext	SpatExtent object to limit the geographic extent of the records. A SpatExtent can be created using functions like ext and draw
args	character. Additional arguments to refine the query. See query parameters in http://www.gbif.org/developer/occurrence for more details
geo	logical. If TRUE, only records that have a georeference (longitude and latitude values) will be downloaded
removeZeros	logical. If TRUE, all records that have a latitude OR longitude of zero will be removed if geo==TRUE, or set to NA if geo==FALSE. If FALSE, only records that have a latitude AND longitude that are zero will be removed or set to NA
download	logical. If TRUE, records will be downloaded, else only the number of records will be shown
ntries	integer. How many times should the function attempt to download the data, if an invalid response is returned (perhaps because the GBIF server is very busy)
nrecs	integer. How many records to download in a single request (max is 300)?
start	integer. Record number from which to start requesting data
end	integer. Last record to request
fixnames	If TRUE a few unwieldy and poorly chosen variable names are changed as fol- lows. "decimalLatitude" to "lat", "decimalLongitude" to "lon", "stateProvince" to "adm1", "county" to "adm2", "countryCode" to "ISO2". The names in "coun- try" are replaced with the common (short form) country name, the original val- ues are stored as "fullCountry"
path	character. Where should the data be downloaded to (they will be put in a subdirectory "gbif")?
prefix	character. prefix of the downloaded filenames (best left NULL, the function will then use "genus_species"
simple	logical. If TRUE, a vector the accepted species names are returned. Otherwise a data.frame with much more information is returned
	additional arguments passed to download.file

26

travel_time

Value

data.frame

Note

Under the terms of the GBIF data user agreement, users who download data agree to cite a DOI. Citation rewards data-publishing institutions and individuals and provides support for sharing open data [1][2]. You can get a DOI for the data you downloaded by creating a "derived" dataset. For this to work, you need to keep the "datasetKey" variable in your dataset.

References

https://www.gbif.org/occurrence https://www.gbif.org/derived-dataset/about

Examples

```
sp_occurrence("solanum", download=FALSE)
sp_occurrence("solanum", "acaule", download=FALSE)
sp_occurrence("Batrachoseps", "" , down=FALSE)
sp_occurrence("Batrachoseps", "luciae", down=FALSE)
g <- sp_occurrence("Batrachoseps", "luciae", geo=TRUE, end=25)
#plot(g[, c("lon", "lat")])
## args
a1 <- sp_occurrence("Elgaria", "multicarinata",</pre>
```

```
args="recordNumber=Robert J. Hijmans RH-2")
a2 <- sp_occurrence("Batrachoseps", "luciae",
args=c("year=2023", "identifiedBy=Anthony Ye"))</pre>
```

```
## year supports "range queries"
a3 <- sp_occurrence("Batrachoseps", "luciae",
args=c("year=2020,2023", "identifiedBy=Kuoni W"))
#table(a3[,c("year")])</pre>
```

travel_time Travel time to a city or port

Description

Download global travel time to a city or port data on rasters at a 30 arc-seconds (about 1 km2) resolution.

Usage

```
travel_time(to="city", size=1, up=FALSE, path, ...)
```

Arguments

to	character. "city" or "port"
size	positive integer indicating the size of the city or port. Can be between 1 and 9 if to="city" or between 1 and 5 if to="port". See Details
up	logical. If TRUE the travel time to a city of the size chosen or larger is returned
path	character. Path for storing the downloaded data. See geodata_path
	additional arguments passed to download.file

Details

Description of the the size argument.

to="city"

size	Inhabitants
1	5,000,000 to 50,000,000
2	1,000,000 to 5,000,000
3	500,000 to 1,000,000
4	200,000 to 500,000
5	100,000 to 200,000
6	50,000 to 100,000
7	20,000 to 50,000
8	10,000 to 20,000
9	5,000 to 10,000

to="port"

size	Description	Number of ports
1	Large	160
2	Medium	361
3	Small	990
4	Very small	2,153
5	Any	3,778

Value

SpatRaster

References

Nelson, A., D.J. Weiss, J. van Etten, A. Cattaneo, T.S. McMenomy & J. Koo, 2019. A suite of global accessibility indicators. Scientific Data 6: 266. doi:10.1038/s41597-019-0265-5

Version 3 (2019-05-15) from https://figshare.com/articles/dataset/Travel_time_to_cities_ and_ports_in_the_year_2015/7638134/3 world

Description

Get the borders for all the countries in the world. Data are read from files that are downloaded if necessary.

Usage

```
world(resolution=5, level=0, path, version="latest", ...)
```

Arguments

resolution	integer between 1 and 5 indicating the level of detail. 1 is high 5 is low
level	numeric. The level of administrative subdivision requested. (starting with 0 for country, then 1 for the first level of subdivision). Only level 0 is currently available
path	character. Path for storing the downloaded data. See geodata_path
version	character. Only "3.6" is currently supported
	additional arguments passed to download.file

Details

The data are from https://gadm.org

Value

SpatVector

See Also

gadm

Examples

w <- world(path=tempdir())</pre>

worldclim

Description

Download climate data from WorldClim version 2.1. See Details for variables and units.

Usage

```
worldclim_global(var, res, path, version="2.1", ...)
worldclim_country(country, var, path, version="2.1", ...)
worldclim_tile(var, lon, lat, path, version="2.1", ...)
```

Arguments

var	character. Valid variables names are "tmin", "tmax", "tavg", "prec", "wind", "vapr", and "bio"
res	numeric. Valid resolutions are 10, 5, 2.5, and 0.5 (minutes of a degree)
path	character. Path for storing the downloaded data. See geodata_path
country	character. Country name or code
lon	numeric. Longitude
lat	numeric. Latitude
version	character or numeric. WorldClim version number. Only "2.1" supported at the moment
	additional arguments passed to download.file

Details

These are the WorldClim monthly average climate data.

Variable	Description	Unit
tmin	minimum temperature	°C
tmax	maximum temperature	°C
tavg	average temperature	°C
prec	total precipitation	mm
srad	incident solar radiation	$kJ\cdot m^{-2}\cdot day^{-1}$
wind	wind speed (2 m above the ground)	$m \cdot s^{-1}$
vapr	vapor pressure	kPa

Value

SpatRaster

worldclim

See Also

https://www.worldclim.org/

Examples

lux <- worldclim_country("Luxembourg", var="tmin", path=tempdir())</pre>

Index

* spatial sp_occurrence, 25 bio_oracle, 2, 3 cmip6,4 cmip6_tile, 2 cmip6_tile (cmip6), 4 cmip6_world, 2 cmip6_world(cmip6), 4 country_codes, 2, 5 crop_calendar_sacks, 2, 7 crop_monfreda, 2, 8 crop_spam, 2, 9 cropland, 2, 6download.file, 3, 4, 6-12, 14-18, 20, 21, 23, 26, 28-30 draw, 26 elevation, 10 elevation_30s, 2 elevation_30s (elevation), 10 elevation_3s, 2 elevation_3s (elevation), 10 elevation_global, 2 elevation_global (elevation), 10 ext, 26 footprint, 2, 11 gadm, 2, 12, 29

geodata (geodata-package), 2 geodata-package, 2 geodata_path, 3, 4, 6–12, 13, 14–18, 20, 21, 23, 28-30

landcover, 2, 6, 11, 13, 14

monfredaCrops (crop_monfreda), 8

osm, 2, 14

population, 2, 15

rice_calendar, 16

sacksCrops (crop_calendar_sacks), 7 soil_af, 2, 16, 19, 21, 23, 25 soil_af_elements, 2, 18, 18, 21–23, 25 soil_af_isda, 3, 16, 18, 19, 19, 21–23, 25 soil_af_water, 2, 21 soil_world, 3, 16, 19, 21, 22, 22, 25 soil_world_vsi, 3, 18, 23, 24 sp_genus (sp_occurrence), 25 sp_occurrence, 3, 25 sp_occurrence_split (sp_occurrence), 25 spamCrops (crop_spam), 9

travel_time, 3, 27

vrt, 5

world, 2, 12, 29
worldclim, 30
worldclim_country, 3
worldclim_country (worldclim), 30
worldclim_global, 3
worldclim_global (worldclim), 30
worldclim_tile, 3
worldclim_tile (worldclim), 30