Package ‘gensphere’

October 13, 2022
Type Package
Title Generalized Spherical Distributions
Version 1.3
Date 2021-01-12
Author John P Nolan
Maintainer John P Nolan <jpnolan@american.edu>

Depends R (>= 3.0), mvmesh, geometry, SphericalCubature (>= 1.5), rgl,
utils, grDevices, graphics

Description Define and compute with generalized spherical distributions - multivariate probability
laws that are specified by a star shaped contour (directional behavior) and a radial component.
The methods are described in Nolan (2016) <doi:10.1186/s40488-016-0053-0>.

License GPL (>=3)

Imports SimplicialCubature
NeedsCompilation no

Repository CRAN

Date/Publication 2021-01-12 18:20:03 UTC

R topics documented:

gensphere-package
cfunc.new
gensphere
eNSPheremisC e e

Index

https://doi.org/10.1186/s40488-016-0053-0

2 gensphere-package

gensphere-package gensphere

Description

Define and compute with generalized spherical distributions - multivariate probability laws that are
specified by a star shaped contour (directional behavior) and a radial component.

Details

This package implements some classes of generalized spherical distributions in dimensions 2, 3,
and above. Functions cfunc.new, cfunc.add. term, cfunc.finish give a flexible way to define
a range of shapes for the star-shaped contours. Then function gensphere defines a generalized
spherical distribution using a contour function and a specification of the radial term. Function
dgensphere is used to compute the multivariate density g(x) for X and function rgensphere is
used to simulate a sample random vectors with the (approximate) distribution X.

A large class of distribution can be described as generalized spherical laws. In particular, all
isotropic/radially symmetric distributions and all elliptically contoured distributions are general-
ized spherical laws. Such distributions can be represented as: X = RS where R is a positive
random variable and S is a random vector distributed uniformly (with respect to surface area) on
the contour, see Nolan (2015).

Throughout this package, points in d-dimensional space are represented as column vectors; this is
different than what base R and packages mvmesh, geometry, etc. use; but it is the same as package
SphericalCubature, SimplicialCubature, and other packages.

This research was supported by an agreement with Cornell University, Operations Research & In-
formation Engineering, under contract W911NF-12-1-0385 from the Army Research Development
and Engineering Command.

Please let me know if you find any mistakes. I will try to fix bugs promptly. Constructive comments
for improvements are welcome; actually implementing any suggestions will be dependent on time
constraints.

Version 1.0 was released on 18 May 2016. Version 1.1 was released on 13 September 2017 and
includes a new optional argument norm.const.method in the function cfunc.finish. Also changes
were made to accomodate changes in package SphericalCubature.

Version 1.2 (never on CRAN, 10 January 2021) has a minor change to work with the update of
package SphericalCubature to version 1.5, updated a reference, and the examples include if(
interactive()) around calls to plotting functions. Version 1.3 (12 January 2021) adds links
to the DOI for the paper this work is based on, and provides a faster 3-d example.

Author(s)

John P Nolan

Maintainer: John P Nolan

cfunc.new 3

References

B. C. Arnold, E. Castillo and J. M. Sarabia (2008), Multivariate distributions defined in terms of
contours, J. Stat. Planning and Inference, 138, 4158 - 4171

C. Fernandez, J. Osiewalksi and M. F. J. Steel (1995), Modeling and Inference with v-Spherical
Distributions, J. Amer. Stat. Assoc., 90, 1331-1340

J. P. Nolan (2016), An R package for modeling and simulating generalized spherical and related
distributions, J. of Statistical Distributions and Applications, 3:14, online at doi: 10.1186/s40488-
01600530

See Also

cfunc.new, gensphere

cfunc.new Define and evaluate a contour function

Description

The directional part of a generalized spherical distribution is defined by a contour function, cfunc
for short. These functions are used to define a contour function and then evaluate it.

Usage

cfunc.new(d)

cfunc.add.term(cfunc, type, k)

cfunc.finish(cfunc, nsubdiv = 2, maxEvals=100000, norm.const.method="integrate"”,...)
cfunc.eval(cfunc, x)

Arguments
d dimension of the space
cfunc an object of class "gensphere.contour”
type string describing what type of term to add to the contour
k a vector of constants used to specify a term
X a (d x n) matrix, with columns x[,i] being points in R"d
nsubdiv number of dyadic subdivisions of the sphere, controls the refinement of the tes-
sellation. Typical values are 2 or 3.
maxEvals maximum number of evaluations of the integrand function, see details section

below

norm.const.method
method used to compute the norming constant. Can be "integrate" (the default,
in which case the contour function is numerically integrated to get the norming
constant), or "simplex.area" (in which case no integration is done; the surface
area of the contour is approximated by the surface area of the tesselation). This

https://doi.org/10.1186/s40488-016-0053-0
https://doi.org/10.1186/s40488-016-0053-0

4 cfunc.new

later choice is for complex surface or higher dimensional surfaces where the
numerical integration may fail or take a very long time. This allows simulation
in cases where the numerical integration is not feasible.

optional arguments to pass to integration routine, see details section below

Details

A contour function describes the directional behavior of a generalized spherical distribution. In this
package, a contour function is built by calling three functions: cfunc. new to start the definition of a
d-dimensional contour, cfunc.add. term to add a new term to a contour (may be called more than
once), and cfunc. finish to complete the defintion of a contour.

When adding a term, type is one of the literal strings "constant", "elliptical", "proj.normal", "lp.norm",
"gen.lp.norm", or "cone". The vector k contains the constants necessary to specify the desired shape.
k[1]=the first element of k is always a scale, it allows one to expand or contract a shape. The re-
maining elements of k depend on the value of "type’.:

* "constant": k is a single number; k[1]=radius of the sphere

 "elliptical": k is a vector of length d"2+1; k[1]=scale of ellipse, k[2:(d"2+1)] specify the
symmetric positive definite matrix B with is used to compute the elliptical contour

* "proj.normal": k is a vector of length d+2; k[1]=scale of the bump, mu=k[2:(d+1)] is the vector
pointing in the direction where the normal bump is centered, k[d+2]=standard deviation of the
isotropic normal bump

* "lp.norm": k is a vector of length 2; k[1]=scale and k[2]=p, the power used in the |_p norm

* "gen.lp.norm": k is vector of length 2+m*d for some positive integer m; k[1]=scale, k[2]=p,
the power used in the I-p norm, k[3:(2+m*d)] spcifies a matrix A that is used to compute Il A

xI_p

* "cone": k is a vector of length d+2, k[l]=scale, mu=k[2:(d+1)]= the center of the cone,
k[d+2]=base of the cone

Note that cfunc.finish does a lot of calculation, and may take a while, especially in dimension
d > 2. The most time consuming part is numerically integrating over the contour, a (d-1) dimen-
sional surface in d-dimensional space and in tesselating the contour in a way that focuses on the
bulges in the contour from cones and normal bumps. The integration is required to calculate the
norming constant needed to compute the density. This integration is performed by using function
adaptIntegrateSphereTri in SphericalCubature and is numerically challenging. In dimension
d > 3 or if nsubdiv > 4, users may need to adjust the arguments maxEvals and ... The default value
maxEvals=100000 workw in most 3 dim. problems, and it takes a few seconds to calculate. (For an
idea of the size and time required, a d=4 dim. case used maxEvals=1e+7 and took around 5 minutes.
A d=5 dim. case used maxEvals=1e+8, used 160167 simplices and took over 2 days.) Note that this
calculation is only done once; calculating densities and simulating is still fast in higher dimensions.
It may be useful to save a complicated/large contour object so that it can be reused across R sessions
via save(cfunc) and load(cfunc).

Note: the first time cfunc. finish is called, a warning message about "no degenerate regions are
returned" is printed by the package geometry. I do not know how to turn that off; so just ignore it.

cfunc.eval is used to evaluate a completed contour function.

cfunc.new 5

Value

cfunc.new and cfunc.add. term return a list that is an incomplete definition of a contour function.
cfunc. finish completes the definition and returns an S3 object of class "gensphere.contour" with
fields:

d dimension

m number of terms in the contour function, i.e. the number of times cfunc.add. term
was called

term a vector length m of type list, with each list describing a term in the contour
function

norm.const norming constant

functionEvaluations

number of times the integrand (contour) function is evaluated by adaptIntegrateSphereTri
when computing norm.const

tessellation an object of type "mvmesh" that gives a geometrical description of the contour.
It is used to plot the contour and to simulate from the contour

tessellation.weights

weights used in simulation; surface area of the simplices in the tessellation

simplex.count vector of length 3 giving the number of simplices used at the end of three internal
stages of construction: after initial subdivision, after refining the sphere based
on cones and bumps, and final count have adaptive integration routine partitions
the sphere

norm. const.method
value of input argument norm.const.method

cfunc. eval returns a vector of length n=nrow(x); y[i] = cfunc(x[,i]) = value of the contour function
at point x[,i].

The plots below show the three contours defined in the examples below.

diamond contour contour with two bumps

6 cfunc.new

ball with bump with 576 simplices

Examples

2-dim diamond

cfuncl <- cfunc.new(d=2)

cfuncl <- cfunc.add.term(cfuncl,”"lp.norm”,k=c(1,1))

cfuncl <- cfunc.finish(cfuncl)

cfunci

cfunc.eval(cfuncl, c(sqrt(2)/2, sqrt(2)/2))

if(interactive()) { plot(cfuncl, col='red', lwd=3, main="diamond contour") }

2-dim blob
cfunc2 <- cfunc.new(d=2)
cfunc2 <- cfunc.add.term(cfunc2,”constant”, k=1)
cfunc2 <- cfunc.add.term(cfunc2,”proj.normal” k=c(1, sqrt(2)/2, sqrt(2)/2, 0.1))
cfunc2 <- cfunc.add.term(cfunc2,"proj.normal” k=c(1, -1,0, 0.1))
cfunc2 <- cfunc.finish(cfunc2, nsubdiv=4)
if(interactive()) {
plot(cfunc2, col='green', lwd=3, main="contour with two bumps")

3-dim ball with one spike

cfunc3 <- cfunc.new(d=3)

cfunc3 <- cfunc.add.term(cfunc3, "elliptical”,k=c(1, 1,0,0, 0,1,0, 0,0,1))
cfunc3 <- cfunc.add.term(cfunc3, "proj.normal”,k=c(1, 1,0,0, .25))

cfunc3 <- cfunc.finish(cfunc3, nsubdiv=3) # takes ~20 seconds, get warnings
plot(cfunc3, show.faces=TRUE, col='blue')

nS <- dim(cfunc3$tessellation$S)[3]

title3d(paste(”ball with bump with"”,nS,"simplices"))

gensphere

gensphere

Generalized spherical distribution definition, density, simulation

Description

Define a generalized spherical distribution by specifying a contour function, a radial density func-
tion, a radial simulation function, and a value of the density at the origin. Once it is defined, compute
density and simulate that distribution.

Usage

gensphere(cfunc, dradial, rradial, go)
dgensphere(x, gs.dist)
rgensphere(n, gs.dist)

Arguments

cfunc
dradial
rradial

g0
X

gs.dist

Details

contour function object defined by cfunc.new, cfunc.add. termand cfunc.finish
a function to evaluate the density for the radial component of distribution

a function to simulate values of the radial distribution

g(0) = value of the multivariate density at the origin

(d x n) matrix of point where the density is to be evaluated. Columns x[,i] are
vectors in d-space

a generalized spherical distribution, an object returned by function gensphere

number of values to generate

A generalized spherical distribution is specified by calling function gensphere with the contour
function (defined via function cfunc.new, cfunc.add.term and cfunc.finish), a function to
compute the density of the radial term R, a runction to simulate from the radial term R, and g(0)=the
value of the density at the origin. See the general representation of generalized spherical laws in
gensphere-package.

If the distribution is d dimensional and the radial term is a gamma distribution with shape=shape
and scale=1,g(0)=0 if d < shape, g(0)=cfunc$norm.const if d=shape, g(0) = oo if d > shape. In
general, g(0) = lim,_,o+ r'~4dradial(r).

Value

gensphere returns an S3 object of class "gensphere.distribution" with components:

cfunc
dradial

rradial

g0

a contour function defined with cfunc. new, etc.
a function that evaluates the desnity of the radial component
a function that simulates values of the radial component

2(0), the value of the multivariate density g(x) at the origin

8 gensphere

dgensphere returns a numeric vector y that contains the value of the density of X: y[i]=g(x[,i]),
i=1,...,n. Note that g(x) is the density of the vector X, whereas dradial is the denis of the univariate
radial term R.

rgensphere returns a (d x n) matrix of simulated values of X. Note that these values are an ap-
proximation to the distribution of X because the contour is approximated to a limited accuracy in
cfund. finish.

Here are plots of the density surface and simulated points generated by the examples below.

simulated points

See Also

gensphere-package, cfunc.new

Examples

define a diamond shaped contour

cfuncl <- cfunc.new(d=2)

cfuncl <- cfunc.add.term(cfuncl,"”gen.1lp.norm” ,k=c(1,1,2,0,0,1))
cfuncl <- cfunc.finish(cfuncl)

cfunci

define a generalized spherical distribution

rradial <- function(n) { rgamma(n, shape=2) }

dradial <- function(x) { dgamma(x, shape=2) }

dist1 <- gensphere(cfuncl, dradial, rradial, g@=cfuncl$norm.const)
dist1

calculate density at a few points
dgensphere(x=matrix(c(0,0, 0,1, 0,2), nrow=2, ncol=3), distl)

simulate values from the distribution
X <- rgensphere(10000, distl)

calculate and plot density surface on a grid
xy.grid <- seq(-3,3,.1)
if(interactive()) {

genspheremisc

z <- gs.pdf2d.plot(dist1, xy.grid)
title3d("density surface”)
plot(t(x),xlab="x",ylab="y" ,main="simulated points"”)

3
genspheremisc Miscellaneous functions used in working with generalized spherical
laws
Description

Miscellaneous internal functions for the gensphere package.

Usage

gs.cone(x, mu, theta®)

gs.elliptical(x, B)

gs.gen.lp.norm(x, p, A)

gs.1lp.norm(x,p)

gs.proj.normal(x, mu, sigma)
gs.vfunc.eval(cfunc, x)
gs.pdf2d.plot(gs.dist, xy.grid = seq(-10, 10, 0.1))
RefineSphericalTessellation(V1, V2)
NearbyPointsOnSphere(x, epsilon)
RotateInNDimensions(x, y)

S3 method for class 'gensphere.contour'

print(x,...)
S3 method for class 'gensphere.distribution'
print(x,...)

S3 method for class 'gensphere.contour'
plot(x,multiplier=1,...)

Arguments
X,y vectors representing points in d-dimensional space
mu direction of the mode for a cone/normal bump
thetad angle between peak of the cone and the base of the cone
B (d x d) positive definite shape matrix
A matrix used to compute Il A x lI_p
p power of the 1"p norm; p=2 is Euclidean distance
gs.dist object of class "gensphere.distribution" defined by gensphere
xy.grid a matrix of (x,y) values in 2-dimensions

cfunc an object of class "gensphere.contour” defined by cfunc. new, etc.

10 genspheremisc

optional arguments to the 2-dimensional plot, e.g. col="red’, etc.

sigma scale parameter for a normal bump
epsilon vector of positive numbers where there are points added around a particular
direction
V1,V2 matrices of vertices which are joined together to get a refinement of the grid
multiplier a positive number used to scale the contour
Details

These are undocumented functions that are used internally. The functions gs.cone, gs.elliptical,
gs.gen.lp.norm, gs.1lp.norm, gs.proj.normal, gs.vfunc.eval are used in evalutating a con-
tour function. RefineSphericalTessellation, NearbyPointsOnSphere are used in defining the
tessellation of the contour that identifies bumps and cones. gs.pdf2d.plot and the plot/print meth-
ods are initial attempts at plotting and printing a summary of objects.

These functions may change or disappear in the future.

Index

cfunc.add. term (cfunc.new), 3
cfunc.eval (cfunc.new), 3
cfunc.finish (cfunc.new), 3
cfunc.new, 3, 3, 8

dgensphere (gensphere), 7

gensphere, 3,7
gensphere-package, 2, 7
genspheremisc, 9

gs.cone (genspheremisc), 9
gs.elliptical (genspheremisc), 9
gs.gen.lp.norm (genspheremisc), 9
gs.1lp.norm(genspheremisc), 9
gs.pdf2d.plot (genspheremisc), 9
gs.proj.normal (genspheremisc), 9
gs.vfunc.eval (genspheremisc), 9

NearbyPointsOnSphere (genspheremisc), 9

plot.gensphere.contour (genspheremisc),
9

print.gensphere.contour
(genspheremisc), 9

print.gensphere.distribution
(genspheremisc), 9

RefineSphericalTessellation
(genspheremisc), 9

rgensphere (gensphere), 7

RotateInNDimensions (genspheremisc), 9

11

	gensphere-package
	cfunc.new
	gensphere
	genspheremisc
	Index

