Package 'genpwr'

October 13, 2022

Title Power Calculations Under Genetic Model Misspecification

Version 1.0.4

Description Power and sample size calculations for genetic association studies allowing for misspecification of the model of genetic susceptibility.
``Hum Hered. 2019;84(6):256-271.<doi:10.1159/000508558>. Epub 2020 Jul 28." Power and/or sample size can be calculated for logistic (case/control study design) and linear (continuous phenotype) regression models, using additive, dominant, recessive or degree of freedom coding of the genetic covariate while assuming a true dominant, recessive or additive genetic effect. In addition, power and sample size calculations can be performed for gene by environment interactions. These methods are extensions of Gauderman (2002)
<doi:10.1093/aje/155.5.478> and Gauderman (2002)
<doi:10.1002/sim.973> and are described in: Moore CM, Jacobson S, Fingerlin TE. Power and Sample Size Calculations for Genetic Association Studies in the Presence of Genetic Model Misspecification. American Society of Human Genetics. October 2018, San Diego.

Depends R (>= 3.5.0)

License GPL-3

Imports ggplot2, nleqslv, MASS, stats, utils

Encoding UTF-8

RoxygenNote 7.1.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Camille Moore [aut, cre], Sean Jacobson [aut]

Maintainer Camille Moore <moorec@njhealth.org>

Repository CRAN

Date/Publication 2021-03-31 00:00:07 UTC

R topics documented:

add.fun.t	3
add.or.function	
additive.ll	
additive.ll.linear	5
as.numeric2	6
calc.like	7
calc.like.linear	7
calc.like.linear.log.envir.interaction	8
df2.11	9
df2.11.linear	10
dom.fun.t	11
dom.or.function	11
dominant.ll	12
dominant.ll.linear	13
es.calc.linear	14
expected.linear.ll	15
expected.linear.ll.lin.env	15
find.prob.dom	16
find.prob.rec	17
genpwr.calc	17
integrand_funct_case	
integrand_funct_control	20
linear.mles	
linear.mles.lin.envir.interaction	22
linear.mles.lin.envir.interaction_reduced	
linear.mles.log.envir.interaction	
linear.outcome.lin.envir.interaction.sds	
linear.outcome.lin.envir.interaction.sds_reduced	26
linear.outcome.log.envir.interaction.sds	
linear.sds	
ll.ge.logistic	28
ll.ge.logistic.lin.envir	
Il.linear.selector	
ll_zero_finder2	
logistic.mles	
logit	
ncp.search	
null.ll	34
null.ll.linear	34
odds_ratio_function	35
or.function.2df	36
or.plot	37
or_calc	38
power.calc	39
power.calc.linear	40
power.plot	41
r	

power_envir.calc	43
power_envir.calc.linear_outcome	. 44
power_linear_envir.calc.linear_outcome	. 45
power_linear_envir.calc.logistic_outcome	. 47
p_vec_returner	48
p_vec_returner_lin_env	. 49
quad_roots	49
rec.fun.t	50
rec.or.function	51
recessive.ll	51
recessive.ll.linear	52
solve_a	53
ss.calc	53
ss.calc.linear	55
ss.plot	56
ss_envir.calc	57
ss_envir.calc.linear_outcome	58
ss_linear_envir.calc.linear_outcome	60
ss_linear_envir.calc.logistic_outcome	61
X_mat_returner	63
X_mat_returner_lle	63
zero_finder_nleqslv	64
	65

Index

add.fun.t	Function to Calculate t matrix for logistic outcome with binary envi-
	ronment interaction in additive model

Description

Calculates the t matrix for logistic outcome with binary environment interaction in additive model

Usage

add.fun.t(MAF, P_e, OR_E, OR_G, OR_GE, Case.Rate)

Arguments

MAF	Vector of minor allele frequencies
P_e	Vector of proportions of the population with exposure to the environmental effect
OR_E	Vector of environmental odds ratios to detect
OR_G	Vector of genetic odds ratios to detect
OR_GE	Vector of genetic/environmental interaction odds ratios to detect
Case.Rate	proportion of cases in the sample (cases/(cases + controls)).

3

Value

t matrix for all combinations of environment/outcome

Examples

add.fun.t(MAF = 0.1, P_e = 0.2, Case.Rate = 0.5, OR_G = 1.5, OR_E = 2, OR_GE = 1.8)

add.or.function Additive Model Function

Description

Operates within odds_ratio_function to calculate odds ratios for a Test.Model of "Additive"

Usage

add.or.function(like, Case.Rate, P_AA, P_AB, P_BB, True.Model, risk_allele)

Arguments

like	Expected log likelihood
Case.Rate	proportion of cases in the sample (cases/(cases + controls)).
P_AA	Probability the allele is homozygous for the major allele
P_AB	Probability the allele is heterozygous
P_BB	Probability the allele is homozygous for the minor allele
True.Model	A vector object specifying the true underlying genetic model(s): 'Dominant', 'Additive', or 'Recessive'
risk_allele	Logical: If OR > 1, the allele is classified as a "risk allele"

Value

: The odds ratios and their corresponding genetic model(s)

```
add.or.function(like=-0.57162, Case.Rate=0.3, P_AA=0.5625, P_AB=0.375,
P_BB=0.0625, True.Model="Additive", risk_allele=TRUE)
```

additive.ll

Description

Calculates the log likelihood for a given set of logistic regression coefficients under an additive genetic model.

Usage

additive.ll(beta, t)

Arguments

beta	Vector of logistic regression coefficients.
t	A 2x3 table of joint probabilities of disease and genotype. Rows = case vs. control, columns=genotype.

Value

The log likelihood.

Examples

```
additive.ll(c(-0.3793525, -1.1395417),
rbind(c(0.2339079, 0.05665039, 0.009441731),
c(0.3285921, 0.31834961, 0.053058269)))
```

additive.ll.linear	Function to Calculate Additive Log Likelihood for a Linear Regression
	Model

Description

Calculates the log likelihood for a given set of linear regression coefficients under an additive genetic model.

Usage

```
additive.ll.linear(beta, m, es, sd_y_x_model, sd_y_x_truth)
```

beta	Vector of linear regression coefficients.
m	Minor allele frequency.
es	Vector of effect sizes with two elements, (mean AB - mean AA) and (mean BB - mean AA).
sd_y_x_model	The standard deviation of Y (the outcome) given X (predictors/genotype) under the test model.
sd_y_x_truth	The standard deviation of Y given X (predictors/genotype) given genotype under the true model.

Value

The log likelihood.

Examples

```
additive.ll.linear(beta = c(-0.03, 0.3), m = 0.1, es = c(0,3),
sd_y_x_model = 0.9918669, sd_y_x_truth = 0.9544108)
```

as.numeric2	Function to convert to numeric with scientific notation containing the
	"." character

Description

convert to numeric with scientific notation containing the "." character

Usage

```
as.numeric2(char)
```

Arguments

char string to be converted to numeric

Value

a number

Examples

as.numeric2("2e.2")

calc.like

Description

Convenience function to calculate the log likelihood of a specified model.

Usage

```
calc.like(beta, t, model)
```

Arguments

beta	Vector of logistic regression coefficients.
t	A 2x3 table of joint probabilities of disease and genotype. Rows = case vs. control, columns=genotype.
model	The genetic model in the logistic regression: "Dominant", "Additive", "Recessive", "2df" or "null"

Value

The log likelihood.

Examples

calc.like.linear	Function to Calculate	e Log Likelihood	l for a Linear	[•] Regression Model
------------------	-----------------------	------------------	----------------	-------------------------------

Description

Convenience function to calculate the log likelihood of a specified model.

Usage

```
calc.like.linear(beta, m, es_ab, es_bb, sd_y_x_model, sd_y_x_truth, model)
```

beta	Vector of linear regression coefficients.
m	Minor allele frequency.
es_ab	effect size for mean AB - mean AA
es_bb	effect size for mean BB - mean AA
sd_y_x_model	The standard deviation of Y (the outcome) given X (predictors/genotype) under the test model.
sd_y_x_truth	The standard deviation of Y given X (predictors/genotype) given genotype under the true model.
model	The genetic model in the linear regression: "Dominant", "Additive", "Recessive", "2df" or "null"

Value

The log likelihood.

Examples

```
calc.like.linear(beta = c(0.0000000, 0.1578947), m = 0.1, es_ab = 0, es_bb = 3,
sd_y_x_model = 0.9980797, sd_y_x_truth = 0.9544108, model = "Dominant")
```

```
calc.like.linear.log.envir.interaction
```

Function to calculate the standard deviation of y given x for linear models with logistic environment interaction

Description

Returns the standard deviation of y given x for linear models with logistic environment interaction

Usage

```
calc.like.linear.log.envir.interaction(
    beta_hat,
    MAF,
    P_e,
    ES_G,
    ES_E,
    ES_GE,
    sd_y_x_truth,
    sd_y_x_model,
    True.Model,
    reduced = F
)
```

df2.11

Arguments

beta_hat	Effect sizes from MLE
MAF	Minor allele Frequency
P_e	Population prevalence of logistic environmental factor
ES_G	Genetic Effect size
ES_E	Environment Effect size
ES_GE	Environment x Genetic interaction Effect size
sd_y_x_truth	Standard deviation of y for the true model
sd_y_x_model	Standard deviation of y for the test model
Test.Model	Test model
True.Model	True model
reduced	logical, indicates whether the X matrix will be used for a reduced model

Value

The standard deviation of y given x for linear models with logistic environment interaction

Examples

```
beta_hat = linear.mles.log.envir.interaction(MAF = 0.1, P_e = 0.2,
ES_G = 1.2, ES_E = 1.3, ES_GE = 2,
Test.Model = "Dominant", True.Model = "Additive")
calc.like.linear.log.envir.interaction(beta_hat = beta_hat,
MAF = 0.1, P_e = 0.2, ES_G = 1.2, ES_E = 1.3,
ES_GE = 2, sd_y_x_truth = 9.947945, sd_y_x_model = 9.949468,
True.Model = "Additive", Test.Model="Dominant")
```

df2.11	Function to	Calculate	2df Log	Likelihood f	òr a	Logistic	Regression
	Model						

Description

Calculates the log likelihood for a given set of logistic regression coefficients under an unspecificed/2df genetic model.

Usage

df2.ll(beta, t)

Arguments

beta	Vector of logistic regression coefficients.	
t	A 2x3 table of joint probabilities of disease and genotype. Rows = case	vs.
	control, columns=genotype.	

Value

The log likelihood.

Examples

```
df2.ll(c(-0.3793525, -1.1395417),
rbind(c(0.2339079, 0.05665039, 0.009441731),
c(0.3285921, 0.31834961, 0.053058269)))
```

df2.ll.linear	Function to Calculate 2 Degree of Freedom Log Likelihood for a Lin-
	ear Regression Model

Description

Calculates the log likelihood for a given set of linear regression coefficients under a the 2df model.

Usage

df2.ll.linear(beta, m, es, sd_y_x_model, sd_y_x_truth)

Arguments

beta	Vector of linear regression coefficients.
m	Minor allele frequency.
es	Vector of effect sizes with two elements, (mean AB - mean AA) and (mean BB - mean AA).
sd_y_x_model	The standard deviation of Y (the outcome) given X (predictors/genotype) under the test model.
sd_y_x_truth	The standard deviation of Y given X (predictors/genotype) given genotype under the true model.

Value

The log likelihood.

Examples

```
df2.ll.linear(beta = c(0, 0, 3), m = 0.1, es = c(0,3),
sd_y_x_model = 0.9544108, sd_y_x_truth = 0.9544108)
```

10

 ${\tt dom.fun.t}$

Function to Calculate t matrix for logistic outcome with binary environment interaction in dominant model

Description

Calculates the t matrix for logistic outcome with binary environment interaction in dominant model

Usage

dom.fun.t(MAF, P_e, OR_E, OR_G, OR_GE, Case.Rate)

Arguments

MAF	Vector of minor allele frequencies
P_e	Vector of proportions of the population with exposure to the environmental effect
OR_E	Vector of environmental odds ratios to detect
OR_G	Vector of genetic odds ratios to detect
OR_GE	Vector of genetic/environmental interaction odds ratios to detect
Case.Rate	proportion of cases in the sample (cases/(cases + controls)).

Value

t matrix for all combinations of environment/outcome

Examples

dom.fun.t(MAF = 0.1, P_e = 0.2, Case.Rate = 0.5, OR_G = 1.5, OR_E = 2, OR_GE = 1.8)

dom.or.function Dominant Model Function

Description

Operates within odds_ratio_function to calculate odds ratios for a Test.Model of "Dominant"

Usage

```
dom.or.function(like, Case.Rate, P_AA, P_AB, P_BB, True.Model, risk_allele)
```

like	Expected log likelihood
Case.Rate	proportion of cases in the sample (cases/(cases + controls)).
P_AA	Probability the allele is homozygous for the major allele
P_AB	Probability the allele is heterozygous
P_BB	Probability the allele is homozygous for the minor allele
True.Model	A vector object specifying the true underlying genetic model(s): 'Dominant', 'Additive', or 'Recessive'
risk_allele	Logical: If OR > 1, the allele is classified as a "risk allele"

Value

: The odds ratios and their corresponding genetic model(s)

Examples

```
dom.or.function(like=-0.57162, Case.Rate=0.3, P_AA=0.5625, P_AB=0.375,
P_BB=0.0625, True.Model="Dominant", risk_allele=TRUE)
```

dominant.ll	Function to Calculate Dominant Log Likelihood for a Logistic Regres-
	sion Model

Description

Calculates the log likelihood for a given set of logistic regression coefficients under a dominant genetic model.

Usage

dominant.ll(beta, t)

Arguments

beta	Vector of logistic regression coefficients.
t	A 2x3 table of joint probabilities of disease and genotype. Rows = case vs. control, columns=genotype.

Value

The log likelihood.

dominant.ll.linear

Examples

```
dominant.ll(c(-0.3793525, -1.1395417),
    rbind(c(0.2339079, 0.05665039, 0.009441731),
    c(0.3285921, 0.31834961, 0.053058269)))
```

dominant.ll.linear Function to Calculate Dominant Log Likelihood for a Linear Regression Model

Description

Calculates the log likelihood for a given set of linear regression coefficients under a dominant genetic model.

Usage

dominant.ll.linear(beta, m, es, sd_y_x_model, sd_y_x_truth)

Arguments

beta	Vector of linear regression coefficients.
m	Minor allele frequency.
es	Vector of effect sizes with two elements, (mean AB - mean AA) and (mean BB - mean AA).
sd_y_x_model	The standard deviation of Y (the outcome) given X (predictors/genotype) under the test model.
sd_y_x_truth	The standard deviation of Y given X (predictors/genotype) given genotype under the true model.

Value

The log likelihood.

```
dominant.ll.linear(beta = c(0.0000000, 0.1578947), m = 0.1, es = c(0,3),
sd_y_x_model = 0.9980797, sd_y_x_truth = 0.9544108)
```

```
es.calc.linear
```

Description

Calculates the detectable effect size/regression coefficient, at a given sample size, N, and power, with type 1 error rate, Alpha

Usage

```
es.calc.linear(
   power = NULL,
   N = NULL,
   MAF = NULL,
   sd_y = NULL,
   Alpha = 0.05,
   True.Model = "All",
   Test.Model = "All"
)
```

Arguments

power	Vector of the desired power(s)
Ν	Vector of the desired sample size(s)
MAF	Vector of minor allele frequencies
sd_y	Standard deviation of the outcome in the population (ignoring genotype). Either sd_y_x or sd_y must be specified.
Alpha	the desired type 1 error rate(s)
True.Model	A vector specifying the true underlying genetic model(s): 'Dominant', 'Additive', 'Recessive' or 'All'
Test.Model	A vector specifying the assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive' or 'All'

Value

A data frame including the power for all combinations of the specified parameters (Case.Rate, ES, Power, etc)

```
es <- es.calc.linear(N=1000,power=0.8,
MAF=0.1, sd_y = 1, Alpha=0.05,
True.Model='All', Test.Model='All')
```

expected.linear.ll Function to Calculate Expected Log Likelihood for a Single Genotype

Description

Calculates the expected log likelihood for a single genotype given the true and estimated mean and standard deviation for the outcome.

Usage

```
expected.linear.ll(mean_truth, mean_model, sd_y_x_truth, sd_y_x_model)
```

Arguments

mean_truth	Mean of the outcome given X(predictors/genotype) under the true model.
mean_model	Mean of the outcome given X(predictors/genotype) under the test model.
sd_y_x_truth	The standard deviation of Y given X (predictors/genotype) given genotype under the true model.
sd_y_x_model	The standard deviation of Y (the outcome) given X (predictors/genotype) under the test model.

Value

The log likelihood.

Examples

```
expected.linear.ll(mean_truth = 0, mean_model = 0.03,
sd_y_x_model = 1, sd_y_x_truth = 0.9544108)
```

expected.linear.ll.lin.env

Function to Calculate Expected Log Likelihood for a Single Genotype with linear environment interaction

Description

Calculates the expected log likelihood for a single genotype with linear environment interaction given the true and estimated mean and standard deviation for the outcome.

Usage

```
expected.linear.ll.lin.env(sd_y_x_model)
```

sd_y_x_model The standard deviation of Y (the outcome) given X (predictors/genotype) under the test model.

Value

The log likelihood.

Examples

expected.linear.ll.lin.env(4.309354)

find.prob.dom Dominant probability finding function

Description

Operates within add.or.function to find probability of disease in a dominant truth given AB or BB, additive test model

Usage

find.prob.dom(x, P_AA, P_AB, P_BB, cr, like)

Arguments

х	Probability of disease given AB or BB
P_AA	Probability the allele is homozygous for the major allele
P_AB	Probability the allele is heterozygous
P_BB	Probability the allele is homozygous for the minor allele
cr	proportion of cases in the sample (cases/(cases + controls)).
like	Expected log likelihood

Value

: The "a" in the binomial function $ax^2 + bx + c$ that arises in solution for the additive OR functions

Examples

find.prob.dom(0.1510677, 0.5625, 0.375, 0.0625, 0.3, -0.57162)

find.prob.rec

Description

Operates within add.or.function to find probability of disease in a recessive truth given AB or BB, additive test model

Usage

find.prob.rec(x, P_AA, P_AB, P_BB, cr, like)

Arguments

х	Probability of disease given AB or BB
P_AA	Probability the allele is homozygous for the major allele
P_AB	Probability the allele is heterozygous
P_BB	Probability the allele is homozygous for the minor allele
cr	proportion of cases in the sample (cases/(cases + controls)).
like	Expected log likelihood

Value

: The "a" in the binomial function $ax^2 + bx + c$ that arises in solution for the additive OR functions

Examples

find.prob.rec(0.7072381, 0.5625, 0.375, 0.0625, 0.3, -0.6005743)

genpwr.calc	Function to Calculate Power for Linear Models with logistic environ-
	ment interaction

Description

Calculates the power to detect an difference in means/effect size/regression coefficient, at a given sample size, N, with type 1 error rate, Alpha

Usage

```
genpwr.calc(
  calc,
 model,
  ge.interaction = NULL,
 N = NULL,
 Power = NULL,
 MAF = NULL,
 Alpha = 0.05,
 P_e = NULL,
  sd_e = NULL,
  sd_y = NULL,
 Case.Rate = NULL,
  k = NULL,
 OR = NULL,
  OR_G = NULL,
 OR_E = NULL,
 OR_GE = NULL,
  risk_allele = TRUE,
 ES = NULL,
 ES_G = NULL,
 ES_E = NULL,
 ES_GE = NULL,
 R2 = NULL,
 R2_G = NULL,
 R2_E = NULL,
 R2_GE = NULL,
 True.Model = "All",
 Test.Model = "All"
)
```

Arguments

calc	What kind of calculation to perform? sample size ("ss"), power ("power"), or effect size ("es")
model	Distribution of the outcome variable? ("logistic" or "linear")
ge.interaction	If no environment interaction, should be NULL, otherwise should be "logistic" or "linear"
Ν	Vector of the desired sample size(s)
Power	Vector of the desired power(s)
MAF	Vector of minor allele frequencies
Alpha	the desired type 1 error rate(s)
P_e	Vector of proportions of the population with exposure to the environmental effect
sd_e	Standard deviation of the environmental variable

18

sd_y	Standard deviation of the outcome in the population (ignoring genotype). Either sd_y_x or sd_y must be specified.
Case.Rate	Case Rate of the outcome in the population (ignoring genotype). Either Case.Rate_x or Case.Rate must be specified.
k	Vector of the number of controls per case. Either k or Case.Rate must be speci- fied.
OR	Vector of genetic odds ratios to detect in absence of environmental odds ratios
OR_G	Vector of genetic odds ratios to detect
OR_E	Vector of environmental odds ratios to detect
OR_GE	Vector of genetic/environmental interaction odds ratios to detect
risk_allele	Logical: If OR > 1, the allele is classified as a "risk allele"
ES	Vector of effect sizes (difference in means) to detect. Either ES or R2 must be specified.
ES_G	Vector of genetic effect sizes (difference in means) to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
ES_E	Vector of environmental effect sizes (difference in means) to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
ES_GE	Vector of genetic/environment interaction effect sizes (difference in means) to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
R2	Vector of R-squared values to detect. Either ES or R2 must be specified.
R2_G	Vector of genetic R-squared values to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
R2_E	Vector of environmental R-squared values to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
R2_GE	Vector of genetic/environment interaction R-squared values Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
True.Model	A vector specifying the true underlying genetic model(s): 'Dominant', 'Addi- tive', 'Recessive' or 'All'
Test.Model	A vector specifying the assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive' or 'All'

Value

A data frame including the power for all combinations of the specified parameters (Case.Rate, ES, Power, etc)

```
pw <- genpwr.calc(calc = "power", model = "logistic", ge.interaction = "continuous",
N=100, OR_G=2, OR_E=1.4, OR_GE=c(1.5, 2),
sd_e = 1.1, MAF=0.1, Case.Rate = 0.3, Alpha=0.05,
True.Model="All", Test.Model=c("Dominant", "Recessive"))
```

integrand_funct_case Function to generate integrand for mle for cases

Description

Returns the standard deviation of y given x for linear models with linear environment interaction

Usage

```
integrand_funct_case(x1, x2)
```

Arguments

x1	"true" part of model
x2	"test" part of model

Value

a function to be used as the integrand for the mle

Examples

```
integrand_funct_case(-1.462531 + 1*0.1823216,
-1.462531 + 1*0.1823216)
```

integrand_funct_control

Function to generate integrand for mle for controls

Description

Returns the standard deviation of y given x for linear models with linear environment interaction

Usage

```
integrand_funct_control(x1, x2)
```

Arguments

x1	"true" part of model
x2	"test" part of model

Value

a function to be used as the integrand for the mle

linear.mles

Examples

```
integrand_funct_control(-1.462531 + 1*0.1823216,
-1.462531 + 1*0.1823216)
```

linear.mles

Function to calculate MLE's for linear models

Description

Finds the maximum likelihood estimates for a given MAF under the specified genetic model and effect size.

Usage

linear.mles(m, es_ab, es_bb, model)

Arguments

m	minor allele frequency
es_ab	effect size for mean AB - mean AA
es_bb	effect size for mean BB - mean AA
model	The assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive', '2df'

Value

A vector of linear regression model coefficients.

Examples

linear.mles(m = 0.1, es_ab = 0, es_bb = 3, model = "Dominant")

linear.mles.lin.envir.interaction

Function to calculate the standard deviation of y given x for linear models with linear environment interaction

Description

Returns the standard deviation of y given x for linear models with linear environment interaction

Usage

```
linear.mles.lin.envir.interaction(
    MAF,
    beta0,
    ES_G,
    ES_E,
    ES_GE,
    Test.Model,
    True.Model
)
```

Arguments

MAF	Minor allele Frequency
beta0	baseline value for the outcome
ES_G	Genetic Effect size
ES_E	Environment Effect size
ES_GE	Environment x Genetic interaction Effect size
Test.Model	Test Model
True.Model	True Model

Value

The standard deviation of y given x for linear models with linear environment interaction

```
linear.mles.lin.envir.interaction(MAF = 0.28, ES_G = 0.5, beta0 = -0.28,
ES_E = 1.6, ES_GE = 1.4, Test.Model = "Dominant", True.Model = "Additive")
```

linear.mles.lin.envir.interaction_reduced

Function to calculate the standard deviation of y given x for linear models with linear environment interaction for the reduced model without GxE interaction

Description

Returns the standard deviation of y given x for linear models with linear environment interaction

Usage

```
linear.mles.lin.envir.interaction_reduced(
    MAF,
    beta0,
    ES_G,
    ES_E,
    ES_GE,
    Test.Model,
    True.Model
)
```

1

Arguments

MAF	Minor allele Frequency
beta0	baseline value for the outcome
ES_G	Genetic Effect size
ES_E	Environment Effect size
ES_GE	Environment x Genetic interaction Effect size
Test.Model	Test Model
True.Model	True Model

Value

The standard deviation of y given x for linear models with linear environment interaction

```
linear.mles.lin.envir.interaction_reduced(MAF = 0.28, ES_G = 0.5, beta0 = -0.28,
ES_E = 1.6, ES_GE = 1.4, Test.Model = "Dominant", True.Model = "Additive")
```

linear.mles.log.envir.interaction

Function to calculate the standard deviation of y given x for linear models with logistic environment interaction

Description

Returns the standard deviation of y given x for linear models with logistic environment interaction

Usage

```
linear.mles.log.envir.interaction(
    MAF,
    P_e,
    ES_G,
    ES_E,
    ES_GE,
    Test.Model,
    True.Model,
    reduced = F
)
```

Arguments

MAF	Minor allele Frequency
P_e	Population prevalence of logistic environmental factor
ES_G	Genetic Effect size
ES_E	Environment Effect size
ES_GE	Environment x Genetic interaction Effect size
Test.Model	Test model
True.Model	True model
reduced	logical, indicates whether the X matrix will be used for a reduced model

Value

The standard deviation of y given x for linear models with logistic environment interaction

```
linear.mles.log.envir.interaction(MAF = 0.1, P_e = 0.2,
ES_G = 1.2, ES_E = 1.3, ES_GE = 2,
Test.Model = "Dominant", True.Model = "Additive")
```

linear.outcome.lin.envir.interaction.sds

Function to calculate the standard deviation of y given x for linear models with linear environment interaction

Description

Returns the standard deviation of y given x for linear models with linear environment interaction

Usage

```
linear.outcome.lin.envir.interaction.sds(
    MAF,
    sd_e,
    beta0,
    ES_G,
    ES_E,
    ES_GE,
    mod,
    True.Model,
    sd_y
)
```

Arguments

MAF	Minor allele Frequency
sd_e	Standard deviation of linear environmental factor
beta0	baseline value for the outcome
ES_G	Genetic Effect size
ES_E	Environment Effect size
ES_GE	Environment x Genetic interaction Effect size
mod	Test model
True.Model	True model
sd_y	Standard deviation of y

Value

The standard deviation of y given x for linear models with linear environment interaction

```
linear.outcome.lin.envir.interaction.sds(MAF = 0.28, beta0 = -0.28,
sd_y = 5, sd_e = 1, ES_G = 0.5, ES_E = 1.6, ES_GE = 1.4,
mod = "Dominant", True.Model = "Additive")
```

linear.outcome.lin.envir.interaction.sds_reduced

Function to calculate the standard deviation of y given x for linear models with linear environment interaction

Description

Returns the standard deviation of y given x for linear models with linear environment interaction

Usage

```
linear.outcome.lin.envir.interaction.sds_reduced(
    MAF,
    sd_e,
    beta0,
    ES_G,
    ES_E,
    ES_GE,
    mod,
    True.Model,
    sd_y
)
```

Arguments

MAF	Minor allele Frequency
sd_e	Standard deviation of linear environmental factor
beta0	baseline value for the outcome
ES_G	Genetic Effect size
ES_E	Environment Effect size
ES_GE	Environment x Genetic interaction Effect size
mod	Test model
True.Model	True model
sd_y	Standard deviation of y

Value

The standard deviation of y given x for linear models with linear environment interaction

```
linear.outcome.lin.envir.interaction.sds_reduced(MAF = 0.28, beta0 = -0.28,
sd_y = 5, sd_e = 1, ES_G = 0.5, ES_E = 1.6,
ES_GE = 1.4, mod = "Dominant", True.Model = "Additive")
```

linear.outcome.log.envir.interaction.sds
 Function to calculate the stand

Function to calculate the standard deviation of y given x for linear models with logistic environment interaction

Description

Returns the standard deviation of y given x for linear models with logistic environment interaction

Usage

```
linear.outcome.log.envir.interaction.sds(
    MAF,
    P_e,
    ES_G,
    ES_E,
    ES_GE,
    mod,
    True.Model,
    sd_y,
    reduced = F
```

)

Arguments

MAF	Minor allele Frequency
P_e	Population prevalence of logistic environmental factor
ES_G	Genetic Effect size
ES_E	Environment Effect size
ES_GE	Environment x Genetic interaction Effect size
mod	Test model
True.Model	True model
sd_y	Standard deviation of y
reduced	logical, indicates whether the X matrix will be used for a reduced model

Value

The standard deviation of y given x for linear models with logistic environment interaction

```
linear.outcome.log.envir.interaction.sds(MAF = 0.1, P_e = 0.2, sd_y = 10,
ES_G = 1.2, ES_E = 1.3, ES_GE = 2, mod = "Dominant", True.Model = "Additive")
```

linear.sds

Functions to Calculate Residual SD for Normal/Continuous Outcomes Function to calculate the standard deviation of y given x for linear models

Description

Functions to Calculate Residual SD for Normal/Continuous Outcomes Function to calculate the standard deviation of y given x for linear models

Usage

linear.sds(m, es_ab, es_bb, sd_y, model)

Arguments

m	minor allele frequency
es_ab	effect size for mean AB - mean AA
es_bb	effect size for mean BB - mean AA
sd_y	the standard deviation of y in the overall population.
model	The assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive', '2df'

Value

A vector of linear regression model coefficients.

Examples

linear.sds(m = 0.1, es_ab = 0, es_bb = 3, sd_y = 1, model = "Dominant")

ll.ge.logistic	Function to calculate MLE's for logistic models with logistic environ-
	ment interaction

Description

Finds the maximum likelihood estimates for a given 2x3 table under the specified genetic model.

Usage

ll.ge.logistic(t, N = NULL, power = NULL, Alpha, mod)

t	A 2x6 table of the joint probabilities of disease, genotype, and environment. Rows are case vs. control and columns are genotypes.
Ν	Sample size
power	Power
Alpha	Alpha
mod	Test model

Value

A vector of logistic regression model coefficients.

Examples

```
t <- rbind(c(0.2870353, 0.07833006, 0.00435167, 0.09946088, 0.029199878, 0.0016222154),
c(0.3609647, 0.06566994, 0.00364833, 0.06253912, 0.006800122, 0.0003777846))
ll.ge.logistic(t, N = 200, Alpha = 0.05, mod = "Dominant")
```

ll.ge.logistic.lin.envir

Function to output log likelihood for logistic outcome with linear environment variables

Description

Returns the standard deviation of y given x for linear models with linear environment interaction

Usage

```
ll.ge.logistic.lin.envir(
   sd_e,
   N = NULL,
   MAF,
   power = NULL,
   beta0,
   OR_G,
   OR_E,
   OR_GE,
   Alpha,
   True.Model,
   Test.Model
)
```

sd_e	Standard deviation of the environmental variable
Ν	desired sample size
MAF	Vector of minor allele frequencies
power	desired power
beta0	the beta0 coefficient in the logistic model
OR_G	Vector of genetic odds ratios to detect
OR_E	Vector of environmental odds ratios to detect
OR_GE	Vector of genetic/environmental interaction odds ratios to detect
Alpha	the desired type 1 error rate(s)
True.Model	A vector specifying the true underlying genetic model(s): 'Dominant', 'Addi- tive', 'Recessive' or 'All'
Test.Model	A vector specifying the assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive' or 'All'

Value

a function to be used as the integrand for the mle

Examples

```
ll.ge.logistic.lin.envir(sd_e = 1, MAF = 0.2, N = 30, beta0 = -1.462531, OR_G = 1.1,
OR_E = 1.2, OR_GE = 1.5, Alpha = 0.05, True.Model = "Dominant", Test.Model = "Dominant")
```

11.linear.selector Function to return log likelihood function for specified model type

Description

Convenience function to return log likelihood function for specified model type

Usage

```
ll.linear.selector(model)
```

Arguments

model The genetic model in the linear regression: "Dominant", "Additive", "Recessive", "2df" or "null"

Value

Log likelihood function for specified model type

30

ll_zero_finder2

Examples

ll.linear.selector("Dominant")

11_zero_finder2 Zero finding function

Description

Finds the zeros of a function af. Alternative to uniroot, designed specifically to work with the genpwr package. Finds multiple zeros if a function has more than one in the given range.

Usage

ll_zero_finder2(af, ii = 6, lower = 0, upper = 1, qdelta = 27)

Arguments

af	The function for which to find the zero(s)
ii	Number of iterations. The more iterations, the more accuracy. It is recommended that ii be at least 4.
lower	Lower limit of region in which to find the zero
upper	Upper limit of region in which to find the zero
qdelta	Factor for finding intervals over which the function is close to zero

Value

Points over the given interval at which the given function is approximately equal to zero

```
ll_zero_finder2(function(x) (x-0.5)<sup>2</sup> - 0.1)
ll_zero_finder2(function(x) 8*x<sup>3</sup> - 11.2*x<sup>2</sup> + 4.56*x - 0.476)
```

logistic.mles

Description

Finds the maximum likelihood estimates for a given 2x3 table under the specified genetic model.

Usage

```
logistic.mles(t, model)
```

Arguments

t	A 2x3 table of the joint probabilities of disease and genotype. Rows are case vs. control and columns are genotypes.
model	The assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive'

Value

A vector of logistic regression model coefficients.

Examples

logit

Logit Function

Description

Calculates the logit of a specified value.

Usage

logit(x, min = 0, max = 1)

Arguments

х	a number between 0 and 1.
min	minimum
max	maximum

ncp.search

Value

The logit of x.

Examples

logit(0.5)

ncp.search	Function to Determine Non-Centrality Parameter of the Chi-squared
	distribution

Description

This function is set to 0 and solved for x, the non-centrality parameter to determine the sample size in ss.calc

Usage

ncp.search(x, power, Alpha, df)

Arguments

х	the non-centrality parameter
power	the desired power
Alpha	the desired type 1 error rate
df	the degrees of freedom for the likelihood ratio test

Value

numeric value of the function

Examples

ncp.search(x = 7.848861, pow = 0.8, Alpha = 0.05, df=1)

null.ll

Description

Calculates the log likelihood for a given set of logistic regression coefficients under the null.

Usage

null.ll(t)

Arguments

t

A 2x3 table of joint probabilities of disease and genotype. Rows = case vs. control, columns=genotype.

Value

The log likelihood.

Examples

null.ll.linear	Function to Calculate Expected Null Log Likelihood for a Linear Re-
	gression Model

Description

Calculates the expected log likelihood for a given set of linear regression coefficients under the null.

Usage

null.ll.linear(beta, m, es, sd_y_x_model, sd_y_x_truth)

beta	Vector of linear regression coefficients.
m	Minor allele frequency.
es	Vector of effect sizes with two elements, (mean AB - mean AA) and (mean BB - mean AA).
sd_y_x_model	The standard deviation of Y (the outcome) given X (predictors/genotype) under the test model.
sd_y_x_truth	The standard deviation of Y given X (predictors/genotype) given genotype under the true model.

Value

The log likelihood.

Examples

null.ll.linear(beta = 0.03, m = 0.1, es = c(0,3), sd_y_x_model = 1, sd_y_x_truth = 0.9544108)

odds_ratio_function	Odds Ratio Function
---------------------	---------------------

Description

Calculates the odds ratio for a given power, at a given sample size, N, with type 1 error rate, Alpha

Usage

```
odds_ratio_function(
  N = NULL,
  Case.Rate = NULL,
  k = NULL,
  MAF = NULL,
  power = NULL,
  risk_allele = TRUE,
  Alpha = 0.05,
  True.Model = "All",
  Test.Model = "All"
)
```

Ν	Vector of the desired sample size(s)
Case.Rate	Vector of the proportion(s) of cases in the sample (cases/(cases + controls)). Either k or Case.Rate must be specified.
k	Vector of the number of controls per case. Either k or Case.Rate must be specified.
MAF	Vector of minor allele frequencies
power	Vector of powers to detect
risk_allele	Logical: If OR > 1, the allele is classified as a "risk allele"
Alpha	the desired type 1 error rate(s)
True.Model	A vector vector the true underlying genetic model(s): 'Dominant', 'Additive', 'Recessive' or 'All'
Test.Model	A vector specifying the assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive' or 'All'

Value

A data frame including the odds ratios for all combinations of the specified parameters

Examples

```
or <- odds_ratio_function(N=c(100), Case.Rate=0.3,
k=NULL, MAF= 0.25, power=0.8,
Alpha = 0.05, risk_allele = TRUE, True.Model = 'All', Test.Model = 'All')
```

or.function.2df 2df Model Function

Description

Operates within odds_ratio_function to calculate odds ratios for a Test.Model of "2df"

Usage

```
or.function.2df(like, Case.Rate, P_AA, P_AB, P_BB, True.Model, risk_allele)
```

Arguments

Expected log likelihood
proportion of cases in the sample (cases/(cases + controls)).
Probability the allele is homozygous for the major allele
Probability the allele is heterozygous
Probability the allele is homozygous for the minor allele
or.plot

True.Model	A vector object specifying the true underlying genetic model(s): 'Dominant', 'Additive', or 'Recessive'
risk_allele	Logical: If OR > 1, the allele is classified as a "risk allele"

Value

: The odds ratios and their corresponding genetic model(s)

Examples

```
or.function.2df(like=-0.5626909, Case.Rate=0.3, P_AA=0.5625,
P_AB=0.375, P_BB=0.0625, True.Model="Recessive", risk_allele=TRUE)
```

or.plot

Function to Plot Odds Ratio Results

Description

Plot the power results by MAF, Power, Alpha or N

Usage

```
or.plot(
  data = NULL,
  x = "MAF",
 panel.by = "True.Model",
 y_limit = NULL,
 y_log = F,
  return_gg = F,
  linear.effect.measure = "ES",
  select.Alpha = NULL,
  select.power = NULL,
  select.ES = NULL,
  select.N = NULL,
  select.MAF = NULL,
  select.Case.Rate = NULL,
  select.SD = NULL,
  select.True.Model = NULL,
  select.Test.Model = NULL
)
```

data	The data frame result from power.calc
x	The desired variable on the y axis: "MAF", "OR", "Alpha", or "N_total"

panel.by	A grouping variable to panel the graphs by: "True.Model", "MAF", "Power", "Alpha", or "N_total"	
y_limit	An object specifying the minimum and maximum of the y-axis (eg $c(0,4)$) default is NULL, which allows the limits to be picked automatically	
y_log	Logical, specifying whether the y axis should be logarithmic. Default is F	
return_gg	Logical, specifying whether to return the ggplot object instead of printing out the plot	
linear.effect.m	easure	
	Should the graphs indicate ES values, or R2 values? (default ES)	
select.Alpha	Only produce graphs for the specified Alpha level(s).	
select.power	Only produce graphs for the specified Power(s).	
select.ES	Only produce graphs for the specified effect sizes(s).	
select.N	Only produce graphs for the specified sample size(s).	
select.MAF	Only produce graphs for the specified minor allele frequency(ies).	
<pre>select.Case.Rat</pre>	e	
	Only produce graphs for the specified case rate(s).	
select.SD	Only produce graphs for the specified standard deviation(s).	
select.True.Model		
	Only produce graphs for the specified true genetic model(s): "Additive", "Dom- inant", "Recessive".	
select.Test.Model		
	Only produce graphs for the specified testing model(s): "Additive", "Dominant", "Recessive", "2df".	

A series of plots with power on the Y axis.

Examples

```
or <- odds_ratio_function(N=1000, Case.Rate=0.5, k=NULL,
    MAF=seq(0.3, 0.32, 0.01), power=0.8,Alpha=0.05,
    True.Model=c("Dominant", "Recessive"), Test.Model=c("Dominant", "Recessive"))
or.plot(data=or, x='MAF')
```

```
or_calc
```

Odds ratio calculation

Description

Calculates odds ratio for given parameters. Used by the function odds_ratio_function.

power.calc

Usage

or_calc(a, b, c, d, e, f, mod, risk_allele)

Arguments

а	The probability of a case given homogeneity for the major allele
b	The probability of a case given heterozygosity
с	The probability of a case given homogeneity for the minor allele
d	The probability of a control given homogeneity for the major allele
e	The probability of a control given heterozygosity
f	The probability of a control given homogeneity for the minor allele#'
mod	The model to be used (eg "Dominant", "Recessive", etc)
risk_allele	Is this allele a risk allele? use T or F

Value

Odds ratio

Examples

```
or_calc(a = 0.3649185, b = 0.12797197, c = 0.007109554,
d= 0.4450815, e= 0.05202803, f = 0.002890446,
mod = "Dominant", risk_allele = TRUE)
```

power.calc

Function to Calculate Power

Description

Calculates the power to detect an odds ratio, OR, at a given sample size, N, with type 1 error rate, Alpha

```
power.calc(
 N = NULL,
 Case.Rate = NULL,
 k = NULL,
 MAF = NULL,
 OR = NULL,
 Alpha = 0.05,
 True.Model = "All",
 Test.Model = "All"
)
```

Arguments

Ν	Vector of the desired sample size(s)
Case.Rate	Vector of the proportion(s) of cases in the sample (cases/(cases + controls)). Either k or Case.Rate must be specified.
k	Vector of the number of controls per case. Either k or Case.Rate must be specified.
MAF	Vector of minor allele frequencies
OR	Vector of odds ratios to detect
Alpha	the desired type 1 error rate(s)
True.Model	A vector specifying the true underlying genetic model(s): 'Dominant', 'Addi- tive', 'Recessive' or 'All'
Test.Model	A vector specifying the assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive' or 'All'

Value

A data frame including the power for all combinations of the specified parameters (Case.Rate, OR, Power, etc)

Examples

```
pw <- power.calc(N=2000, Case.Rate=0.5, k=NULL,
MAF=0.2, OR=1.5,Alpha=0.05,
True.Model='All', Test.Model='All')
```

power.calc.linear Fi	unction to Calculate	Power for	Linear Models
----------------------	----------------------	-----------	---------------

Description

Calculates the power to detect an difference in means/effect size/regression coefficient, at a given sample size, N, with type 1 error rate, Alpha

```
power.calc.linear(
  N = NULL,
  MAF = NULL,
  ES = NULL,
  R2 = NULL,
  sd_y = NULL,
  Alpha = 0.05,
  True.Model = "All",
  Test.Model = "All"
)
```

power.plot

Arguments

Ν	Vector of the desired sample size(s)
MAF	Vector of minor allele frequencies
ES	Vector of effect sizes (difference in means) to detect. Either ES or R2 must be specified.
R2	Vector of R-squared values to detect. Either ES or R2 must be specified.
sd_y	Standard deviation of the outcome in the population (ignoring genotype). Either sd_y_x or sd_y must be specified.
Alpha	the desired type 1 error rate(s)
True.Model	A vector specifying the true underlying genetic model(s): 'Dominant', 'Addi- tive1', 'Recessive' or 'All'
Test.Model	A vector specifying the assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive' or 'All'

Value

A data frame including the power for all combinations of the specified parameters (Case.Rate, ES, Power, etc)

Examples

```
pw <- power.calc.linear(N=1000,
MAF=0.1, ES=3,sd_y = 1,Alpha=0.05,
True.Model='All', Test.Model='All')
```

power.plot

Function to Plot Power Results

Description

Plot the power results by MAF, OR, Alpha or N

```
power.plot(
  data = NULL,
  x = "MAF",
  panel.by = "True.Model",
  y_limit = NULL,
  y_log = F,
  return_gg = F,
  linear.effect.measure = "ES",
  select.Alpha = NULL,
  select.OR = NULL,
```

```
select.ES = NULL,
select.N = NULL,
select.MAF = NULL,
select.Case.Rate = NULL,
select.SD = NULL,
select.True.Model = NULL,
select.Test.Model = NULL
```

Arguments

data	The data frame result from power.calc	
x	The desired variable on the y axis: "MAF", "OR", "Alpha", or "N_total"	
panel.by	A grouping variable to panel the graphs by: "True.Model", "MAF", "OR", "Alpha", or "N_total"	
y_limit	An object specifying the minimum and maximum of the y-axis (eg $c(0,4)$) default is NULL, which allows the limits to be picked automatically	
y_log	Logical, specifying whether the y axis should be logarithmic. Default is F	
return_gg	Logical, specifying whether to return the ggplot object instead of printing out the plot	
linear.effect.m	leasure	
	Should the graphs indicate ES values, or R2 values? (default ES)	
select.Alpha	Only produce graphs for the specified Alpha level(s).	
select.OR	Only produce graphs for the specified odds ratio(s).	
select.ES	Only produce graphs for the specified effect sizes(s).	
select.N	Only produce graphs for the specified sample size(s).	
select.MAF	Only produce graphs for the specified minor allele frequency(ies).	
select.Case.Rate		
	Only produce graphs for the specified case rate(s).	
select.SD	Only produce graphs for the specified standard deviation(s).	
select.True.Model		
	Only produce graphs for the specified true genetic model(s): "Additive", "Dom- inant", "Recessive".	
select.Test.Mod		
	Only produce graphs for the specified testing model(s): "Additive", "Dominant", "Recessive", "2df".	

Value

A series of plots with power on the Y axis.

Examples

```
pw <- power.calc(N=1000, Case.Rate=c(0.5), k=NULL,
MAF=seq(0.15, 0.2, 0.01), OR=1.5,Alpha=c(0.05),
True.Model='All', Test.Model='All')
```

power_envir.calc

Description

Calculates the power to detect an difference in means/effect size/regression coefficient, at a given sample size, N, with type 1 error rate, Alpha

Usage

```
power_envir.calc(
 N = NULL,
 Case.Rate = NULL,
 k = NULL,
 MAF = NULL,
 OR_G = NULL,
 OR_GE = NULL,
 OR_GE = NULL,
 P_e = NULL,
 Alpha = 0.05,
 True.Model = "All",
 Test.Model = "All"
```

Ν	Vector of the desired sample size(s)
Case.Rate	proportion of cases in the sample (cases/(cases + controls)).
k	Vector of the number of controls per case. Either k or Case.Rate must be specified.
MAF	Vector of minor allele frequencies
OR_G	Vector of genetic odds ratios to detect
OR_E	Vector of environmental odds ratios to detect
OR_GE	Vector of genetic/environmental interaction odds ratios to detect
P_e	Vector of proportions of the population with exposure to the environmental effect
Alpha	the desired type 1 error rate(s)
True.Model	A vector specifying the true underlying genetic model(s): 'Dominant', 'Additive1', 'Additive2', 'Recessive' or 'All'
Test.Model	A vector specifying the assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive' or 'All'

A data frame including the power for all combinations of the specified parameters (Case.Rate, ES, Power, etc)

Examples

pw <- power_envir.calc(P_e = 0.2, MAF = 0.1, N = 200, Case.Rate = 0.5, Alpha = 0.05, OR_G = 1.5, OR_E = 2, OR_GE = 1.8, Test.Model = "All", True.Model = "All")

power_envir.calc.linear_outcome

Function to Calculate Power for Linear Models with logistic environment interaction

Description

Calculates the power to detect an difference in means/effect size/regression coefficient, at a given sample size, N, with type 1 error rate, Alpha

Usage

```
power_envir.calc.linear_outcome(
  N = NULL,
  MAF = NULL,
  ES_G = NULL,
  ES_E = NULL,
  ES_GE = NULL,
  P_e = NULL,
  R2_G = NULL,
  R2_GE = NULL,
  R2_GE = NULL,
  sd_y = NULL,
  Alpha = 0.05,
  True.Model = "All",
  Test.Model = "All"
```

```
)
```

Ν	Vector of the desired sample size(s)
MAF	Vector of minor allele frequencies
ES_G	Vector of genetic effect sizes (difference in means) to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
ES_E	Vector of environmental effect sizes (difference in means) to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.

ES_GE	Vector of genetic/environment interaction effect sizes (difference in means) to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
P_e	Vector of proportions of the population with exposure to the environmental effect
R2_G	Vector of genetic R-squared values to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
R2_E	Vector of environmental R-squared values to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
R2_GE	Vector of genetic/environment interaction R-squared valuesEither ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
sd_y	Standard deviation of the outcome in the population (ignoring genotype). Either sd_y_x or sd_y must be specified.
Alpha	the desired type 1 error rate(s)
True.Model	A vector specifying the true underlying genetic model(s): 'Dominant', 'Addi- tive', 'Recessive' or 'All'
Test.Model	A vector specifying the assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive' or 'All'

A data frame including the power for all combinations of the specified parameters (Case.Rate, ES, Power, etc)

Examples

```
pw <- power_envir.calc.linear_outcome(N=100, ES_G = 1.2, ES_E = 1.3,
ES_GE = 2, Alpha = 0.05, MAF = 0.2, P_e = 0.2,
sd_y = 10, True.Model = "All", Test.Model = "All")
```

Function to Calculate Power for Linear Models with linear environment interaction

Description

Calculates the power to detect an difference in means/effect size/regression coefficient, at a given sample size, N, with type 1 error rate, Alpha

Usage

```
power_linear_envir.calc.linear_outcome(
  N = NULL,
  MAF = NULL,
  ES_G = NULL,
  ES_E = NULL,
  ES_GE = NULL,
  sd_e = NULL,
  R2_G = NULL,
  R2_GE = NULL,
  R2_GE = NULL,
  sd_y = NULL,
  Alpha = 0.05,
  True.Model = "All",
  Test.Model = "All"
)
```

Arguments

Ν	Vector of the desired sample size(s)
MAF	Vector of minor allele frequencies
ES_G	Vector of genetic effect sizes (difference in means) to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
ES_E	Vector of environmental effect sizes (difference in means) to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
ES_GE	Vector of genetic/environment interaction effect sizes (difference in means) to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
sd_e	Standard deviation of the environmental variable
R2_G	Vector of genetic R-squared values to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
R2_E	Vector of environmental R-squared values to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
R2_GE	Vector of genetic/environment interaction R-squared values to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
sd_y	Standard deviation of the outcome in the population (ignoring genotype). Either sd_y_x or sd_y must be specified.
Alpha	the desired type 1 error rate(s)
True.Model	A vector specifying the true underlying genetic model(s): 'Dominant', 'Addi- tive', 'Recessive' or 'All'
Test.Model	A vector specifying the assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive' or 'All'

A data frame including the power for all combinations of the specified parameters (Case.Rate, ES, Power, etc)

Examples

```
pw <- power_linear_envir.calc.linear_outcome(N=1000,
ES_G=0.5, ES_E=1.6, ES_GE=1.4,
sd_e = 1, MAF=0.28,
sd_y = 5,Alpha=0.05,
True.Model='All', Test.Model='All')
```

power_linear_envir.calc.logistic_outcome

Function to Calculate Power for Linear Models with logistic environment interaction

Description

Calculates the power to detect an difference in means/effect size/regression coefficient, at a given sample size, N, with type 1 error rate, Alpha

Usage

```
power_linear_envir.calc.logistic_outcome(
    N = NULL,
    MAF = NULL,
    OR_G = NULL,
    OR_GE = NULL,
    OR_GE = NULL,
    sd_e = NULL,
    case.Rate = NULL,
    k = NULL,
    Alpha = 0.05,
    True.Model = "All",
    Test.Model = "All"
```

)

Ν	Vector of the desired sample size(s)
MAF	Vector of minor allele frequencies
OR_G	Vector of genetic odds ratios to detect
OR_E	Vector of environmental odds ratios to detect
OR_GE	Vector of genetic/environmental interaction odds ratios to detect

sd_e	Standard deviation of the environmental variable
Case.Rate	Standard deviation of the outcome in the population (ignoring genotype). Either Case.Rate_x or Case.Rate must be specified.
k	Vector of the number of controls per case. Either k or Case.Rate must be specified.
Alpha	the desired type 1 error rate(s)
True.Model	A vector specifying the true underlying genetic model(s): 'Dominant', 'Addi- tive', 'Recessive' or 'All'
Test.Model	A vector specifying the assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive' or 'All'

A data frame including the power for all combinations of the specified parameters (Case.Rate, ES, Power, etc)

Examples

```
pw <- power_linear_envir.calc.logistic_outcome(N=30,
OR_G=1.1, OR_E=1.2, OR_GE=1.5,
sd_e = 1, MAF=0.2, Case.Rate = 0.2,
Alpha=0.05, True.Model="All", Test.Model="All")
```

p_vec_returner	Function to output probability vector used in calculation of MLE's for
	linear outcome with logistic environment interaction

Description

Returns probability vector used in calculation of MLE's for linear outcome with logistic environment interaction

Usage

```
p_vec_returner(MAF, P_e)
```

Arguments

MAF	Minor allele frequency
P_e	Population prevalence of logistic environmental factor

Value

A probability vector to be used in MLE calculation for linear outcome with logistic environment interaction

p_vec_returner_lin_env

Examples

 $p_vec_returner(MAF = 0.1, P_e = 0.2)$

p_vec_returner_lin_env

Function to output probability vector used in calculation of MLE's for linear outcome with linear environment interaction

Description

Returns probability vector used in calculation of MLE's for linear outcome with linear environment interaction

Usage

p_vec_returner_lin_env(MAF)

Arguments MAF

Minor Allele Frequency

Value

A probability vector to be used in MLE calculation for linear outcome with linear environment interaction

Examples

```
p_vec_returner_lin_env(0.1)
```

quad_roots

Function to Solve Quadratic Equations

Description

Finds the positive root of a quadratic equation $ax^2 + bx + c$.

Usage

quad_roots(a, b, c)

rec.fun.t

Arguments

а	the coefficient for x^2
b	the coefficient for x
С	the constant

Value

The positive root of the quadratic equation $ax^2 + bx + c$

Examples

```
pw<-power.calc(N=c(1000,2000), Case.Rate=c(0.5),
k=NULL, MAF=seq(0.05, 0.1, 0.01), OR=c(3,4),
Alpha=c(0.05), True.Model='All', Test.Model='All')
```

rec.fun.t	Function to Calculate t matrix for logistic outcome with binary envi-
	ronment interaction in recessive model

Description

Calculates the t matrix for logistic outcome with binary environment interaction in recessive model

Usage

rec.fun.t(MAF, P_e, OR_E, OR_G, OR_GE, Case.Rate)

Arguments

MAF	Vector of minor allele frequencies
P_e	Vector of proportions of the population with exposure to the environmental effect
OR_E	Vector of environmental odds ratios to detect
OR_G	Vector of genetic odds ratios to detect
OR_GE	Vector of genetic/environmental interaction odds ratios to detect
Case.Rate	proportion of cases in the sample (cases/(cases + controls)).

Value

t matrix for all combinations of environment/outcome

Examples

rec.fun.t(MAF = 0.1, P_e = 0.2, Case.Rate = 0.5, OR_G = 1.5, OR_E = 2, OR_GE = 1.8)

Description

Operates within odds_ratio_function to calculate odds ratios for a Test.Model of "Recessive"

Usage

rec.or.function(like, Case.Rate, P_AA, P_AB, P_BB, True.Model, risk_allele)

Arguments

like	Expected log likelihood
Case.Rate	proportion of cases in the sample (cases/(cases + controls)).
P_AA	Probability the allele is homozygous for the major allele
P_AB	Probability the allele is heterozygous
P_BB	Probability the allele is homozygous for the minor allele
True.Model	A vector object specifying the true underlying genetic model(s): 'Dominant', 'Additive', or 'Recessive'
risk_allele	Logical: If OR > 1, the allele is classified as a "risk allele"

Value

: The odds ratios and their corresponding genetic model(s)

Examples

```
rec.or.function(like=-0.57162, Case.Rate=0.3, P_AA=0.5625, P_AB=0.375,
P_BB=0.0625, True.Model="Recessive", risk_allele=TRUE)
```

recessive.ll	Function to Calculate Recessive Log Likelihood for a Logistic Regres- sion Model

Description

Calculates the log likelihood for a given set of logistic regression coefficients under a recessive genetic model.

Usage

recessive.ll(beta, t)

Arguments

beta	Vector of logistic regression coefficients.
t	A 2x3 table of joint probabilities of disease and genotype. Rows = case vs.
	control, columns=genotype.

Value

The log likelihood.

Examples

```
recessive.ll(c(-0.3793525, -1.1395417),
rbind(c(0.2339079, 0.05665039, 0.009441731),
c(0.3285921, 0.31834961, 0.053058269)))
```

recessive.ll.linear Function to Calculate Recessive Log Likelihood for a Linear Regression Model

Description

Calculates the log likelihood for a given set of linear regression coefficients under a recessive genetic model.

Usage

```
recessive.ll.linear(beta, m, es, sd_y_x_model, sd_y_x_truth)
```

Arguments

beta	Vector of linear regression coefficients.
m	Minor allele frequency.
es	Vector of effect sizes with two elements, (mean AB - mean AA) and (mean BB - mean AA).
sd_y_x_model	The standard deviation of Y (the outcome) given X (predictors/genotype) under the test model.
sd_y_x_truth	The standard deviation of Y given X (predictors/genotype) given genotype under the true model.

Value

The log likelihood.

Examples

```
recessive.ll.linear(beta = c(0, 3), m = 0.1, es = c(0,3),
sd_y_x_model = 0.9544108, sd_y_x_truth = 0.9544108)
```

solve_a

Description

Operates within add.or.function to solve for 'a' when 'b' is known in an additive model

Usage

solve_a(b, cr, P_AA, P_AB, P_BB)

Arguments

b	The "b" in the binomial function $ax^2 + bx + c$ that arises in solution for the additive OR functions
cr	proportion of cases in the sample (cases/(cases + controls)).
P_AA	Probability the allele is homozygous for the major allele
P_AB	Probability the allele is heterozygous
P_BB	Probability the allele is homozygous for the minor allele

Value

: The "a" in the binomial function $ax^2 + bx + c$ that arises in solution for the additive OR functions

Examples

solve_a(0.1493558, 0.3, 0.5625, 0.375, 0.062)

ss.calc

Function to Calculate Sample Size

Description

Calculates the necessary sample size to achieve the specified level of power to detect an odds ratio, OR, with type 1 error rate, Alpha

Usage

```
ss.calc(
  power = 0.8,
  Case.Rate = NULL,
  k = NULL,
  MAF = NULL,
  OR = NULL,
  Alpha = 0.05,
  True.Model = "All",
  Test.Model = "All"
)
```

Arguments

power	Vector of the desired power(s)
Case.Rate	Vector of the proportion(s) of cases in the sample (cases/(cases + controls)). Either k or Case.Rate must be specified.
k	Vector of the number of controls per case. Either k or Case.Rate must be specified.
MAF	Vector of minor allele frequencies
OR	Vector of odds ratios to detect
Alpha	the desired type 1 error rate(s)
True.Model	A vector specifying the true underlying genetic model(s): 'Dominant', 'Addi- tive', 'Recessive' or 'All'
Test.Model	A vector specifying the assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive' or 'All'

Value

A data frame including the total number of subjects required for all combinations of the specified parameters (Case.Rate, OR, Power, etc)

Examples

```
ss <- ss.calc(power=0.8, Case.Rate=0.5, k=NULL,
MAF=0.1, OR=3,Alpha=0.05,
True.Model='All', Test.Model='All')
```

ss.calc.linear

Description

Calculates the necessary sample size to acheive the specified level of power to detect an effect size, ES or R2 value, with type 1 error rate, Alpha

Usage

```
ss.calc.linear(
   power = 0.8,
   MAF = NULL,
   ES = NULL,
   R2 = NULL,
   sd_y = NULL,
   Alpha = 0.05,
   True.Model = "All",
   Test.Model = "All"
)
```

Arguments

power	Vector of the desired power(s)
MAF	Vector of minor allele frequencies
ES	Vector of effect sizes (difference in means) to detect. Either ES or R2 must be specified.
R2	Vector of R-squared values to detect. Either ES or R2 must be specified.
sd_y	Standard deviation of the outcome in the population (ignoring genotype). Either $sd_y x$ or sd_y must be specified.
Alpha	the desired type 1 error rate(s)
True.Model	A vector specifying the true underlying genetic model(s): 'Dominant', 'Addi- tive', 'Recessive' or 'All'
Test.Model	A vector specifying the assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive' or 'All'

Value

A data frame including the total number of subjects required for all combinations of the specified parameters

Examples

```
ss <- ss.calc.linear(power=0.8,MAF=0.1,
ES=3, R2=NULL, sd_y = 1,Alpha=0.05,
True.Model='All', Test.Model='All')
```

ss.plot

Description

Plot the sample size results by MAF, OR, Alpha or Power

Usage

```
ss.plot(
 data = NULL,
 x = "MAF",
 panel.by = "True.Model",
 y_limit = NULL,
 y_log = F,
 return_gg = F,
 linear.effect.measure = "ES",
  select.Alpha = NULL,
  select.OR = NULL,
  select.ES = NULL,
  select.Power = NULL,
  select.MAF = NULL,
  select.Case.Rate = NULL,
  select.SD = NULL,
  select.True.Model = NULL,
  select.Test.Model = NULL
)
```

data	The data frame result from ss.calc	
х	The desired variable on the y axis: "MAF", "OR", "ES", "Alpha", or "Power"	
panel.by	A grouping variable to panel the graphs by: "True.Model", "MAF", "OR", "Alpha", or "Power"	
y_limit	An object specifying the minimum and maximum of the y-axis (eg $c(0,4)$) default is NULL, which allows the limits to be picked automatically	
y_log	Logical, specifying whether the y axis should be logarithmic. Default is F	
return_gg	Logical, specifying whether to return the ggplot object instead of printing out the plot	
linear.effect.measure		
	Should the graphs indicate ES values, or R2 values? (default ES)	
select.Alpha	Only produce graphs for the specified Alpha level(s).	
select.OR	Only produce graphs for the specified odds ratio(s).	
select.ES	Only produce graphs for the specified effect size(s).	

ss_envir.calc

select.Power	Only produce graphs for the specified power(s).
select.MAF	Only produce graphs for the specified minor allele frequency(ies).
select.Case.Rat	e
	Only produce graphs for the specified case rate(s).
select.SD	Only produce graphs for the specified standard deviation(s).
<pre>select.True.Mod</pre>	el
	Only produce graphs for the specified true genetic model(s): "Additive", "Dom- inant", "Recessive".
select.Test.Mod	el
	Only produce graphs for the specified testing model(s): "Additive", "Dominant", "Recessive", "2df".

Value

A series of plots with sample size on the Y axis.

Examples

```
ss <- ss.calc(power=0.8, Case.Rate=c(0.5), k=NULL,
    MAF=seq(0.01, 0.05, 0.01), OR=c(4),Alpha=c(0.05),
    True.Model='All', Test.Model='All')
ss.plot(data=ss, x='MAF',panel.by='OR')
```

ss_envir.calc	Function to Calculate Power for Logistic Models with Environment
	Interaction

Description

Calculates the power to detect an difference in means/effect size/regression coefficient, at a given sample size, N, with type 1 error rate, Alpha

```
ss_envir.calc(
  power = 0.8,
  Case.Rate = NULL,
  k = NULL,
  MAF = NULL,
  OR_G = NULL,
  OR_GE = NULL,
  OR_GE = NULL,
  P_e = NULL,
  Alpha = 0.05,
  True.Model = "All",
  Test.Model = "All"
)
```

Arguments

power	Vector of the desired power(s)
Case.Rate	proportion of cases in the sample (cases/(cases + controls)).
k	Vector of the number of controls per case. Either k or Case.Rate must be specified.
MAF	Vector of minor allele frequencies
OR_G	Vector of genetic odds ratios to detect
OR_E	Vector of environmental odds ratios to detect
OR_GE	Vector of genetic/environmental interaction odds ratios to detect
P_e	Vector of proportions of the population with exposure to the environmental effect
Alpha	the desired type 1 error rate(s)
True.Model	A vector specifying the true underlying genetic model(s): 'Dominant', 'Addi- tive1', 'Additive2', 'Recessive' or 'All'
Test.Model	A vector specifying the assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive' or 'All'

Value

A data frame including the power for all combinations of the specified parameters (Case.Rate, ES, Power, etc)

Examples

ssc <- ss_envir.calc(P_e = 0.2, MAF = 0.1, power = 0.6, Case.Rate = 0.5, Alpha = 0.05, OR_G = 1.5, OR_E = 2, OR_GE = 1.8, Test.Model = "All", True.Model = "All")

ss_envir.calc.linear_outcome

Function to Calculate Power for Linear Models with logistic environment interaction

Description

Calculates the power to detect an difference in means/effect size/regression coefficient, at a given sample size, N, with type 1 error rate, Alpha

Usage

```
ss_envir.calc.linear_outcome(
   pow = NULL,
   MAF = NULL,
   ES_G = NULL,
   ES_GE = NULL,
   ES_GE = NULL,
   P_e = NULL,
   R2_G = NULL,
   R2_GE = NULL,
   R2_GE = NULL,
   sd_y = NULL,
   Alpha = 0.05,
   True.Model = "All",
   Test.Model = "All"
```

)

ром	Vector of the desired power(s)
MAF	Vector of minor allele frequencies
ES_G	Vector of genetic effect sizes (difference in means) to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
ES_E	Vector of environmental effect sizes (difference in means) to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
ES_GE	Vector of genetic/environment interaction effect sizes (difference in means) to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
P_e	Vector of proportions of the population with exposure to the environmental effect
R2_G	Vector of genetic R-squared values to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
R2_E	Vector of environmental R-squared values to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
R2_GE	Vector of genetic/environment interaction R-squared values Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
sd_y	Standard deviation of the outcome in the population (ignoring genotype). Either sd_y_x or sd_y must be specified.
Alpha	the desired type 1 error rate(s)
True.Model	A vector specifying the true underlying genetic model(s): 'Dominant', 'Addi- tive', 'Recessive' or 'All'
Test.Model	A vector specifying the assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive' or 'All'

A data frame including the power for all combinations of the specified parameters (Case.Rate, ES, Power, etc)

Examples

ss_envir.calc.linear_outcome(pow=0.8, ES_G = 1.2, ES_E = 1.3, ES_GE = 2, Alpha = 0.05, MAF = 0.1, P_e = 0.2, sd_y = 10, True.Model = "All", Test.Model = "All")

ss_linear_envir.calc.linear_outcome

Function to Calculate Power for Linear Models with linear environment interaction

Description

Calculates the power to detect an difference in means/effect size/regression coefficient, at a given sample size, N, with type 1 error rate, Alpha

Usage

```
ss_linear_envir.calc.linear_outcome(
   pow = NULL,
   MAF = NULL,
   ES_G = NULL,
   ES_E = NULL,
   Sd_e = NULL,
   R2_G = NULL,
   R2_G = NULL,
   R2_GE = NULL,
   R4_DA = 0.05,
   True.Model = "All",
   Test.Model = "All"
```

```
)
```

ром	Vector of the desired power(s)
MAF	Vector of minor allele frequencies
ES_G	Vector of genetic effect sizes (difference in means) to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
ES_E	Vector of environmental effect sizes (difference in means) to detect. Either ES G, ES E, and ES EG or R2 G, R2 E, and R2 EG must be specified.

ES_GE	Vector of genetic/environment interaction effect sizes (difference in means) to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
sd_e	Standard deviation of the environmental variable
R2_G	Vector of genetic R-squared values to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
R2_E	Vector of environmental R-squared values to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
R2_GE	Vector of genetic/environment interaction R-squared values to detect. Either ES_G, ES_E, and ES_EG or R2_G, R2_E, and R2_EG must be specified.
sd_y	Standard deviation of the outcome in the population (ignoring genotype). Either sd_y_x or sd_y must be specified.
Alpha	the desired type 1 error rate(s)
True.Model	A vector specifying the true underlying genetic model(s): 'Dominant', 'Additive', 'Recessive' or 'All'
Test.Model	A vector specifying the assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive' or 'All'

A data frame including the power for all combinations of the specified parameters (Case.Rate, ES, Power, etc)

Examples

```
ss_linear_envir.calc.linear_outcome(pow = 0.8,
ES_G=0.5, ES_E=1.6, ES_GE=1.4,
sd_e = 1, MAF=0.28,
sd_y = 5,Alpha=0.05,
True.Model='All', Test.Model='All')
```

ss_linear_envir.calc.logistic_outcome

Function to Calculate Sample Size for Linear Models with logistic environment interaction

Description

Calculates the power to detect an difference in means/effect size/regression coefficient, at a given sample size, N, with type 1 error rate, Alpha

Usage

```
ss_linear_envir.calc.logistic_outcome(
   power = NULL,
   MAF = NULL,
   OR_G = NULL,
   OR_GE = NULL,
   OR_GE = NULL,
   case.Rate = NULL,
   Case.Rate = NULL,
   k = NULL,
   Alpha = 0.05,
   True.Model = "All",
   Test.Model = "All"
)
```

Arguments

power	Vector of the desired power(s)
MAF	Vector of minor allele frequencies
OR_G	Vector of genetic odds ratios to detect
OR_E	Vector of environmental odds ratios to detect
OR_GE	Vector of genetic/environmental interaction odds ratios to detect
sd_e	Standard deviation of the environmental variable
Case.Rate	Standard deviation of the outcome in the population (ignoring genotype). Either Case.Rate_x or Case.Rate must be specified.
k	Vector of the number of controls per case. Either k or Case.Rate must be specified.
Alpha	the desired type 1 error rate(s)
True.Model	A vector specifying the true underlying genetic model(s): 'Dominant', 'Addi- tive', 'Recessive' or 'All'
Test.Model	A vector specifying the assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive' or 'All'

Value

A data frame including the power for all combinations of the specified parameters (Case.Rate, ES, Power, etc)

Examples

```
ss <- ss_linear_envir.calc.logistic_outcome(power=0.8,
OR_G=1.1, OR_E=1.2, OR_GE=1.5,
sd_e = 1, MAF=0.2, Case.Rate = 0.2,
Alpha=0.05, True.Model="All", Test.Model="All")
```

X_mat_returner

Function to output X matrices used in calculation of MLE's for linear outcome with logistic environment interaction

Description

Returns X matrices used in calculation of MLE's for linear outcome with logistic environment interaction

Usage

X_mat_returner(mod, reduced = F)

Arguments

mod	type of model
reduced	logical, indicates whether the X matrix will be used for a reduced model

Value

A matrix to be used in MLE calculation for linear outcome with logistic environment interaction

Examples

X_mat_returner(mod = "Dominant")

X_mat_returner_lle	Function to output X matrices used in calculation of MLE's for linear
	outcome with linear environment interaction

Description

Function to output X matrices used in calculation of MLE's for linear outcome with linear environment interaction

Usage

X_mat_returner_lle(mod)

Arguments

mod type of model

A probability vector to be used in MLE calculation for linear outcome with linear environment interaction

Examples

```
X_mat_returner_lle("Dominant")
```

zero_finder_nleqslv Zero finder

Description

Finds zeros of multinomial functions using the nleqslv package

Usage

```
zero_finder_nleqslv(
    afun,
    veclength,
    tol = 0.4,
    x.start.vals = NULL,
    upper.lim = Inf
)
```

Arguments

afun	The function to find zeros
veclength	The dimension of the system of equations
tol	The range within which to set start values for the function to use to find zeros
x.start.vals	Optional user defined start values
upper.lim	to be used if there is to be an upper limit to the solution

Value

Predicted zeros of the given equation

Examples

```
afun <- function(x) {
y <- numeric(2)
y[1] <- x[1]^2 + x[2]^2 - 1
y[2] <- exp(x[1]-1) + x[2]^3 - 1.1
y
}
zero_finder_nleqslv(afun, veclength = 2)</pre>
```

Index

add.fun.t, 3 add.or.function,4 additive.ll, 5 additive.ll.linear, 5 as.numeric2,6calc.like,7 logit, 32calc.like.linear,7 calc.like.linear.log.envir.interaction, 8 null.11,34 df2.11,9 df2.11.1inear, 10 dom.fun.t, 11 dom.or.function, 11 or.plot, 37 or_calc, 38 dominant.11,12 dominant.ll.linear, 13 es.calc.linear, 14 expected.linear.ll, 15 expected.linear.ll.lin.env, 15 find.prob.dom, 16 find.prob.rec, 17 genpwr.calc, 17 45 integrand_funct_case, 20 47 integrand_funct_control, 20 linear.mles, 21 linear.mles.lin.envir.interaction, 22 rec.fun.t, 50 linear.mles.lin.envir.interaction_reduced, 23 linear.mles.log.envir.interaction, 24 linear.outcome.lin.envir.interaction.sds, 25 solve_a, 53 linear.outcome.lin.envir.interaction.sds_redusedcalc, 33, 53, 56 26 ss.calc.linear, 55 linear.outcome.log.envir.interaction.sds, ss.plot, 56 27 ss_envir.calc, 57

linear.sds, 28 ll.ge.logistic, 28 ll.ge.logistic.lin.envir, 29 11.linear.selector, 30 11_zero_finder2, 31 logistic.mles, 32 ncp.search, 33 null.ll.linear, 34 odds_ratio_function, 35 or.function.2df, 36 p_vec_returner, 48 p_vec_returner_lin_env, 49 power.calc, 37, 39, 42 power.calc.linear, 40 power.plot, 41 power_envir.calc, 43 power_envir.calc.linear_outcome, 44 power_linear_envir.calc.linear_outcome, power_linear_envir.calc.logistic_outcome, quad_roots, 49 rec.or.function, 51 recessive.11,51 recessive.ll.linear, 52

INDEX

zero_finder_nleqslv, 64