Package 'genSEIR'

October 13, 2022

Type Package

Title Predict Epidemic Curves with Generalized SEIR Modeling

Version 0.1.1

Date 2021-07-12

Maintainer Selcuk Korkmaz <selcukorkmaz@gmail.com>

Depends R (>= 3.5.0)

Imports pracma, minpack.lm, nlsr, ggplot2

Description

Performs generalized Susceptible-Exposed-Infected-Recovered (SEIR) modeling to predict epidemic curves. The method is described in Peng et al. (2020) <doi:10.1101/2020.02.16.20023465>.

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.1.1

NeedsCompilation no

Author Selcuk Korkmaz [aut, cre] (<https://orcid.org/0000-0003-4632-6850>)

Repository CRAN

Date/Publication 2021-07-12 14:20:02 UTC

R topics documented:

checkRates	2
fit_SEIQRDP	3
getA	5
getDataCOVID	6
getKappaFun	7
getLambdaFun	9
kappaFun	0
lambdaFun	
modelFun	
plot_SEIQRDP	
predict_SEIQRDP	3

checkRates

Indov	SEIQRDP SEIQRDP_for_fitting															
Index																21

Check Rates

Description

This function compares the fitted and calculated death and recovered ratios. The idea is to check whether the approximation of these ratios is appropriate.

Usage

```
checkRates(time, Q, R, D, kappaFun, lambdaFun, kappa, lambda, dt = 1)
```

Arguments

time	time vector
Q	time histories of the quarantined/active cases
R	time histories of the recovered cases
D	time histories of the deceased cases
kappaFun	anonymous function approximating the death rate
lambdaFun	anonymous function approximating the recovery rate
kappa	mortality rate
lambda	cure rate
dt	a time step, default is 1/24. This oversample time to ensure that the algorithm
	converges.

Value

plots for death rate and recovery rate

Author(s)

Selcuk Korkmaz, <selcukorkmaz@gmail.com>

References

Peng, L., Yang, W., Zhang, D., Zhuge, C., Hong, L. 2020. "Epidemic analysis of COVID-19 in China by dynamical modeling", arXiv preprint arXiv:2002.06563.

https://www.mathworks.com/matlabcentral/fileexchange/74545-generalized-seir-epidemic-model-fitting-

See Also

SEIQRDP fit_SEIQRDP

fit_SEIQRDP

Description

Fit SEIQRDP function parameters used in the SEIQRDP function, used to model the time-evolution of an epidemic outbreak.

Usage

```
fit_SEIQRDP(
 Q,
 R,
 D,
 Npop,
 E0,
  I0,
  time,
 alpha = 0.05,
 dt = 1/24,
 guess,
 ftol = sqrt(.Machine$double.eps),
 ptol = sqrt(.Machine$double.eps),
 gtol = 0,
 diag = list(),
 epsfcn = 0,
  factor = 100,
 maxfev = integer(),
 maxiter = 1000,
 nprint = 1,
  trace = TRUE,
  . . .
)
```

Arguments

Q	time histories of the active cases
R	time histories of the recovered cases
D	time histories of the deceased cases
Npop	total population of the country
EØ	initial number of exposed cases
10	initial number of predicted infectious cases
time	a time vector
alpha	type I error rate, default is 0.05
dt	the time step. This oversamples time to ensure that the algorithm converges

guess	initial guess parameters
ftol	nls.lm.control object. non-negative numeric. Default is 1e-6
ptol	nls.lm.control object. non-negative numeric. Default is 1e-6
gtol	nls.lm.control object. non-negative numeric. Default is 1e-6
diag	nls.lm.control object. a list or numeric vector containing positive entries that serve as multiplicative scale factors for the parameters.
epsfcn	nls.lm.control object. Default is 0.001
factor	nls.lm.control object. Default is 100
maxfev	nls.lm.control object. Default is 1000
maxiter	nls.lm.control object. Default is 100
nprint	nls.lm.control object. Default is 1
trace	set TRUE to trace iteration results
	further arguments

Value

a list of optimized parameters

Author(s)

Selcuk Korkmaz, <selcukorkmaz@gmail.com>

References

Peng, L., Yang, W., Zhang, D., Zhuge, C., Hong, L. 2020. "Epidemic analysis of COVID-19 in China by dynamical modeling", arXiv preprint arXiv:2002.06563.

https://www.mathworks.com/matlabcentral/fileexchange/74545-generalized-seir-epidemic-model-fitting-

See Also

SEIQRDP predict_SEIQRDP

Examples

```
start = "01/01/21"
finish = "04/01/21"
country = "Italy"
dt = 1
f=30
covidData = getDataCOVID(start = start, finish = finish, country = country)
Recovered = covidData$tableRecovered
Deaths = covidData$tableDeaths
Confirmed = covidData$tableConfirmed
if(nrow(Recovered) == 1){
```

```
name = Recovered$CountryRegion
}else{
  name = paste0(Recovered$ProvinceState, " (",Recovered$CountryRegion,")")
}
 recovered = Recovered[ ,5:ncol(covidData$tableRecovered)]
 deaths = Deaths[ ,5:ncol(covidData$tableDeaths)]
 confirmed = Confirmed[ ,5:ncol(covidData$tableConfirmed)]
 Npop = 60000000
 alpha_guess = 0.05
 beta_guess = 0.8
 LT_guess = 7
 Q_guess = 0.8
 lambda_guess = c(0.01, 0.001, 10)
 kappa_guess = c(0.001,0.001,10)
guess = list(alpha_guess,
            beta_guess,
            1/LT_guess,
            Q_guess,
            lambda_guess[1],
            lambda_guess[2],
            lambda_guess[3],
            kappa_guess[1],
            kappa_guess[2],
            kappa_guess[3])
 Q0 = confirmed[1]-recovered[1]-deaths[1]
I0 = 0.3 \times Q0
E0 = 0.3 * Q0
R0 = recovered[1]
D0 = deaths[1]
Active = confirmed-recovered-deaths
Active[Active<0] <- 0</pre>
Q=Active
R=recovered
D = deaths
time = seq(as.Date(start, format = "%m/%d/%y"), as.Date(finish, format = "%m/%d/%y"), by = "1 day")
params = fit_SEIQRDP(Q = Active, R = recovered, D = deaths, Npop = Npop, E0 = E0, I0 = I0,
                        time = time, alpha = 0.05, dt = dt, guess = guess, ftol = 1e-6,
                    ptol = 1e-6, gtol = 1e-6, epsfcn = 0.001, factor = 100, maxfev = 1000,
                        maxiter = 100, nprint = 1, trace = TRUE)
```

Compute the matrix A

Description

This function computes the matrix A that is found in: dY/dt = A*Y + F

Usage

getA(alpha, gamma, delta, lambda, kappa)

Arguments

alpha	protection rate
gamma	inverse of the average latent time
delta	rate of people entering in quarantine
lambda	cure rate
kappa	mortality rate

Value

The matrix A that is found in: dY/dt = A*Y + F

Author(s)

Selcuk Korkmaz, <selcukorkmaz@gmail.com>

References

Peng, L., Yang, W., Zhang, D., Zhuge, C., Hong, L. 2020. "Epidemic analysis of COVID-19 in China by dynamical modeling", arXiv preprint arXiv:2002.06563.

https://www.mathworks.com/matlabcentral/fileexchange/74545-generalized-seir-epidemic-model-fitting-

See Also

SEIQRDP fit_SEIQRDP

getDataCOVID Get COVID-19 Data

Description

The function collects the updated COVID-19 data from the John Hopkins University.

Usage

```
getDataCOVID(country, start = NULL, finish = NULL)
```

getKappaFun

Arguments

country	name of the country. It should be a character string.
start	a start date in mm/dd/yy format. Start date can not be earlier than $01/22/20$. Start date can not be later than finish date. If start date is NULL then start date will be $01/22/20$.
finish	a finish date in mm/dd/yy format. Finish date can not be earlier than start date. If finish date is NULL then finish date will be the latest date at John-Hopkins CSSE system.

Value

a list of COVID-19 historical data including confirmed, death and recovered cases in desired time ranges.

Author(s)

Selcuk Korkmaz, <selcukorkmaz@gmail.com>

References

Peng, L., Yang, W., Zhang, D., Zhuge, C., Hong, L. 2020. "Epidemic analysis of COVID-19 in China by dynamical modeling", arXiv preprint arXiv:2002.06563.

https://www.mathworks.com/matlabcentral/fileexchange/74545-generalized-seir-epidemic-model-fitting-

See Also

SEIQRDP fit_SEIQRDP

Examples

getKappaFun

Estimate Death Rate

Description

This function provides a first estimate of the death rate, to faciliate convergence of the main algorithm.

Usage

```
getKappaFun(
    tTarget,
    Q,
    D,
    guess,
    ftol,
    ptol,
    gtol,
    epsfcn,
    factor,
    maxfev,
    maxiter,
    nprint,
    trace
)
```

Arguments

tTarget	time vector
Q	target time-histories of the quarantined cases
D	target time-histories of the dead cases
guess	initial guess parameters for kappa
ftol	nls.lm.control object. non-negative numeric. Default is 1e-6
ptol	nls.lm.control object. non-negative numeric. Default is 1e-6
gtol	nls.lm.control object. non-negative numeric. Default is 1e-6
epsfcn	nls.lm.control object. Default is 0.001
factor	nls.lm.control object. Default is 100
maxfev	nls.lm.control object. Default is 1000
maxiter	nls.lm.control object. Default is 100
nprint	nls.lm.control object. Default is 1
trace	Set TRUE to trace iteration results

Value

vector of estimation and optimization function for the death rate

Author(s)

Selcuk Korkmaz, <selcukorkmaz@gmail.com>

References

Peng, L., Yang, W., Zhang, D., Zhuge, C., Hong, L. 2020. "Epidemic analysis of COVID-19 in China by dynamical modeling", arXiv preprint arXiv:2002.06563.

https://www.mathworks.com/matlabcentral/fileexchange/74545-generalized-seir-epidemic-model-fitting-

8

getLambdaFun

See Also

SEIQRDP fit_SEIQRDP

getLambdaFun Estimate Recovery Rate

Description

This function provides a first estimate of the recovery rate, to faciliate convergence of the main algorithm.

Usage

getLambdaFun(
 tTarget,
 Q,
 R,
 guess,
 ftol,
 ptol,
 gtol,
 epsfcn,
 factor,
 maxfev,
 maxiter,
 nprint,
 trace

)

Arguments

Q target time-histories of the quarantined cases	
R target time-histories of the recovered cases	
guess initial guess parameters for kappa	
ftol nls.lm.control object. non-negative numeric. Default is 1e	-6
ptol nls.lm.control object. non-negative numeric. Default is 1e	-6
gtol nls.lm.control object. non-negative numeric. Default is 1e	-6
epsfcn nls.lm.control object. Default is 0.001	
factor nls.lm.control object. Default is 100	
maxfev nls.lm.control object. Default is 1000	
maxiter nls.lm.control object. Default is 100	
nprint nls.lm.control object. Default is 1	
trace set TRUE to trace iteration results	

Value

vector of estimation and optimization function for the recovery rate

Author(s)

Selcuk Korkmaz, <selcukorkmaz@gmail.com>

References

Peng, L., Yang, W., Zhang, D., Zhuge, C., Hong, L. 2020. "Epidemic analysis of COVID-19 in China by dynamical modeling", arXiv preprint arXiv:2002.06563.

https://www.mathworks.com/matlabcentral/fileexchange/74545-generalized-seir-epidemic-model-fitting-

See Also

SEIQRDP fit_SEIQRDP

kappaFun

Anonymous function approximating the death rate

Description

Anonymous function approximating the death rate

Usage

kappaFun(a, t)

Arguments

а	parameter vector
t	time vector

Value

No return value, called for side effects

lambdaFun

Description

Anonymous function approximating the recovery rate

Usage

lambdaFun(a, t)

Arguments

а	parameter vector
t	time vector

Value

No return value, called for side effects

modelFun	Model function
Description	

Model function

Usage

modelFun(Y, A, K)

Arguments

Υ	time vector
A	the matrix A that is found in: $dY/dt = A*Y + F$
К	the zero matrix for the seven states

Value

No return value, called for side effects

plot_SEIQRDP

Description

This function creates plots for reported and predicted active, recovered and death cases.

Usage

```
plot_SEIQRDP(
   object,
   reported = TRUE,
   sep = FALSE,
   show = c("S", "E", "I", "Q", "R", "D", "P"),
   ci = FALSE,
   title = NULL,
   checkRates = FALSE,
   ...
)
```

Arguments

object	a predict_SEIQRDP result.
reported	a logical argument. If TRUE reported official cases will be added to the plot.
sep	a logical argument. If TRUE seperate plots will be plotted. If FALSE one plot with all desired states will be plotted.
show	select one or more desired state. S: Susceptible, E: Exposed, I: Infectious, Q: Quarantined, R: Recovered, D: Dead, P: Insusceptible
ci	a logical argument. If TRUE a bootstrap confidence interval will be added to the plot.
title	an optional title for the plot.
checkRates	if TRUE compares the fitted and calcualted death and recovered ratios through plots
	other plot options

Value

plots for epidemic curves: active cases, recovered and deaths

Author(s)

Selcuk Korkmaz, <selcukorkmaz@gmail.com>
Selcuk Korkmaz, <selcukorkmaz@gmail.com>

See Also

SEIQRDP fit_SEIQRDP

Examples

```
alpha_guess = 0.45
beta_guess = 1
LT_guess = 2
Q_guess = 0.55
lambda_guess = c(0.01, 0.01, 30)
kappa_guess = c(0.01, 0.001, 30)
guess = list(alpha_guess,
             beta_guess,
             1/LT_guess,
             Q_guess,
             lambda_guess[1],
             lambda_guess[2],
             lambda_guess[3],
             kappa_guess[1],
             kappa_guess[2],
             kappa_guess[3])
pred = predict_SEIQRDP(country = "Germany", start = "10/15/20", finish = "12/15/20",
                       dt = 1, f = 30, conf = 0.95, Npop = 80000000, guess, boot = TRUE,
                       seed = 123, repeatNumber = 10, bootSample = NULL, type = "norm")
plot_SEIQRDP(object = pred, sep = FALSE, ci = TRUE, show = c("Q", "R", "D"), checkRates = TRUE)
```

predict_SEIQRDP

Predict cases using generalized SEIR model

Description

This function predicts cases of an outbreak using a generalized SEIR model

Usage

```
predict_SEIQRDP(
    country,
    start,
    finish,
    Npop = NULL,
```

```
guess,
dt = 1,
f = 0,
boot = FALSE,
conf = 0.95,
seed = 123,
repeatNumber = 200,
bootSample = NULL,
type = "norm"
```

Arguments

country	name of the country. It should be a character string.
start	a start date in mm/dd/yy format. Start date can not be earlier than $01/22/20$. Start date can not be later than finish date. If start date is NULL then start date will be $01/22/20$.
finish	a finish date in mm/dd/yy format. Finish date can not be earlier than start date. If finish date is NULL then finish date will be the latest date at John-Hopkins CSSE system.
Npop	total population of the country
guess	initial guess parameters
dt	the time step. This oversamples time to ensure that the algorithm converges
f	number of days for future predictions
boot	if TRUE bootstrap will be performed to calculate confidence interval
conf	confidence level, default is 0.95.
seed	set a seed for reproducible results.
repeatNumber	number of iteration for bootstrap.
bootSample	number of sample for each bootstrap. if NULL then the number of sample is 80 percent of the original data.
type	a condidence interval type. If "norm" it calculates based on normal approxima- tion, if "perc" it calculates based on percentile approximation,

Value

a list of predicted and actual cases.

Author(s)

Selcuk Korkmaz, <selcukorkmaz@gmail.com>

References

Peng, L., Yang, W., Zhang, D., Zhuge, C., Hong, L. 2020. "Epidemic analysis of COVID-19 in China by dynamical modeling", arXiv preprint arXiv:2002.06563.

https://www.mathworks.com/matlabcentral/fileexchange/74545-generalized-seir-epidemic-model-fitting-

14

RK4

See Also

SEIQRDP fit_SEIQRDP

Examples

```
alpha_guess = 0.45
beta_guess = 1
LT_guess = 2
Q_guess = 0.55
lambda_guess = c(0.01,0.01,30)
kappa_guess = c(0.01,0.001,30)
guess = list(alpha_guess,
            beta_guess,
            1/LT_guess,
            Q_guess,
            lambda_guess[1],
            lambda_guess[2],
            lambda_guess[3],
            kappa_guess[1],
            kappa_guess[2],
            kappa_guess[3])
pred = predict_SEIQRDP(country = "Germany", start = "10/15/20", finish = "12/15/20",
dt = 1, f = 30, conf = 0.95, Npop = 80000000, guess, boot = FALSE,
seed = 123, repeatNumber = 100, bootSample = NULL, type = "norm")
predict = pred$pred
actual = pred$actual
```

```
RK4
```

Runge-Kutta 4th Order Method to Solve Differential Equation

Description

Runge-Kutta 4th Order Method to Solve Differential Equation

Usage

RK4(Y, A, K, dt)

Arguments

Υ	initial values for seven states
A	the matrix A that is found in: $dY/dt = A*Y + F$
К	the zero matrix for the seven states
dt	the time step. This oversamples time to ensure that the algorithm converges

SEIQRDP

16

Value

ordinary differential equation result for the seven states

Author(s)

Selcuk Korkmaz, <selcukorkmaz@gmail.com>

References

https://www.mathworks.com/matlabcentral/fileexchange/74545-generalized-seir-epidemic-model-fitting-

See Also

SEIQRDP fit_SEIQRDP

SEIQRDP

Simulate generalized SEIR model

Description

This function simulates the time-histories of an epidemic outbreak using a generalized SEIR model

Usage

SEIQRDP(alpha, beta, gamma, delta, lambda0, kappa0, Npop, E0, Ι0, Q0, R0, D0, lambdaFun, kappaFun, tstart, tfinish, dt = 1/24, f = 0

)

SEIQRDP

Arguments

alpha	fitted protection rate
beta	fitted infection rate
gamma	fitted Inverse of the average latent time
delta	fitted rate at which people enter in quarantine
lambda0	fitted cure rate
kappa0	fitted mortality rate
Npop	Total population of the sample
EØ	Initial number of exposed cases
IØ	Initial number of infectious cases
QØ	Initial number of quarantined cases
RØ	Initial number of recovered cases
DØ	Initial number of dead cases
lambdaFun	anonymous function giving the time-dependant recovery rate
kappaFun	anonymous function giving the time-dependant death rate
tstart	start date
tfinish	finish date
dt	the time step. This oversamples time to ensure that the algorithm converges
f	number of days for future predictions

Value

a list of predicted cases including susceptible, exposed, infectious, quarantined, recovered, dead and insusceptible.

Author(s)

Selcuk Korkmaz, <selcukorkmaz@gmail.com>

Selcuk Korkmaz, <selcukorkmaz@gmail.com>

References

Peng, L., Yang, W., Zhang, D., Zhuge, C., Hong, L. 2020. "Epidemic analysis of COVID-19 in China by dynamical modeling", arXiv preprint arXiv:2002.06563.

https://www.mathworks.com/matlabcentral/fileexchange/74545-generalized-seir-epidemic-model-fitting-

See Also

fit_SEIQRDP

Examples

```
start = "01/01/21"
finish = "04/01/21"
country = "Italy"
dt = 1
f=30
covidData = getDataCOVID(start = start, finish = finish, country = country)
Recovered = covidData$tableRecovered
Deaths = covidData$tableDeaths
Confirmed = covidData$tableConfirmed
if(nrow(Recovered) == 1){
  name = Recovered$CountryRegion
}else{
  name = paste0(Recovered$ProvinceState, " (",Recovered$CountryRegion,")")
}
  recovered = Recovered[ ,5:ncol(covidData$tableRecovered)]
  deaths = Deaths[ ,5:ncol(covidData$tableDeaths)]
  confirmed = Confirmed[ ,5:ncol(covidData$tableConfirmed)]
  Npop = 60000000
  alpha_guess = 0.05
  beta_guess = 0.8
  LT_guess = 7
  Q_guess = 0.8
  lambda_guess = c(0.01, 0.001, 10)
  kappa_guess = c(0.001,0.001,10)
guess = list(alpha_guess,
            beta_guess,
            1/LT_guess,
            Q_guess,
            lambda_guess[1],
            lambda_guess[2],
            lambda_guess[3],
            kappa_guess[1],
            kappa_guess[2],
            kappa_guess[3])
 Q0 = confirmed[1]-recovered[1]-deaths[1]
 I0 = 0.3 \times Q0
 E0 = 0.3 \times Q0
 R0 = recovered[1]
 D0 = deaths[1]
 Active = confirmed-recovered-deaths
 Active[Active<0] <- 0</pre>
```

18

SEIQRDP_for_fitting Fitted Results for SEIQRDP

Description

Fitted Results for SEIQRDP

Usage

```
SEIQRDP_for_fitting(par, t, t0, Npop, E0, I0, Q, R, D, dt)
```

Arguments

par	initial guess parameters
t	historical time vector
tØ	target time vector
Npop	total population of the country
EØ	initial number of exposed cases
IØ	initial number of infectious cases
Q	actual number of quarantined cases
R	actual number of recovered cases
D	actual number of dead cases
dt	the time step. This oversamples time to ensure that the algorithm converges

Value

a data frame for fitted quarantined, recovered and deaths

Author(s)

Selcuk Korkmaz, <selcukorkmaz@gmail.com>

References

Peng, L., Yang, W., Zhang, D., Zhuge, C., Hong, L. 2020. "Epidemic analysis of COVID-19 in China by dynamical modeling", arXiv preprint arXiv:2002.06563.

https://www.mathworks.com/matlabcentral/fileexchange/74545-generalized-seir-epidemic-model-fitting-

See Also

fit_SEIQRDP RK4

Index

checkRates, 2

fit_SEIQRDP, 2, 3, 6, 7, 9, 10, 13, 15-17, 20

getA, 5 getDataCOVID, 6 getKappaFun, 7 getLambdaFun, 9

kappaFun, 10

lambdaFun, 11

modelFun, 11

plot_SEIQRDP, 12
predict_SEIQRDP, 4, 13

RK4, 15, 20

SEIQRDP, 2, 4, 6, 7, 9, 10, 13, 15, 16, 16 SEIQRDP_for_fitting, 19