Package ‘gawdis’

May 3, 2023
Type Package
Title Multi-Trait Dissimilarity with more Uniform Contributions
Version 0.1.5

Author Francesco de Bello [aut],
Zoltan Botta-Dukat [aut],
Jan Leps [aut],
Pavel Fibich [aut, cre]

Maintainer Pavel Fibich <pavel.fibich@prf.jcu.cz>

Description R function gawdis() produces multi-trait dissimilarity with more uniform contribu-
tions of different traits. de Bello et al. (2021) <doi:10.1111/2041-210X.13537> presented the ap-
proach based on minimizing the differences in the correlation between the dissimilar-
ity of each trait, or groups of traits, and the multi-trait dissimilarity. This is done using ei-
ther an analytic or a numerical solution, both available in the function.

License GPL-2 | GPL-3
Encoding UTF-8

BugReports https://github.com/pavel-fibich/gawdis/issues/

URL https://github.com/pavel-fibich/gawdis/
Depends FD, GA

RoxygenNote 7.1.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2023-05-03 11:10:02 UTC

R topics documented:

GAgawdis e 2
gawdiS . . . L e e 3
Index 8

https://doi.org/10.1111/2041-210X.13537
https://github.com/pavel-fibich/gawdis/issues/
https://github.com/pavel-fibich/gawdis/

2 GAgawdis

GAgawdis Internal Genetic Algorithm gawdis function

Description

Internal part of gawdis () function for running genetic algorithm

Usage

GAgawdis(tr = NULL, asym.bin = NULL, ord = "podani",gr = NULL,
gr.weight = FALSE, fuzzy = NULL, getSpecDists = NULL,
f = NULL, min.weight = 0.001, max.weight = 1, maxiter = 300,

monitor = FALSE, ...)
Arguments
tr Matrix or data frame containing the variables. Variables can be numeric, or-

dered, or factor. Symmetric or asymmetric binary variables should be numeric
and only contain 0 and 1. Character variables will be converted to factor. NAs
are tolerated.

asym.bin Vector listing the asymmetric binary variables in x.

ord Character string specifying the method to be used for ordinal variables (i.e. or-
dered). podani refers to Egs. 2a-b of Podani (1999), while "metric" refers to his
Eq. 3 (see ‘Details’); both options convert ordinal variables to ranks. "classic"
simply treats ordinal variables as continuous variables.

gr Vector for traits grouping, i.e. defining group of traits that are considered to be
reflecting similar biological information (e.g. many leaf traits in plants covering
similar information). By default each trait is treated separately (groups=NULL).
In order to define groups use the same values, e.g. groups =c(1,2,2,2,3,3)
in case of 6 variables attributed to 3 groups, with the length of vector that should
be the same as ncol (x).

gr.weight Option to weight traits inside the groups. By default it is set to FALSE, all
traits inside the groups have the same weights, meaning that some traits will
have a greater contribution within the group; TRUE means that gawdis() will
determine different weights of traits inside the groups, before combining this
group with other traits outside the group.

fuzzy Vector including groups which are defining a single variable, like in the case of
fuzzy coding and dummy variables. In this case, use the argument groups to de-
fine which columns belong to the groups. If fuzzy includes group name (from
groups argument), then the function will transform distances between species
within specified group to have maximum value set to 1 (e.g. for groups=c(1,1,2,2,2), fuzzy=c(2)
only distances of group 2 will be transformed). Default is NULL, not to trans-
form distances of any group. Having both groups.weight=TRUE, fuzzy=TRUE
is not possible, therefore !is.null (fuzzy) leads to overwriting groups.weight
to FALSE.

gawdis 3

getSpecDists Allows to use own code that defines the function getSpecDists(tr,gr,gr.weight)
for computing distances between species for each trait (traits are passed as tr
argument). It can be given, or pre-defined function doing the same things as
gowdis() is used (it is not necessary to specify it). If groups and groups.weight
arguments are given in gawdis, then they are passed to getSpecDists() as gr
and gr.weight arguments.

f This is the criteria used to equalize the contribution of traits to the multi-trait
dissimilarity. It can be specified. Alternative, by default, the approach is min-
imizing the differences in the correlations between the dissimilarity on indi-
vidual trait and the multi-trait approach. Specifically the 1/SD of correlations
(SD=standard deviation) is used, i.e. all traits will tend to have a similar corre-
lation with the multi-trait dissimilarity. opti.f is fitness function that is maximal-
ized by genetic algorithm.

min.weight Set minimum value for weights of traits.
max.weight Set maximum value for weights of traits.
maxiter Maximum number of iterations to run before the GA search is halted, see ?ga

from GA package. The default is 300 which was found to be quite reliable. The
greater numbers increase the computation time.

monitor If to monit progress of genetic algorithm.

Arguments passed to GA

Value

Returns ’diss’ as dissimilarity, weights as solution of GA, ga as GA, spedis as species distance.

Examples

#GAgawdis() is not exptected to be run directly, but you can try it by

library(FD)
GAgawdis(dummy$trait,maxiter=100)

gawdis gawdis function

Description

gawdis(), is an extension of the function gowdis, in the package FD, for Gower distance (Gower
1971) as fully described in de Bello et al. (2021). It provides a solution to the problem of unequal
traits contribution when combining different traits in a multi-trait dissimilarity (without care the
contribution of some traits can much stronger than others, i.e. the correlation of the dissimilarity of
individual trait, with the multi-trait dissimilarity, will be much stronger for some traits, particularly
categorical ones). The solution to this problem is based on minimizing the differences in the cor-
relation between the dissimilarity of each individual trait (or type of traits) and the multi-trait one.

4 gawdis

Such a task can be resolved analytically or using iterative explorations, depending on the type of
data (basically is NA is available only the iterative approach is possible). Both approaches assess
ways to provide an equal contribution of traits to the combined trait dissimilarity. Iterative explo-
ration borrows an algorithm from genetic analyses (GA), with the package for genetic algorithms
GA, Morrall (2003). This approach is used to minimize standard deviation (SD) of Pearson cor-
relations between the Gower dissimilarity based on single traits and Gower distances combining
all traits together, with a proper weight on each variable. GA iteratively explores the space of trait
weights by trying several sets of weights (population of candidate solutions), and combines them
by processes inspired from the biology (e.g. selection, mutation and crossover) to get new sets of
weights (new generation) with better fitness than previous one (Morrall 2003). The best fitness in
our case are weights with the minimal SD of correlations. GA is thus doing an optimization, mean-
ing that the more interactions is used the better solution should be found (although still there is a
random effect applied), but also greater computing time is necessary. When the groups are given,
first a combined traits distance between species is computed for each group separately as a distance
for all traits inside the group together. The computation of the distance depends also on if the traits
should be weighted inside the groups. If so, the weights are at the first found by gawdis () applied
on the matrix with just traits inside the group (gawdis() founds the best weights for the group). If
traits should not be weighted inside the groups, directly just a standard Gower distances is applied
for all traits inside the group.

Usage

gawdis(x,W = NULL, asym.bin = NULL, ord = c("podani”, "metric", "classic"),
w.type = c("analytic”, "optimized”, "equal”, "user"), groups = NULL,
groups.weight = FALSE, fuzzy = NULL, opti.getSpecDists = NULL,

opti.f = NULL,opti.min.weight = 0.01, opti.max.weight = 1,

opti.maxiter = 300, silent = FALSE)

Arguments

X Matrix or data frame containing the variables. Variables can be numeric, or-
dered, or factor. Symmetric or asymmetric binary variables should be numeric
and only contain 0 and 1. Character variables will be converted to factor. NAs
are tolerated.

W Vector listing the weights for the variables in x. W is considered only if w. type
is user, for w.type="equal" all weights having the same value and for other
w.type’s the weights are computed (see w. type).

asym.bin Vector listing the asymmetric binary variables in x.

ord Character string specifying the method to be used for ordinal variables (i.e. or-
dered). "podani" refers to Eqs. 2a-b of Podani (1999), while "metric" refers to
his Eq. 3 (see ‘Details’); both options convert ordinal variables to ranks. "clas-
sic" simply treats ordinal variables as continuous variables.

w.type Type of used method. w.type = "analytic” (default option) — weights opti-

mized by a mathematical algorithm (no NAs are allowed in this option); w. type
="optimized” — weights optimized by genetic/optimization algorithm based
on iteractions; w. type = "equal” — equal weights, w. type = "user” — user de-
fined weights are used. Note that is w. type = "analytic” in case of NAs, the
function will apply w. type = "equal”.

gawdis 5

groups Vector for traits grouping, i.e. defining group of traits that are considered to be
reflecting similar biological information (e.g. many leaf traits in plants covering
similar information). By default each trait is treated separately (groups = NULL).
In order to define groups use the same values, e.g. groups =c(1,2,2,2,3,3)
in case of 6 variables attributed to 3 groups, with the length of vector that should
be the same as ncol (x).

groups.weight Option to weight traits inside the groups. By default it is set to FALSE, all traits
inside the groups have the same weights, meaning that some traits will have a
greater contribution within the group; TRUE means that gawdis will determine
different weights of traits inside the groups, before combining this group with
other traits outside the group.

fuzzy Vector including groups which are defining a single variable, like in the case of
fuzzy coding and dummy variables. In this case, use the argument groups to de-
fine which columns belong to the groups. If fuzzy includes group name (from
groups argument), then the function will transform distances between species
within specified group to have maximum value set to 1 (e.g. for groups=c(1,1,2,2,2), fuzzy=c(2)
only distances of group 2 will be transformed). Default is NULL, not to trans-
form distances of any group. Having both groups.weight=TRUE, fuzzy=TRUE
is not possible, therefore ! is.null (fuzzy) leads to overwriting groups.weight
to FALSE.

opti.getSpecDists
Allows to use own code that defines the function getSpecDists(tr,gr,gr.weight)
for computing distances between species for each trait (traits are passed as tr
argument). It can be given, or pre-defined function doing the same things as
gowdis is used (it is not necessary to specify it). If groups and groups.weight
arguments are given in gawdis, then they are passed to getSpecDists() as gr
and gr.weight arguments.

opti.f This is the criteria used to equalize the contribution of traits to the multi-trait
dissimilarity. It can be specified. Alternative, by default, the approach is min-
imizing the differences in the correlations between the dissimilarity on indi-
vidual trait and the multi-trait approach. Specifically the 1/SD of correlations
(SD=standard deviation) is used, i.e. all traits will tend to have a similar corre-
lation with the multi-trait dissimilarity. opti.f is fitness function that is maximal-
ized by genetic algorithm.

opti.min.weight
Set minimum value for weights of traits.

opti.max.weight
Set maximum value for weights of traits.

opti.maxiter Maximum number of iterations to run before the GA search is halted, see ?ga
from GA package. The default is 300 which was found to be quite reliable. The
greater numbers increase the computation time.

silent If to print warnings and detailed information during the computation.

Value

An object of class dist with the following attributes: Labels, Types (the variable types, where *C’
is continuous/numeric, O’ is ordinal, "B’ is symmetric binary, A’ is asymmetric binary, and "N’ is

6 gawdis

nominal), Size, Metric. Including attributes 1) “correls” with the correlations of each trait with the
multi-trait dissimilarity, 2) “weights” for the weights of traits, 3) “group.correls” with weights of
groups, 4)”’components” with between species transformed distances, and 5) “cor.mat” with corre-
lations between traits.

References

de Bello, F. et al. (2021) Towards a more balanced combination of multiple traits when computing
functional differences between species. Methods in Ecology and Evolution, doi: https://doi.org/10.1111/2041-
210X.13537.

Gower, J. C. (1971) A general coefficient of similarity and some of its properties. Biometrics 27:
857-871.

Podani, J. (1999) Extending Gower’s general coefficient of similarity to ordinal characters. Taxon
48:331-340.

Morrall, D. (2003) Ecological Applications of Genetic Algorithms. Springer, Berlin, Heidelberg.

Laliberté, E., and Legendre, P. (2010) A distance-based framework for measuring functional diver-
sity from multiple traits. Ecology 91:299-305.

Laliberté, E., Legendre, P., and Shipley, B. (2014). FD: measuring functional diversity from
multiple traits, and other tools for functional ecology. R package version 1.0-12. https://cran.r-
project.org/package=FD .

See Also

gowdis from FD package.

Examples

library(FD) # input data

#the gowdis and gawdis functions provide the same results#

ex1 <- gowdis(dummy$trait)

#using gawdis in the same way as gowdis

ex1.gawl <- gawdis(dummy$trait, w.type ="equal”)

plot(ex1, exl.gawl); abline(@, 1)

#but when doing so, some traits have stronger contribution on the
#multi-trait dissimilarity particularly factorial and binary traits#
attr(exl.gawl, "correls")

#correlation of single-trait dissimilarity with multi-trait one#

#the gawdis function finds the best weights to equalize trait
#contributions this can be done in two ways: analytic=using formulas;
#optimized=using iterations both approaches give very similar results
#but only the latter can work with NAs#

#for the sake of comparisons here NAs are removed#
analytical<-gawdis(dummy$trait[,c(2,4,6,8)], w.type ="analytic")

#it is not needed to add the argument w.type, this is the approach
#used by default if not defined#

attr(analytical, "correls"”)

attr(analytical, "weights") #weights finally given to traits
iters<-gawdis(dummy$trait[,c(2,4,6,8)], w.type ="optimized”, opti.maxiter=2)

gawdis

#here we used 'only' 2 iterations, to speed up the process of tests and
#because it better to use at least opti.maxiter=100#

attr(iters, "correls")

#correlations are not equal, but enough close to each other

attr(iters, "weights")

plot(analytical, iters); abline(@, 1)

#the function can be used also for fuzzy coded/dummy variables traits#
#let's create some data#

bodysize<-c(10, 20, 30, 40, 50, NA, 70)

carnivory<-c(1, 1, o0, 1, 0,1, 0)

red<-c(1, o, 0.5, 0, 0.2, 0, 1)

yellow<-c(@, 1, 0, @0, 0.3, 1, @)

blue<-c(@, @, 0.5,1, 0.5, 0, @)

colors.fuzzy<-cbind(red, yellow, blue)

names(bodysize)<-paste(”"sp", 1:7, sep="")
names(carnivory)<-paste("sp"”, 1:7, sep="")

rownames (colors. fuzzy)<-paste("sp”, 1:7, sep="")
tall<-as.data.frame(cbind(bodysize, carnivory, colors.fuzzy))

tall

#use groups and fuzzy to treat the 3 columns related to traits

#as one traits#

gaw.tall<-gawdis(tall, w.type="equal”, groups =c(1, 2, 3,3,3),fuzzy=c(3))
attr(gaw.tall, "weights")

#to get optimized results just change w.type="optimized”

Index

* gawdis
GAgawdis, 2
gawdis, 3

* gowdis
GAgawdis, 2
gawdis, 3

GAgawdis, 2
gawdis, 3
gowdis, 3,6

	GAgawdis
	gawdis
	Index

