Package 'gallery'

September 26, 2024

Type Package

Title Generate Test Matrices for Numerical Experiments

Version 1.0.0

Maintainer Thomas Hsiao <thomas.hsiao@emory.edu>

Description Generates a variety of structured test matrices commonly used in numerical linear algebra and computational experiments. Includes well-known matrices for benchmarking and testing the performance, stability, and accuracy of linear algebra algorithms. Inspired by 'MAT-LAB' 'gallery' functions.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.1

Imports Matrix, pracma (>= 2.2.5)

Suggests testthat (>= 2.1.0), knitr, rmarkdown

NeedsCompilation no

Author Thomas Hsiao [aut, cre] (<https://orcid.org/0009-0005-7848-7992>)

Repository CRAN

Date/Publication 2024-09-26 13:40:02 UTC

Contents

10mial_matrix
uchy_matrix
ebspec
ebvand
ow
cul
ement
mpar
col
rr
amadah

cauchy_matrix

fiedler	- 7
forsythe	8
frank	8
grcar	9
hanowa	9
invol	10
jordbloc	10
lauchli	11
lehmer	11
leslie	12
minij	12
spdiags	13
tridiag	13
	14

Index

binomial_matrix Create binomial matrix

Description

Binomial matrix: an N-by-N multiple of an involutory matrix with integer entries such that $A^2 = 2^{(N-1)*I_N}$ Thus B = $A^{2^{((1-N)/2)}}$ is involutory, that is $B^2 = EYE(N)$

Usage

binomial_matrix(n)

Arguments n

row dimension

Value

a binomial matrix, which is a multiple of involutory matrix

cauchy_matrix Create Cauchy matrix

Description

Arguments x and y are vectors of length n. C[i,j] = 1 / (x[i] + y[j])

Usage

 $cauchy_matrix(x, y = NULL)$

chebspec

Arguments

х	vector of length n
У	vector of length n

Value

a Cauchy matrix

chebspec

Create Chebyshev spectral differentiation matrix

Description

Chebyshev spectral differentiation matrix of order n. k determines the character of the output matrix. For either form, the eigenvector matrix is ill-conditioned.

Usage

chebspec(n, k = NULL)

Arguments

n	order of the matrix.
k	k=0 is the default, no boundary conditions. The matrix is similar to a Jordan block of size n with eigenvalue 0. If $k=1$, the matrix is nonsingular and well-
	conditioned, and its eigenvalues have negative real parts.

Value

Chebyshev spectral differentiation matrix

chebvand

Creating Vandermonde-like matrix for the Chebyshev polynomials

Description

Produces the (primal) Chebyshev Vandermonde matrix based on the points p. $C[i, j] = T_{i-1}p[j]$, where T_{i-1} is the Chebyshev polynomial of degree i-1

Usage

chebvand(p, m = NULL)

Arguments

р	points to evaluate. If a scalar, then p equally spaced points on [0,1] are used.
m	number of rows of the matrix. chebvand(p, m) is the rectangular version of chebvand(p) with m rows.

Value

Vandermonde-like matrix for the Chebyshev polynomials

c	how	

Creating singular Toeplitz lower Hessenberg matrix

Description

returns matrix A = H(alpha) + delta * EYE, such that H[i,j] = alpha^(i-j+1).

Usage

chow(n, alpha = 1, delta = 0)

Arguments

n	order of the matrix
alpha	defaults to 1
delta	defaults to 0

Value

Singular Toeplitz lower Hessenberg matrix

circul

Create circulant matrix

Description

Each row is obtained from the previous by cyclically permuting the entries one step forward. A special Toeplitz matrix in which diagonals "wrap around"

Usage

circul(v)

Arguments

v

first row of the matrix. If v is a scalar, then C = circul(1:v)

clement

Value

a circulant matrix whose first row is the vector v

clement

Create Clement tridiagonal matrix with zero diagonal entries

Description

Returns an n-by-n tridiagonal matrix with zeros on the main diagonal. For k=0, A is nonsymmetric. For k=1, A is symmetric

Usage

clement(n, k = 0)

Arguments

n	order of matrix
k	0 indicates symmetric matrix, 1 asymmetric

Value

Clement tridiagonal matrix with zero diagonal entries

compar	Create comparison matrix A	

Description

For k=0, if i==j, A[i,j]=abs(B[i,j]) and A[i,j]=-abs(B[i,j]) otherwise. For k=1, A replaces each diagonal element of B with its absolute value, and replaces each off-diagonal with the negative of the largest absolute value off-diagonal in the same row.

Usage

compar(B, k = 0)

Arguments

В	input matrix
k	decides what matrix to return

Value

Comparison matrix

cycol

Description

Returns an n-by-n matrix with cyclically repeating columns where one cycle consists of the columns defined by randn(n,k). Thus, the rank of matrix A cannot exceed k, and k must be scalar.

Usage

cycol(n, k, m = NULL)

Arguments

n	number of columns of matrix
k	upper limit of rank
m	number of rows of matrix

Value

Matrix whose columns repeat cyclically

dorr	Create Dorr matrix

Description

Returns a n-by-n row diagonally dominant, tridiagonal matrix that is ill-conditioned for small non-negative values of theta. The default value of theta is 0.01.

Usage

dorr(n, theta = 0.01)

Arguments

n	order of matrix
theta	determines conditionality. Ill-conditioned when theta is nonnegative.

Value

Dorr matrix of class 'dgcMatrix'.

dramadah

Description

Returns a n-by-n nonsingular matrix of 0's and 1's. With large determinant or inverse. If k=1, A is Toeplitz and abs(det(A))=1. If k=2, A is upper triangular and Toeplitz. If k=3, A has maximal determinant among (0,1) lower Hessenberg matrices. Also is Toeplitz.

Also known as an anti-Hadamard matrix.

Usage

dramadah(n, k = 1)

Arguments

n	order of matrix
k	decides type of matrix returned.

Value

Matrix of zeros and ones

fiedler	Create Fiedler matrix	
---------	-----------------------	--

Description

Fiedler matrix that has a dominant positive eigenvalue and all others are negative

Usage

fiedler(c)

Arguments

c N-vector. If c is a scalar, then returns fiedler(1:c)

Value

a symmetric dense matrix A with a dominant positive eigenvalue and all others are negative.

forsythe

Description

Returns a n-by-n matrix equal to the Jordan block with eigenvalue lambda, except that A[n,1]=alpha.

Usage

```
forsythe(n, alpha = .Machine$double.eps, lambda = 0)
```

Arguments

n	order of matrix
alpha	value of perturbation at A[n,1]
lambda	eigenvalue of Jordan block

Value

Forsythe matrix or perturbed Jordan block

frank Frank matrix of order N
frank Frank matrix of order N

Description

Frank matrix of order N. It is upper Hessenberg with determinant 1.

Usage

frank(n, k = 0)

Arguments

n	order of the matrix
k	If k is 1, the elements are reflected about the anti-diagonal.

Value

Frank matrix with ill-conditioned eigenvalues.

grcar

Description

Eigenvalues are sensitive.

Usage

grcar(n, k = NULL)

Arguments

n	dimension of the square matrix
k	number of superdiagonals of ones

Value

n-by-n Toeplitz matrix with -1 on subdiagonal, 1 on diagonal, and k superdiagionals of 1s.

nowa Hanowa matrix

Description

Matrix whose eigenvalues lie on vertical plane in complex plane. Returns a 2-by-2 block matrix with four n/2 by n/2 blocks. n must be an even integer.

[d*eye(m) -diag(1:m), diag(1:m) d*eye(m)]

Usage

hanowa(n, d = NULL)

Arguments

n	order of matrix
d	value of main diagonal

Value

Matrix whose eigenvalues lie on a vertical line in the complex plane.

invol

Description

a n-byn involutory matrix and ill-conditioned. It is a diagonally scaled version of a Hilbert matrix.

Usage

invol(n)

Arguments

n order of matrix

Value

Involutory matrix (a matrix that is its own inverse).

jordbloc

Create Jordan block matrix

Description

Returns a n-by-n Jordan block with eigenvalue lambda. The default is 1.

Usage

jordbloc(n, lambda = 1)

Arguments

n	order of matrix
lambda	eigenvalue of Jordan block

Value

Jordan block matrix

lauchli

Description

the (N + 1) x (N) matrix [ones(1,n); mu*eye(n)]. Well-known example in least squares of the danger of forming t(A)

Usage

lauchli(n, mu = NULL, sparse = FALSE)

Arguments

n	number of columns
mu	constant applied to identity
sparse	whether matrix should be sparse

Value

Lauchli rectangular matrix.

lehmer	Create Lehmer matrix	

Description

the symmetric positive-definite matrix such that A[i,j] = i/j, for $j \ge i$

Usage

lehmer(n)

Arguments

n order of matrix

Value

Lehmer symmetric positive definite matrix.

leslie

Description

N by N matrix from Leslie population model with average birth and survival rates.

Usage

leslie(a, b = NULL, sparse = FALSE)

Arguments

а	average birth numbers (first row)
b	survival rates (subdiagonal)
sparse	whether to return a sparse matrix

Value

N by N Leslie population model matrix

minij	Symmetric positive definite matrix MIN(i,j)	
minij	Symmetric positive definite matrix MIN(1,])	

Description

The N-by-N SPD matrix with A[i,j]=min(i,j)

Usage

minij(n)

Arguments

n order of the matrix

Value

Symmetric positive definite matrix with entries A[i,j]=min(i,j)

spdiags

Description

Creates a sparse representation of multiple diagonal matrix

Usage

spdiags(A, d, m, n)

Arguments

А	matrix where columns correspond to the desired diagonals
d	indices of the diagonals to be filled in. 0 is main diagonal1 is first subdiagonal and +1 is first superdiagonal.
m	row dim
n	col dim

Value

sparse diagonal matrix of class 'dgcMatrix'

tridiag	Create sparse tridiagonal matrix	
---------	----------------------------------	--

Description

Create a sparse tridiagonal matrix of dgcMatrix class.

Usage

tridiag(n, x = NULL, y = NULL, z = NULL)

Arguments

n	dimension of the square matrix
х	subdiagonal (-1)
У	diagonal (0)
Z	superdiagonal (+1)

Value

Sparse tridiagonal matrix of class 'dgcMatrix'

Index

 $binomial_matrix, 2$ $cauchy_matrix, 2$ chebspec, 3chebvand, 3chow, 4 circul,4 clement, 5compar, 5 cycol, <mark>6</mark> dorr,6 dramadah,7 fiedler,7 forsythe, 8frank,8 grcar, 9 hanowa, 9 invol, 10 jordbloc, 10 lauchli, 11 lehmer, 11 leslie, 12minij, 12spdiags, 13 tridiag, 13