
Package ‘galah’
June 12, 2025

Type Package

Title Biodiversity Data from the GBIF Node Network

Version 2.1.2

Description The Global Biodiversity Information Facility
('GBIF', <https://www.gbif.org>) sources data from an international network
of data providers, known as 'nodes'. Several of these nodes - the ``living
atlases'' (<https://living-atlases.gbif.org>) - maintain their own web
services using software originally developed by the Atlas of Living
Australia ('ALA', <https://www.ala.org.au>). 'galah' enables the R community
to directly access data and resources hosted by 'GBIF' and its partner nodes.

Depends R (>= 4.3.0)

Imports cli, crayon, dplyr, glue (>= 1.3.2), httr2, jsonlite (>=
0.9.8), lifecycle (>= 1.0.0), potions (>= 0.2.0), purrr, readr,
rlang, sf, stringr, tibble, tidyr, tidyselect, utils, xml2

Suggests covr, gt, kableExtra, knitr, magrittr, pkgdown, reactable,
rmarkdown, testthat

License MPL-2.0

URL https://galah.ala.org.au/R/

BugReports https://github.com/AtlasOfLivingAustralia/galah-R/issues

Maintainer Martin Westgate <martin.westgate@csiro.au>

LazyLoad yes

VignetteBuilder knitr

RoxygenNote 7.3.2

Encoding UTF-8

NeedsCompilation no

Author Martin Westgate [aut, cre],
Dax Kellie [aut],
Matilda Stevenson [aut],
Peggy Newman [aut]

Repository CRAN

Date/Publication 2025-06-12 09:30:02 UTC

1

https://www.gbif.org
https://living-atlases.gbif.org
https://www.ala.org.au
https://galah.ala.org.au/R/
https://github.com/AtlasOfLivingAustralia/galah-R/issues

2 apply_profile

Contents
apply_profile . 2
arrange.data_request . 3
atlas_citation . 4
collapse.data_request . 5
collect.data_request . 6
collect_media . 7
compute.data_request . 8
count.data_request . 9
filter.data_request . 10
galah_call . 12
galah_config . 15
geolocate . 16
group_by.data_request . 19
identify.data_request . 20
print_galah_objects . 21
read_zip . 23
search_all . 24
select.data_request . 26
show_all . 29
show_values . 31
slice_head.data_request . 32
taxonomic_searches . 33
tidyverse_functions . 35

Index 37

apply_profile Apply a data quality profile

Description

A ’profile’ is a group of filters that are pre-applied by the ALA. Using a data profile allows a query to
be filtered quickly to the most relevant or quality-assured data that is fit-for-purpose. For example,
the "ALA" profile is designed to exclude lower quality records, whereas other profiles apply filters
specific to species distribution modelling (e.g. CDSM).

Note that only one profile can be loaded at a time; if multiple profiles are given, the first valid profile
is used.

For more bespoke editing of filters within a profile, use filter.data_request().

Usage

apply_profile(.data, ...)

galah_apply_profile(...)

arrange.data_request 3

Arguments

.data An object of class data_request

... a profile name. Should be a string - the name or abbreviation of a data quality
profile to apply to the query. Valid values can be seen using show_all(profiles)

Value

An updated data_request with a completed data_profile slot.

See Also

show_all() and search_all() to look up available data profiles. filter.data_request() can
be used for more bespoke editing of individual data profile filters.

Examples

Not run:
Apply a data quality profile to a query
galah_call() |>

identify("reptilia") |>
filter(year == 2021) |>
apply_profile(ALA) |>
atlas_counts()

End(Not run)

arrange.data_request Order rows using column values

Description

[Experimental]

arrange.data_request() arranges rows of a query on the server side, meaning that the query is
constructed in such a way that information will be arranged when the query is processed. This
only has an effect when used in combination with count() and group_by(). The benefit of using
arrange() within a galah_call() pipe is that it is sometimes beneficial to choose a non-default
order for data to be delivered in, particularly if slice_head() is also called.

Usage

S3 method for class 'data_request'
arrange(.data, ...)

S3 method for class 'metadata_request'
arrange(.data, ...)

4 atlas_citation

Arguments

.data An object of class data_request

... A variable to arrange the resulting tibble by. Should be one of the variables also
listed in group_by().

Value

An amended data_request with a completed arrange slot.

Examples

Not run:

Arrange grouped counts by ascending year
galah_call() |>

identify("Crinia") |>
filter(year >= 2020) |>
group_by(year) |>
arrange(year) |>
count() |>
collect()

Arrange grouped counts by ascending record count
galah_call() |>

identify("Crinia") |>
filter(year >= 2020) |>
group_by(year) |>
arrange(count) |>
count() |>
collect()

Arrange grouped counts by descending year
galah_call() |>

identify("Crinia") |>
filter(year >= 2020) |>
group_by(year) |>
arrange(desc(year)) |>
count() |>
collect()

End(Not run)

atlas_citation Generate a citation for occurrence data

collapse.data_request 5

Description

If a tibble containing occurrences was generated using galah (either via collect() or atlas_occurrences()),
it will usually contain associated metadata stored in attributes() that can be used to build a cita-
tion for that dataset. This function simply extracts that information, formats it, then both invisibly
returns the formatted citation and prints it to the console.

Usage

atlas_citation(data)

Arguments

data A tibble generated by atlas_occurrences() or similar

Value

Invisibly returns a string containing the citation for that dataset. Primarily called for the side-effect
of printing this string to the console.

Examples

Not run:
x <- galah_call() |>

identify("Heleioporus") |>
filter(year == 2022) |>
collect()

atlas_citation(x)

End(Not run)

collapse.data_request Generate a query

Description

collapse() constructs a valid query so it can be inspected before being sent. It typically occurs
at the end of a pipe, traditionally begun with galah_call(), that is used to define a query. As of
version 2.0, objects of class data_request (created using request_data()), metadata_request
(from request_metadata()) or files_request (from request_files()) are all supported by
collapse(). Any of these objects can be created using galah_call() via the method argument.

Usage

S3 method for class 'data_request'
collapse(x, ..., mint_doi, .expand = FALSE)

S3 method for class 'metadata_request'
collapse(x, .expand = FALSE, ...)

6 collect.data_request

S3 method for class 'files_request'
collapse(x, thumbnail = FALSE, ...)

Arguments

x An object of class data_request, metadata_request or files_request

... Arguments passed on to other methods

mint_doi Logical: should a DOI be minted for this download? Only applies to type =
"occurrences" when atlas chosen is "ALA".

.expand Logical: should the query_set be returned? This object shows all the requi-
site data needed to process the supplied query. Defaults to FALSE; if TRUE will
append the query_set to an extra slot in the query object.

thumbnail Logical: should thumbnail-size images be returned? Defaults to FALSE, indicat-
ing full-size images are required.

Value

An object of class query, which is a list-like object containing at least the slots type and url.

collect.data_request Retrieve a database query

Description

collect() attempts to retrieve the result of a query from the selected API.

Usage

S3 method for class 'data_request'
collect(x, ..., wait = TRUE, file = NULL)

S3 method for class 'metadata_request'
collect(x, ...)

S3 method for class 'files_request'
collect(x, ...)

S3 method for class 'query'
collect(x, ..., wait = TRUE, file = NULL)

S3 method for class 'computed_query'
collect(x, ..., wait = TRUE, file = NULL)

collect_media 7

Arguments

x An object of class data_request, metadata_request or files_request (from
galah_call()); or an object of class query_set or query (from collapse()
or compute())

... Arguments passed on to other methods

wait logical; should galah wait for a response? Defaults to FALSE. Only applies for
type = "occurrences" or "species".

file (Optional) file name. If not given, will be set to data with date and time added.
The file path (directory) is always given by galah_config()$package$directory.

Value

In most cases, collect() returns a tibble containing requested data. Where the requested data
are not yet ready (i.e. for occurrences when wait is set to FALSE), this function returns an object of
class query that can be used to recheck the download at a later time.

collect_media Collect media files

Description

This function downloads full-sized or thumbnail images and media files to a local directory using
information from atlas_media()

Usage

collect_media(df, thumbnail = FALSE, path)

Arguments

df A tibble returned by atlas_media() or a pipe starting with request_data(type
= "media").

thumbnail Default is FALSE. If TRUE will download small thumbnail-sized images, rather
than full size images (default).

path [Deprecated] Use galah_config(directory = "path-to-directory)" in-
stead. Supply a path to a local folder/directory where downloaded media will be
saved to.

Value

Invisibly returns a tibble listing the number of files downloaded, grouped by their HTML status
codes. Primarily called for the side effect of downloading available image & media files to a user
local directory.

8 compute.data_request

Examples

Not run:
Use `atlas_media()` to return a `tibble` of records that contain media
x <- galah_call() |>

identify("perameles") |>
filter(year == 2015) |>
atlas_media()

To download media files, add `collect_media()` to the end of a query
galah_config(directory = "media_files")
collect_media(x)

Since version 2.0, it is possible to run all steps in sequence
first, get occurrences, making sure to include media fields:
occurrences_df <- request_data() |>

identify("Regent Honeyeater") |>
filter(!is.na(images), year == 2011) |>
select(group = "media") |>
collect()

second, get media metadata
media_info <- request_metadata() |>

filter(media == occurrences_df) |>
collect()

the two steps above + `right_join()` are synonymous with `atlas_media()`
third, get images
request_files() |>

filter(media == media_info) |>
collect(thumbnail = TRUE)

step three is synonymous with `collect_media()`

End(Not run)

compute.data_request Compute a query

Description

compute() is useful for several purposes. It’s original purpose is to send a request for data, which
can then be processed by the server and retrieved at a later time (via collect()).

Usage

S3 method for class 'data_request'
compute(x, ...)

S3 method for class 'metadata_request'
compute(x, ...)

count.data_request 9

S3 method for class 'files_request'
compute(x, ...)

S3 method for class 'query'
compute(x, ...)

Arguments

x An object of class data_request, metadata_request or files_request (i.e.
constructed using a pipe) or query (i.e. constructed by collapse())

... Arguments passed on to other methods

Value

An object of class computed_query, which is identical to class query except for occurrence data,
where it also contains information on the status of the request.

count.data_request Count the observations in each group

Description

count() lets you quickly count the unique values of one or more variables. It is evaluated lazily.

Usage

S3 method for class 'data_request'
count(x, ..., wt, sort, name)

Arguments

x An object of class data_request, created using galah_call()

... currently ignored

wt currently ignored

sort currently ignored

name currently ignored

10 filter.data_request

filter.data_request Keep rows that match a condition

Description

The filter() function is used to subset a data, retaining all rows that satisfy your conditions. To be
retained, the row must produce a value of TRUE for all conditions. Unlike ’local’ filters that act on a
tibble, the galah implementations work by amending a query which is then enacted by collect()
or one of the atlas_ family of functions (such as atlas_counts() or atlas_occurrences()).

Usage

S3 method for class 'data_request'
filter(.data, ...)

S3 method for class 'metadata_request'
filter(.data, ...)

S3 method for class 'files_request'
filter(.data, ...)

galah_filter(..., profile = NULL)

Arguments

.data An object of class data_request, metadata_request or files_request, cre-
ated using galah_call() or related functions.

... Expressions that return a logical value, and are defined in terms of the variables
in the selected atlas (and checked using show_all(fields). If multiple expres-
sions are included, they are combined with the & operator. Only rows for which
all conditions evaluate to TRUE are kept.

profile [Deprecated] Use galah_apply_profile instead.

Details

Syntax

filter.data_request() and galah_filter() uses non-standard evaluation (NSE), and are de-
signed to be as compatible as possible with dplyr::filter() syntax. Permissible examples in-
clude:

• == (e.g. year = 2020) but not = (for consistency with dplyr)

• !=, e.g. year != 2020)

• > or >= (e.g. year >= 2020)

• < or <= (e.g. year <= 2020)

• OR statements (e.g. year == 2018 | year == 2020)

filter.data_request 11

• AND statements (e.g. year >= 2000 & year <= 2020)

Some general tips:

• Separating statements with a comma is equivalent to an AND statement; Ergo filter(year >=
2010 & year < 2020) is the same as _filter(year >= 2010, year < 2020).

• All statements must include the field name; so filter(year == 2010 | year == 2021) works,
as does filter(year == c(2010, 2021)), but filter(year == 2010 | 2021) fails.

• It is possible to use an object to specify required values, e.g. year_value <- 2010; filter(year > year_value).

• solr supports range queries on text as well as numbers; so filter(cl22 >= "Tasmania") is
valid.

• It is possible to filter by ’assertions’, which are statements about data validity, such as filter(assertions != c("INVALID_SCIENTIFIC_NAME", "COORDINATE_INVALID").
Valid assertions can be found using show_all(assertions).

Exceptions

When querying occurrences, species, or their respective counts (i.e. all of the above examples), field
names are checked internally against show_all(fields). There are some cases where bespoke
field names are required, as follows.

When requesting a data download from a DOI, the field doi is valid, i.e.:

galah_call() |>
filter(doi = "a-long-doi-string") |>
collect()

For taxonomic metadata, the taxa field is valid:

request_metadata() |>
filter(taxa == "Chordata") |>
unnest()

For building taxonomic trees, the rank field is valid:

request_data() |>
identify("Chordata") |>
filter(rank == "class") |>
atlas_taxonomy()

Media queries are more involved, but break two rules: they accept the media field, and they accept
a tibble on the rhs of the equation. For example, users wishing to break down media queries into
their respective API calls should begin with an occurrence query:

occurrences <- galah_call() |>
identify("Litoria peronii) |>
select(group = c("basic", "media") |>
collect()

They can then use the media field to request media metadata:

12 galah_call

media_metadata <- galah_call("metadata") |>
filter(media == occurrences) |>
collect()

And finally, the metadata tibble can be used to request files:

galah_call("files") |>
filter(media == media_metadata) |>
collect()

Value

A tibble containing filter values.

See Also

select(), group_by() and geolocate() for other ways to amend the information returned by
atlas_() functions. Use search_all(fields) to find fields that you can filter by, and show_values()
to find what values of those filters are available.

Examples

Not run:
galah_call() |>

filter(year >= 2019,
basisOfRecord == "HumanObservation") |>

count() |>
collect()

End(Not run)

galah_call Start building a query

Description

To download data from the selected atlas, one must construct a query. This query tells the atlas API
what data to download and return, as well as how it should be filtered. Using galah_call() allows
you to build a piped query to download data, in the same way that you would wrangle data with
dplyr and the tidyverse.

Usage

galah_call(method = c("data", "metadata", "files"), type, ...)

request_data(
type = c("occurrences", "occurrences-count", "occurrences-doi", "species",
"species-count"),

galah_call 13

...
)

request_metadata(
type = c("fields", "apis", "assertions", "atlases", "collections", "datasets",
"licences", "lists", "media", "profiles", "providers", "ranks", "reasons", "taxa",
"identifiers")

)

request_files(type = "media")

Arguments

method string: what request function should be called. Should be one of "data" (de-
fault), "metadata" or "files"

type string: what form of data should be returned? Acceptable values are specified
by the corresponding request function

... Zero or more arguments passed to collapse() to alter a query. Currently only
mint.doi (for occurrences) and thumbnail (for media downloads) are sup-
ported. Both are logical.

Details

In practice, galah_call() is a wrapper to a group of underlying request_ functions, selected using
the method argument. Each of these functions can begin a piped query and end with collapse(),
compute() or collect(), or optionally one of the atlas_ family of functions. For more details see
the object-oriented programming vignette: vignette("object_oriented_programming", package
= "galah")

Accepted values of the type argument are set by the underlying request_ functions. While all
accepted types can be set directly, some are affected by later functions. The most common exam-
ple is that adding count() to a pipe updates type, converting type = "occurrences" to type =
"occurrences-count" (and ditto for type = "species").

The underlying request_ functions are useful because they allow galah to separate different types
of requests to perform better. For example, filter.data_request translates filters in R to solr,
whereas filter.metadata_request searches using a search term.

Value

Each sub-function returns a different object class: request_data() returns data_request. request_metadata
returns metadata_request, request_files() returns files_request. These objects are list-like
and contain the following slots:

• filter: edit by piping filter() or galah_filter().

• select: edit by piping select or galah_select().

• group_by: edit by piping group_by() or galah_group_by().

• identify: edit by piping identify() or galah_identify().

• geolocate: edit by piping st_crop(), galah_geolocate(), galah_polygon() or galah_bbox().

14 galah_call

• limit: edit by piping slice_head().

• doi: edit by piping filter(doi == "my-doi-here").

See Also

collapse.data_request(), compute.data_request(), collect.data_request()

Examples

Not run:
Begin your query with `galah_call()`, then pipe using `%>%` or `|>`

Get number of records of *Aves* from 2001 to 2004 by year
galah_call() |>

identify("Aves") |>
filter(year > 2000 & year < 2005) |>
group_by(year) |>
atlas_counts()

Get information for all species in *Cacatuidae* family
galah_call() |>

identify("Cacatuidae") |>
atlas_species()

Download records of genus *Eolophus* from 2001 to 2004
galah_config(email = "your-email@email.com")

galah_call() |>
identify("Eolophus") |>
filter(year > 2000 & year < 2005) |>
atlas_occurrences() # synonymous with `collect()`

galah_call() is a wrapper to various `request_` functions.
These can be called directly for greater specificity.

Get number of records of *Aves* from 2001 to 2004 by year
request_data() |>

identify("Aves") |>
filter(year > 2000 & year < 2005) |>
group_by(year) |>
count() |>
collect()

Get information for all species in *Cacatuidae* family
request_data(type = "species") |>

identify("Cacatuidae") |>
collect()

Get metadata information about supported atlases in galah
request_metadata(type = "atlases") |>

collect()

galah_config 15

End(Not run)

galah_config Get or set configuration options that control galah behaviour

Description

The galah package supports large data downloads, and also interfaces with the ALA which requires
that users of some services provide a registered email address and reason for downloading data. The
galah_config function provides a way to manage these issues as simply as possible.

Usage

galah_config(...)

Arguments

... Options can be defined using the form name = "value". Valid arguments are:

• api-key string: A registered API key (currently unused).
• atlas string: Living Atlas to point to, Australia by default. Can be an

organisation name, acronym, or region (see show_all_atlases() for ad-
missible values)

• directory string: the directory to use for the cache. By default this is a
temporary directory, which means that results will only be cached within
an R session and cleared automatically when the user exits R. The user may
wish to set this to a non-temporary directory for caching across sessions.
The directory must exist on the file system.

• download_reason_id numeric or string: the "download reason" required.
by some ALA services, either as a numeric ID (currently 0–13) or a string
(see show_all(reasons) for a list of valid ID codes and names). By de-
fault this is NA. Some ALA services require a valid download_reason_id
code, either specified here or directly to the associated R function.

• email string: An email address that has been registered with the chosen
atlas. For the ALA, you can register at this address.

• password string: A registered password (GBIF only)
• run_checks logical: should galah run checks for filters and columns. If

making lots of requests sequentially, checks can slow down the process and
lead to HTTP 500 errors, so should be turned off. Defaults to TRUE.

• send_email logical: should you receive an email for each query to atlas_occurrences()?
Defaults to FALSE; but can be useful in some instances, for example for
tracking DOIs assigned to specific downloads for later citation.

• username string: A registered username (GBIF only)
• verbose logical: should galah give verbose such as progress bars? De-

faults to FALSE.

https://auth.ala.org.au/userdetails/registration/createAccount

16 geolocate

Value

For galah_config(), a list of all options. When galah_config(...) is called with arguments,
nothing is returned but the configuration is set.

Examples

Not run:
To download occurrence records, enter your email in `galah_config()`.
This email should be registered with the atlas in question.
galah_config(email = "your-email@email.com")

Turn on caching in your session
galah_config(caching = TRUE)

Some ALA services require that you add a reason for downloading data.
Add your selected reason using the option `download_reason_id`
galah_config(download_reason_id = 0)

To look up all valid reasons to enter, use `show_all(reasons)`
show_all(reasons)

Make debugging in your session easier by setting `verbose = TRUE`
galah_config(verbose = TRUE)

End(Not run)

geolocate Narrow a query to within a specified area

Description

Restrict results to those from a specified area. Areas can be specified as either polygons or bound-
ing boxes, depending on type. Alternatively, users can call the underlying functions directly via
galah_polygon(), galah_bbox() or galah_radius(). It is possible to use sf syntax by calling
st_crop(), which is synonymous with galah_polygon().

Use a polygon If calling galah_geolocate(), the default type is "polygon", which narrows
queries to within an area supplied as a POLYGON or MULTIPOLYGON. Polygons must be specified
as either an sf object, a ’well-known text’ (WKT) string, or a shapefile. Shapefiles must be simple
to be accepted by the ALA.

Use a bounding box Alternatively, set type = "bbox" to narrow queries to within a bounding box.
Bounding boxes can be extracted from a supplied sf object or a shapefile. A bounding box can also
be supplied as a bbox object (via sf::st_bbox()) or a tibble/data.frame.

[Experimental] Use a point radius Alternatively, set type = "radius" to narrow queries to within
a circular area around a specific point location. Point coordinates can be supplied as latitude/longitude
coordinate numbers or as an sf object (sfc_POINT). Area is supplied as a radius in kilometres.
Default radius is 10 km.

geolocate 17

Usage

geolocate(..., type = c("polygon", "bbox", "radius"))

galah_geolocate(..., type = c("polygon", "bbox", "radius"))

galah_polygon(...)

galah_bbox(...)

galah_radius(...)

S3 method for class 'data_request'
st_crop(x, y, ...)

Arguments

... For st_crop, additional arguments (currently ignored). Otherwise a single
sf object, WKT string or shapefile. Bounding boxes can be supplied as a
tibble/data.frame or a bbox

type string: one of c("polygon", "bbox"). Defaults to "polygon". If type =
"polygon", a multipolygon will be built via galah_polygon(). If type = "bbox",
a multipolygon will be built via galah_bbox(). The multipolygon is used to
narrow a query to the ALA.

x An object of class data_request, created using galah_call()

y A valid Well-Known Text string (wkt), a POLYGON or a MULTIPOLYGON

Details

If type = "polygon", WKT strings longer than 10000 characters and sf objects with more than
500 vertices will not be accepted by the ALA. Some polygons may need to be simplified. If type
= "bbox", sf objects and shapefiles will be converted to a bounding box to query the ALA. If
type = "radius, sfc_POINT objects will be converted to lon/lat coordinate numbers to query
the ALA. Default radius is 10 km.

Value

If type = "polygon" or type = "bbox", length-1 string (class character) containing a multipoly-
gon WKT string representing the area provided. If type = "radius", list of lat, long and radius
values.

Examples

Not run:
Search for records within a polygon using a shapefile
location <- sf::st_read("path/to/shapefile.shp")
galah_call() |>

identify("vulpes") |>
geolocate(location) |>

18 geolocate

count() |>
collect()

Search for records within the bounding box of a shapefile
location <- sf::st_read("path/to/shapefile.shp")
galah_call() |>

identify("vulpes") |>
geolocate(location, type = "bbox") |>
count() |>
collect()

Search for records within a polygon using an `sf` object
location <- "POLYGON((142.3 -29.0,142.7 -29.1,142.7 -29.4,142.3 -29.0))" |>
sf::st_as_sfc()

galah_call() |>
identify("reptilia") |>
galah_polygon(location) |>
count() |>
collect()

Search for records using a Well-known Text string (WKT)
wkt <- "POLYGON((142.3 -29.0,142.7 -29.1,142.7 -29.4,142.3 -29.0))"
galah_call() |>

identify("vulpes") |>
st_crop(wkt) |>
count() |>
collect()

Search for records within the bounding box extracted from an `sf` object
location <- "POLYGON((142.3 -29.0,142.7 -29.1,142.7 -29.4,142.3 -29.0))" |>

sf::st_as_sfc()
galah_call() |>

identify("vulpes") |>
galah_geolocate(location, type = "bbox") |>
count() |>
collect()

Search for records using a bounding box of coordinates
b_box <- sf::st_bbox(c(xmin = 143, xmax = 148, ymin = -29, ymax = -28),

crs = sf::st_crs("WGS84"))
galah_call() |>

identify("reptilia") |>
galah_geolocate(b_box, type = "bbox") |>
count() |>
collect()

Search for records using a bounding box in a `tibble` or `data.frame`
b_box <- tibble::tibble(xmin = 148, ymin = -29, xmax = 143, ymax = -21)
galah_call() |>

identify("vulpes") |>
galah_geolocate(b_box, type = "bbox") |>
count() |>
collect()

group_by.data_request 19

Search for records within a radius around a point's coordinates
galah_call() |>

identify("manorina melanocephala") |>
galah_geolocate(lat = -33.7,

lon = 151.3,
radius = 5,
type = "radius") |>

count() |>
collect()

Search for records with a radius around an `sf_POINT` object
point <- sf::st_sfc(sf::st_point(c(-33.66741, 151.3174)), crs = 4326)
galah_call() |>

identify("manorina melanocephala") |>
galah_geolocate(point,

radius = 5,
type = "radius") |>

count() |>
collect()

End(Not run)

group_by.data_request Group by one or more variables

Description

Most data operations are done on groups defined by variables. group_by() takes a field name
(unquoted) and performs a grouping operation. The default behaviour is to use it in combination
with count() to give information on number of occurrences per level of that field. Alternatively,
you can use it without count to get a download of occurrences grouped by that variable. This
is particularly useful when used with a taxonomic ID field (speciesID, genusID etc.) as it allows
further information to be appended to the result. This is how atlas_species() works, for example.
See select() for details.

Usage

S3 method for class 'data_request'
group_by(.data, ...)

galah_group_by(...)

Arguments

.data An object of class data_request

... Zero or more individual column names to include

20 identify.data_request

Value

If any arguments are provided, returns a data.frame with columns name and type, as per select.data_request().

Examples

Not run:
default usage is for grouping counts
galah_call() |>

group_by(basisOfRecord) |>
counts() |>
collect()

Alternatively, we can use this with an occurrence search
galah_call() |>

filter(year == 2024,
genus = "Crinia") |>

group_by(speciesID) |>
collect()

note that this example is equivalent to `atlas_species()`;
but using `group_by()` is more flexible.

End(Not run)

identify.data_request Narrow a query by passing taxonomic identifiers

Description

When conducting a search or creating a data query, it is common to identify a known taxon or group
of taxa to narrow down the records or results returned. identify() is used to identify taxa you want
returned in a search or a data query. Users to pass scientific names or taxonomic identifiers with
pipes to provide data only for the biological group of interest.

It is good to use search_taxa() and search_identifiers() first to check that the taxa you pro-
vide to galah_identify() return the correct results.

Usage

S3 method for class 'data_request'
identify(x, ...)

S3 method for class 'metadata_request'
identify(x, ...)

galah_identify(..., search = NULL)

print_galah_objects 21

Arguments

x An object of class metadata_request, created using request_metadata()

... One or more scientific names.

search [Deprecated] galah_identify() now always does a search to verify search
terms; ergo this argument is ignored.

Value

A tibble containing identified taxa.

See Also

filter() or geolocate() for other ways to filter a query. You can also use search_taxa() to
check that supplied names are being matched correctly on the server-side; see taxonomic_searches
for a detailed overview.

Examples

Not run:
Use `galah_identify()` to narrow your queries
galah_call() |>

identify("Eolophus") |>
count() |>
collect()

If you know a valid taxon identifier, use `filter()` instead.
id <- "https://biodiversity.org.au/afd/taxa/009169a9-a916-40ee-866c-669ae0a21c5c"
galah_call() |>

filter(lsid == id) |>
count() |>
collect()

End(Not run)

print_galah_objects Print galah objects

Description

As of version 2.0, galah supports several bespoke object types. Classes data_request, metadata_request
and files_request are for starting pipes to download different types of information. These objects
are parsed using collapse() into a query object, which contains one or more URLs necessary
to return the requested information. This object is then passed to compute() and/or collect().
Finally, galah_config() creates an object of class galah_config which (unsurprisingly) stores
configuration information.

22 print_galah_objects

Usage

S3 method for class 'data_request'
print(x, ...)

S3 method for class 'files_request'
print(x, ...)

S3 method for class 'metadata_request'
print(x, ...)

S3 method for class 'query'
print(x, ...)

S3 method for class 'computed_query'
print(x, ...)

S3 method for class 'query_set'
print(x, ...)

S3 method for class 'galah_config'
print(x, ...)

Arguments

x an object of the appropriate class

... Arguments to be passed to or from other methods

Value

Print does not return an object; instead it prints a description of the object to the console

Examples

Not run:
The most common way to start a pipe is with `galah_call()`
later functions update the `data_request` object
galah_call() |> # same as calling `request_data()`

filter(year >= 2020) |>
group_by(year) |>
count()

Metadata requests are formatted in a similar way
request_metadata() |>

filter(field == basisOfRecord) |>
unnest()

Queries are converted into a `query_set` by `collapse()`
x <- galah_call() |> # same as calling `request_data()`

filter(year >= 2020) |>
count() |>

read_zip 23

collapse()
print(x)

Each `query_set` contains one or more `query` objects
x[[3]]

End(Not run)

read_zip Read downloaded data from a zip file

Description

[Experimental]

Living atlases supply data downloads as zip files. This function reads these data efficiently, i.e.
without unzipping them first, using the readr package. Although this function has been part of
galah for some time, it was previously internal to atlas_occurrences(). It has been exported
now to support easy re-importing of downloaded files, without the need to re-run a query.

Usage

read_zip(file)

Arguments

file (character) A file name. Must be a length-1 character ending in .zip.

Examples

Not run:
set a working directory
galah_config(directory = "data-raw",

email = "an-email-address@email.com")

download some data
galah_call() |>

identify("Heleioporus") |>
filter(year == 2022) |>
collect(file = "burrowing_frog_data.zip")

load data from file
x <- read_zip("./data-raw/burrowing_frog_data.zip")

End(Not run)

24 search_all

search_all Search for record information

Description

The living atlases store a huge amount of information, above and beyond the occurrence records that
are their main output. In galah, one way that users can investigate this information is by searching
for a specific option or category for the type of information they are interested in. Functions prefixed
with search_ do this, displaying any matches to a search term within the valid options for the
information specified by the suffix.

For more information about taxonomic searches using search_taxa(), see ?taxonomic_searches.

[Stable] search_all() is a helper function that can do searches for multiple types of information,
acting as a wrapper around many search_ sub-functions. See Details (below) for accepted values.

Usage

search_all(type, query)

search_assertions(query)

search_apis(query)

search_atlases(query)

search_collections(query)

search_datasets(query)

search_fields(query)

search_identifiers(...)

search_licences(query)

search_lists(query)

search_profiles(query)

search_providers(query)

search_ranks(query)

search_reasons(query)

search_taxa(...)

search_all 25

Arguments

type A string to specify what type of parameters should be searched.

query A string specifying a search term. Searches are not case-sensitive.

... A set of strings or a tibble to be queried; see Details.

Details

There are five categories of information, each with their own specific sub-functions to look-up each
type of information. The available types of information for search_all() are:

Category Type Description Sub-functions
configuration atlases Search for what atlases are available search_atlases()

apis Search for what APIs & functions are available for each atlas search_apis()
reasons Search for what values are acceptable as ’download reasons’ for a specified atlas search_reasons()

taxonomy taxa Search for one or more taxonomic names search_taxa()
identifiers Take a universal identifier and return taxonomic information search_identifiers()
ranks Search for valid taxonomic ranks (e.g. Kingdom, Class, Order, etc.) search_ranks()

filters fields Search for fields that are stored in an atlas search_fields()
assertions Search for results of data quality checks run by each atlas search_assertions()
licenses Search for copyright licences applied to media search_licenses()

group filters profiles Search for what data profiles are available search_profiles()
lists Search for what species lists are available search_lists()

data providers providers Search for which institutions have provided data search_providers()
collections Search for the specific collections within those institutions search_collections()
datasets Search for the data groupings within those collections search_datasets()

Value

An object of class tbl_df and data.frame (aka a tibble) containing all data that match the search
query.

See Also

Use the show_all() function and show_all_() sub-functions to show available options of infor-
mation. These functions are used to pass valid arguments to filter(), select(), and related
functions. Taxonomic queries are somewhat more involved; see taxonomic_searches for details.

Examples

Not run:
Search for fields that include the word "date"
search_all(fields, "date")

Search for fields that include the word "marine"
search_all(fields, "marine")

Search using a single taxonomic term
(see `?search_taxa()` for more information)

26 select.data_request

search_all(taxa, "Reptilia") # equivalent

Look up a unique taxon identifier
(see `?search_identifiers()` for more information)
search_all(identifiers,

"https://id.biodiversity.org.au/node/apni/2914510")

Search for species lists that match "endangered"
search_all(lists, "endangered") # equivalent

Search for a valid taxonomic rank, "subphylum"
search_all(ranks, "subphylum")

An alternative is to download the data and then `filter` it. This is
largely synonymous, and allows greater control over which fields are searched.
request_metadata(type = "fields") |>
collect() |>
dplyr::filter(grepl("date", id))

End(Not run)

select.data_request Keep or drop columns using their names

Description

Select (and optionally rename) variables in a data frame, using a concise mini-language that makes
it easy to refer to variables based on their name. Note that unlike calling select() on a local tibble,
this implementation is only evaluated at the collapse() stage, meaning any errors or messages
will be triggered at the end of the pipe.

select() supports dplyr selection helpers, including:

• everything: Matches all variables.

• last_col: Select last variable, possibly with an offset.

Other helpers select variables by matching patterns in their names:

• starts_with: Starts with a prefix.

• ends_with: Ends with a suffix.

• contains: Contains a literal string.

• matches: Matches a regular expression.

• num_range: Matches a numerical range like x01, x02, x03.

Or from variables stored in a character vector:

• all_of: Matches variable names in a character vector. All names must be present, otherwise
an out-of-bounds error is thrown.

• any_of: Same as all_of(), except that no error is thrown for names that don’t exist.

select.data_request 27

Or using a predicate function:

• where: Applies a function to all variables and selects those for which the function returns
TRUE.

Usage

S3 method for class 'data_request'
select(.data, ..., group)

galah_select(..., group)

Arguments

.data An object of class data_request, created using galah_call().

... Zero or more individual column names to include.

group string: (optional) name of one or more column groups to include. Valid options
are "basic", "event" "taxonomy", "media" and "assertions".

Details

GBIF nodes store content in hundreds of different fields, and users often require thousands or mil-
lions of records at a time. To reduce time taken to download data, and limit complexity of the
resulting tibble, it is sensible to restrict the fields returned by occurrence queries. The full list of
available fields can be viewed with show_all(fields). Note that select() and galah_select()
are supported for all atlases that allow downloads, with the exception of GBIF, for which all columns
are returned.

Calling the argument group = "basic" returns the following columns:

• decimalLatitude

• decimalLongitude

• eventDate

• scientificName

• taxonConceptID

• recordID

• dataResourceName

• occurrenceStatus

Using group = "event" returns the following columns:

• eventRemarks

• eventTime

• eventID

• eventDate

• samplingEffort

• samplingProtocol

28 select.data_request

Using group = "media" returns the following columns:

• multimedia

• multimediaLicence

• images

• videos

• sounds

Using group = "taxonomy" returns higher taxonomic information for a given query. It is the only
group that is accepted by atlas_species() as well as atlas_occurrences().

Using group = "assertions" returns all quality assertion-related columns. The list of assertions is
shown by show_all_assertions().

For atlas_occurrences(), arguments passed to ... should be valid field names, which you can
check using show_all(fields). For atlas_species(), it should be one or more of:

• counts to include counts of occurrences per species.

• synonyms to include any synonymous names.

• lists to include authoritative lists that each species is included on.

Value

A tibble specifying the name and type of each column to include in the call to atlas_counts() or
atlas_occurrences().

See Also

filter(), st_crop() and identify() for other ways to restrict the information returned; show_all(fields)
to list available fields.

Examples

Not run:
Download occurrence records of *Perameles*,
Only return scientificName and eventDate columns
galah_config(email = "your-email@email.com")
galah_call() |>

identify("perameles")|>
select(scientificName, eventDate) |>
collect()

Only return the "basic" group of columns and the basisOfRecord column
galah_call() |>

identify("perameles") |>
select(basisOfRecord, group = "basic") |>
collect()

When used in a pipe, `galah_select()` and `select()` are synonymous.
Hence the previous example can be rewritten as:
galah_call() |>

show_all 29

galah_identify("perameles") |>
galah_select(basisOfRecord, group = "basic") |>
collect()

End(Not run)

show_all Show valid record information

Description

The living atlases store a huge amount of information, above and beyond the occurrence records that
are their main output. In galah, one way that users can investigate this information is by showing
all the available options or categories for the type of information they are interested in. Functions
prefixed with show_all_ do this, displaying all valid options for the information specified by the
suffix.

[Stable] show_all() is a helper function that can display multiple types of information from
show_all_ sub-functions.

Usage

show_all(..., limit = NULL)

show_all_apis(limit = NULL)

show_all_assertions(limit = NULL)

show_all_atlases(limit = NULL)

show_all_collections(limit = NULL)

show_all_datasets(limit = NULL)

show_all_fields(limit = NULL)

show_all_licences(limit = NULL)

show_all_lists(limit = NULL)

show_all_profiles(limit = NULL)

show_all_providers(limit = NULL)

show_all_ranks(limit = NULL)

show_all_reasons(limit = NULL)

30 show_all

Arguments

... String showing what type of information is to be requested. See Details (be-
low) for accepted values.

limit Optional number of values to return. Defaults to NULL, i.e. all records

Details

There are five categories of information, each with their own specific sub-functions to look-up each
type of information. The available types of information for show_all_ are:

Category Type Description Sub-functions
Configuration atlases Show what atlases are available show_all_atlases()

apis Show what APIs & functions are available for each atlas show_all_apis()
reasons Show what values are acceptable as ’download reasons’ for a specified atlas show_all_reasons()

Data providers providers Show which institutions have provided data show_all_providers()
collections Show the specific collections within those institutions show_all_collections()
datasets Shows all the data groupings within those collections show_all_datasets()

Filters assertions Show results of data quality checks run by each atlas show_all_assertions()
fields Show fields that are stored in an atlas show_all_fields()
licenses Show what copyright licenses are applied to media show_all_licenses()
profiles Show what data profiles are available show_all_profiles()

Taxonomy lists Show what species lists are available show_all_lists()
ranks Show valid taxonomic ranks (e.g. Kingdom, Class, Order, etc.) show_all_ranks()

Value

An object of class tbl_df and data.frame (aka a tibble) containing all data of interest.

References

• Darwin Core terms https://dwc.tdwg.org/terms/

See Also

Use the search_all() function and search_() sub-functions to search for information. These
functions are used to pass valid arguments to filter(), select(), and related functions.

Examples

Not run:
See all supported atlases
show_all(atlases)

Show a list of all available data quality profiles
show_all(profiles)

Show a listing of all accepted reasons for downloading occurrence data
show_all(reasons)

https://dwc.tdwg.org/terms/

show_values 31

Show a listing of all taxonomic ranks
show_all(ranks)

`show_all()` is synonymous with `request_metadata() |> collect()`
request_metadata(type = "fields") |>

collect()

End(Not run)

show_values Show or search for values within a specified field

Description

Users may wish to see the specific values within a chosen field, profile or list to narrow queries
or understand more about the information of interest. show_values() provides users with these
values. search_values() allows users for search for specific values within a specified field.

Usage

show_values(df, all_fields = FALSE)

search_values(df, query)

Arguments

df A search result from search_fields(), search_profiles() or search_lists().

all_fields [Experimental] If TRUE, show_values() also returns all raw data columns
(columns included prior to the dataset’s ingestion into the ALA). For many
lists, this will include raw scientific names and vernacular names. For con-
servation lists like the EPBC list, this also includes columns containing each
species’ conservation status information. Default is set to FALSE. Currently only
implemented for metadata type lists.

query A string specifying a search term. Not case sensitive.

Details

Each Field contains categorical or numeric values. For example:

• The field "year" contains values 2021, 2020, 2019, etc.

• The field "stateProvince" contains values New South Wales, Victoria, Queensland, etc.
These are used to narrow queries with filter() or galah_filter().

Each Profile consists of many individual quality filters. For example, the "ALA" profile consists of
values:

• Exclude all records where spatial validity is FALSE

• Exclude all records with a latitude value of zero

32 slice_head.data_request

• Exclude all records with a longitude value of zero

Each List contains a list of species, usually by taxonomic name. For example, the Endangered Plant
species list contains values:

• Acacia curranii (Curly-bark Wattle)

• Brachyscome papillosa (Mossgiel Daisy)

• Solanum karsense (Menindee Nightshade)

Value

A tibble of values for a specified field, profile or list.

Examples

Not run:
Show values in field 'cl22'
search_fields("cl22") |>

show_values()

This is synonymous with `request_metadata() |> unnest()`.
For example, the previous example can be run using:
request_metadata() |>

filter(field == "cl22") |>
unnest() |>
collect()

Search for any values in field 'cl22' that match 'tas'
search_fields("cl22") |>

search_values("tas")

See items within species list "dr19257"
search_lists("dr19257") |>

show_values()

End(Not run)

slice_head.data_request

Subset rows using their positions

Description

[Experimental]
slice() lets you index rows by their (integer) locations. For objects of classes data_request or
metadata_request, only slice_head() is currently implemented, and selects the first n rows.

If .data has been grouped using group_by(), the operation will be performed on each group, so
that (e.g.) slice_head(df, n = 5) will select the first five rows in each group.

taxonomic_searches 33

Usage

S3 method for class 'data_request'
slice_head(.data, ..., n, prop, by = NULL)

S3 method for class 'metadata_request'
slice_head(.data, ..., n, prop, by = NULL)

Arguments

.data An object of class data_request, created using galah_call()

... Currently ignored

n The number of rows to be returned. If data are grouped group_by(), this oper-
ation will be performed on each group.

prop Currently ignored.

by Currently ignored.

Value

An amended data_request with a completed slice slot.

Examples

Not run:
Limit number of rows returned to 3.
In this case, our query returns the top 3 years with most records.
galah_call() |>

identify("perameles") |>
filter(year > 2010) |>
group_by(year) |>
count() |>
slice_head(n = 3) |>
collect()

End(Not run)

taxonomic_searches Look up taxon information

Description

search_taxa() allows users to look up taxonomic names, and ensure they are being matched
correctly, before downloading data from the specified organisation.

By default, names are supplied as strings; but users can also specify taxonomic levels in a search
using a data.frame or tibble. This is useful when the taxonomic level of the name in question
needs to be specified, in addition to it’s identity. For example, a common method is to use the
scientificName column to list a Latinized binomial, but it is also possible to list these separately

34 taxonomic_searches

under genus and specificEpithet (respectively). A more common use-case is to distinguish
between homonyms by listing higher taxonomic units, by supplying columns like kingdom, phylum
or class.

search_identifiers() allows users to look up matching taxonomic names using their unique
taxonConceptID. In the ALA, all records are associated with an identifier that uniquely identifies
the taxon to which that record belongs. Once those identifiers are known, this function allows you
to use them to look up further information on the taxon in question. Effectively this is the inverse
function to search_taxa(), which takes names and provides identifiers.

Note that when taxonomic look-up is required within a pipe, the equivalent to search_taxa() is
identify() (or galah_identify()). The equivalent to search_identifiers() is to use filter()
to filter by taxonConceptId.

Details

search_taxa() returns the taxonomic match of a supplied text string, along with the following
information:

• search_term: The search term used by the user. When multiple search terms are provided in
a tibble, these are displayed in this column, concatenated using _.

• scientific_name: The taxonomic name matched to the provided search term, to the lowest
identified taxonomic rank.

• taxon_concept_id: The unique taxonomic identifier.

• rank: The taxonomic rank of the returned result.

• match_type: (ALA only) The method of name matching used by the name matching service.
More information can be found on the name matching github repository.

• issues: Any errors returned by the name matching service (e.g. homonym, indeterminate
species match). More information can be found on the name matching github repository.

• taxonomic names (e.g. kingdom, phylum, class, order, family, genus)

See Also

search_all() for how to get names if taxonomic identifiers are already known. filter(), select(),
identify() and geolocate() for ways to restrict the information returned by atlas_() functions.

Examples

Not run:
Search using a single string.
Note that `search_taxa()` is not case sensitive
search_taxa("Reptilia")

Search using multiple strings.
`search_taxa()` will return one row per taxon
search_taxa("reptilia", "mammalia")

Search using more detailed strings with authorship information
search_taxa("Acanthocladium F.Muell")

https://github.com/AtlasOfLivingAustralia/ala-name-matching?tab=readme-ov-file#understanding-the-name-matching-algorithm
https://github.com/AtlasOfLivingAustralia/ala-name-matching?tab=readme-ov-file#error-types

tidyverse_functions 35

Specify taxonomic levels in a tibble using "specificEpithet"
search_taxa(tibble::tibble(

class = "aves",
family = "pardalotidae",
genus = "pardalotus",
specificEpithet = "punctatus"))

Specify taxonomic levels in a tibble using "scientificName"
search_taxa(tibble::tibble(

family = c("pardalotidae", "maluridae"),
scientificName = c("Pardalotus striatus striatus", "malurus cyaneus")))

Look up a unique taxon identifier
search_identifiers(query = "https://id.biodiversity.org.au/node/apni/2914510")

End(Not run)

tidyverse_functions Non-generic tidyverse functions

Description

Several useful functions from tidyverse packages are generic, meaning that we can define class-
specific versions of those functions and implement them in galah; examples include filter(),
select() and group_by(). However, there are also functions that are only defined within tidyverse
packages and are not generic. In a few cases we have re-implemented these functions in galah.
This has the consequence of supporting consistent syntax with tidyverse, at the cost of potentially
introducing conflicts. This can be avoided by using the :: operator where required (see examples).

Usage

desc(...)

unnest(.query)

Arguments

... column to order by

.query An object of class metadata_request

Details

The following functions are included:

• desc() (dplyr): Use within arrange() to specify arrangement should be descending

• unnest() (tidyr): Use to ’drill down’ into nested information on fields, lists, profiles,
or taxa

These galah versions all use lazy evaluation.

36 tidyverse_functions

Value

• galah::desc() returns a tibble used by arrange.data_request() to arrange rows of a
query.

• galah::unnest() returns an object of class metadata_request.

See Also

arrange(), galah_call()

Examples

Not run:
Arrange grouped record counts by descending year
galah_call() |>

identify("perameles") |>
filter(year > 2019) |>
count() |>
arrange(galah::desc(year)) |>
collect()

Return values of field `basisOfRecord`
request_metadata() |>

galah::unnest() |>
filter(field == basisOfRecord) |>
collect()

Using `galah::unnest()` in this way is equivalent to:
show_all(fields, "basisOfRecord") |>

show_values()

End(Not run)

Index

all_of, 26
any_of, 26
apply_profile, 2
arrange(), 36
arrange.data_request, 3
arrange.metadata_request

(arrange.data_request), 3
atlas_(), 12, 34
atlas_citation, 4
atlas_media(), 7
atlas_occurrences(), 5, 15, 23
atlas_species(), 19

collapse(), 13, 26
collapse.data_request, 5
collapse.data_request(), 14
collapse.files_request

(collapse.data_request), 5
collapse.metadata_request

(collapse.data_request), 5
collect(), 5
collect.computed_query

(collect.data_request), 6
collect.data_request, 6
collect.data_request(), 14
collect.files_request

(collect.data_request), 6
collect.metadata_request

(collect.data_request), 6
collect.query (collect.data_request), 6
collect_media, 7
compute.data_request, 8
compute.data_request(), 14
compute.files_request

(compute.data_request), 8
compute.metadata_request

(compute.data_request), 8
compute.query (compute.data_request), 8
contains, 26
count(), 3, 13, 19

count.data_request, 9

desc (tidyverse_functions), 35

ends_with, 26
everything, 26

filter(), 13, 21, 25, 28, 30, 31, 34
filter.data_request, 10
filter.data_request(), 2, 3
filter.files_request

(filter.data_request), 10
filter.metadata_request

(filter.data_request), 10

galah_apply_profile (apply_profile), 2
galah_bbox (geolocate), 16
galah_bbox(), 13, 17
galah_call, 12
galah_call(), 9, 10, 17, 27, 33, 36
galah_config, 15
galah_filter (filter.data_request), 10
galah_filter(), 13, 31
galah_geolocate (geolocate), 16
galah_geolocate(), 13
galah_group_by (group_by.data_request),

19
galah_group_by(), 13
galah_identify (identify.data_request),

20
galah_identify(), 13, 34
galah_polygon (geolocate), 16
galah_polygon(), 13, 17
galah_radius (geolocate), 16
galah_select (select.data_request), 26
galah_select(), 13
geolocate, 16
geolocate(), 12, 21, 34
group_by(), 3, 4, 12, 13, 32, 33
group_by.data_request, 19

37

38 INDEX

identify(), 13, 28, 34
identify.data_request, 20
identify.metadata_request

(identify.data_request), 20

last_col, 26

matches, 26

num_range, 26

print.computed_query
(print_galah_objects), 21

print.data_request
(print_galah_objects), 21

print.files_request
(print_galah_objects), 21

print.galah_config
(print_galah_objects), 21

print.metadata_request
(print_galah_objects), 21

print.query (print_galah_objects), 21
print.query_set (print_galah_objects),

21
print_galah_objects, 21

read_zip, 23
request_data (galah_call), 12
request_files (galah_call), 12
request_metadata (galah_call), 12
request_metadata(), 21

search_all, 24
search_all(), 3, 30, 34
search_apis (search_all), 24
search_assertions (search_all), 24
search_atlases (search_all), 24
search_collections (search_all), 24
search_datasets (search_all), 24
search_fields (search_all), 24
search_fields(), 31
search_identifiers (search_all), 24
search_identifiers(), 20
search_licences (search_all), 24
search_lists (search_all), 24
search_lists(), 31
search_profiles (search_all), 24
search_profiles(), 31
search_providers (search_all), 24
search_ranks (search_all), 24

search_reasons (search_all), 24
search_taxa (search_all), 24
search_taxa(), 20, 21, 34
search_values (show_values), 31
select, 13
select(), 12, 19, 25, 30, 34
select.data_request, 26
select.data_request(), 20
show_all, 29
show_all(), 3, 25
show_all_apis (show_all), 29
show_all_assertions (show_all), 29
show_all_atlases (show_all), 29
show_all_atlases(), 15
show_all_collections (show_all), 29
show_all_datasets (show_all), 29
show_all_fields (show_all), 29
show_all_licences (show_all), 29
show_all_lists (show_all), 29
show_all_profiles (show_all), 29
show_all_providers (show_all), 29
show_all_ranks (show_all), 29
show_all_reasons (show_all), 29
show_values, 31
show_values(), 12
slice_head(), 3, 14
slice_head.data_request, 32
slice_head.metadata_request

(slice_head.data_request), 32
st_crop(), 13, 28
st_crop.data_request (geolocate), 16
starts_with, 26

taxonomic_searches, 21, 25, 33
tidyverse_functions, 35

unnest (tidyverse_functions), 35

where, 27

	apply_profile
	arrange.data_request
	atlas_citation
	collapse.data_request
	collect.data_request
	collect_media
	compute.data_request
	count.data_request
	filter.data_request
	galah_call
	galah_config
	geolocate
	group_by.data_request
	identify.data_request
	print_galah_objects
	read_zip
	search_all
	select.data_request
	show_all
	show_values
	slice_head.data_request
	taxonomic_searches
	tidyverse_functions
	Index

