
Package ‘fwb’
July 8, 2025

Type Package

Title Fractional Weighted Bootstrap

Version 0.5.0

Description
An implementation of the fractional weighted bootstrap to be used as a drop-in for functions in
the 'boot' package. The fractional weighted bootstrap (also known as the Bayesian bootstrap) in-
volves drawing
weights randomly that are applied to the data rather than resam-
pling units from the data. See Xu et al. (2020)
<doi:10.1080/00031305.2020.1731599> for details.

Depends R (>= 3.6.0)

Imports rlang (>= 1.1.6), chk (>= 0.10.0), pbapply (>= 1.7-2),
generics, graphics, stats, utils

Suggests survival, cobalt, boot (>= 1.3-31), mvtnorm (>= 1.3-3),
sandwich (>= 2.4-0), ggdist (>= 3.3.3), lmtest, nnet, parallel,
future, future.apply, testthat (>= 3.2.3), waldo (>= 0.6.1),
knitr, rmarkdown

License GPL (>= 2)

Encoding UTF-8

URL https://ngreifer.github.io/fwb/, https://github.com/ngreifer/fwb

BugReports https://github.com/ngreifer/fwb/issues

RoxygenNote 7.3.2

LazyData true

Config/testthat/edition 3

Config/testthat/parallel false

VignetteBuilder knitr

NeedsCompilation no

Author Noah Greifer [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3067-7154>)

Maintainer Noah Greifer <noah.greifer@gmail.com>

1

https://doi.org/10.1080/00031305.2020.1731599
https://ngreifer.github.io/fwb/
https://github.com/ngreifer/fwb
https://github.com/ngreifer/fwb/issues
https://orcid.org/0000-0003-3067-7154

2 bearingcage

Repository CRAN

Date/Publication 2025-07-08 20:20:02 UTC

Contents
bearingcage . 2
fwb . 3
fwb.array . 7
fwb.ci . 8
get_ci . 11
plot.fwb . 12
set_fwb_wtype . 14
summary.fwb . 15
vcovFWB . 18
w_mean . 21

Index 25

bearingcage Bearing Cage field failure data

Description

The data consist of 1703 aircraft engines put into service over time. There were 6 failures and 1697
right-censored observations. These data were originally given in Abernethy et al. (1983) and were
reanalyzed in Meeker and Escobar (1998, Ch. 8). The dataset used here specifically comes from
Xu et al. (2020) and is used in a Weibull analysis of failure times.

Usage

data("bearingcage")

Format

A data frame with 1703 rows and 2 variables:

hours integer; the number of hours until failure or censoring
failure logical; whether a failure occurred

References

Abernethy, R. B., Breneman, J. E., Medlin, C. H., and Reinman, G. L. (1983), "Weibull Anal-
ysis Handbook," Technical Report, Air Force Wright Aeronautical Laboratories. doi:10.21236/
ADA143100

Meeker, W. Q., and Escobar, L. A. (1998), Statistical Methods for Reliability Data, New York:
Wiley.

Xu, L., Gotwalt, C., Hong, Y., King, C. B., & Meeker, W. Q. (2020). Applications of the Fractional-
Random-Weight Bootstrap. The American Statistician, 74(4), 345–358. doi:10.1080/00031305.2020.1731599

https://doi.org/10.21236/ADA143100
https://doi.org/10.21236/ADA143100
https://doi.org/10.1080/00031305.2020.1731599

fwb 3

fwb Fractional Weighted Bootstrap

Description

fwb() implements the fractional (random) weighted bootstrap, also known as the Bayesian boot-
strap. Rather than resampling units to include in bootstrap samples, weights are drawn to be applied
to a weighted estimator.

Usage

fwb(
data,
statistic,
R = 999,
cluster = NULL,
simple = NULL,
wtype = getOption("fwb_wtype", "exp"),
strata = NULL,
drop0 = FALSE,
verbose = TRUE,
cl = NULL,
...

)

S3 method for class 'fwb'
print(
x,
digits = getOption("digits", 3L),
index = seq_len(ncol(x[["t"]])),
...

)

Arguments

data the dataset used to compute the statistic
statistic a function, which, when applied to data, returns a vector containing the statis-

tic(s) of interest. The function should take at least two arguments; the first ar-
gument should correspond to the dataset and the second argument should corre-
spond to a vector of weights. Any further arguments can be passed to statistic
through the ... argument.

R the number of bootstrap replicates. Default is 999 but more is always better. For
the percentile bootstrap confidence interval to be exact, it can be beneficial to
use one less than a multiple of 100.

cluster optional; a vector containing cluster membership. If supplied, will run the clus-
ter bootstrap. See Details. Evaluated first in data and then in the global envi-
ronment.

4 fwb

simple logical; if TRUE, weights will be generated on-the-fly in each bootstrap repli-
cation; if FALSE, all weights will be generated at once and then supplied to
statistic. Cannot be TRUE when wtype = "multinom". The default (NULL)
sets to FALSE if wtype = "multinom" and to TRUE otherwise.

wtype string; the type of weights to use. Allowable options include "exp" (the default),
"pois", "multinom", and "mammen". See Details. See set_fwb_wtype() to set
a global default.

strata optional; a vector containing stratum membership for stratified bootstrapping.
If supplied, will essentially perform a separate bootstrap within each level of
strata. This does not affect results when wtype = "poisson".

drop0 logical; when wtype is "multinom" or "poisson", whether to drop units that
are given weights of 0 from the dataset and weights supplied to statistic in
each iteration. Ignored for other wtypes because they don’t produce 0 weights.
Default is FALSE.

verbose logical; whether to display a progress bar.

cl a cluster object created by parallel::makeCluster(), an integer to indicate
the number of child-processes (integer values are ignored on Windows) for par-
allel evaluations, or the string "future" to use a future backend. See the cl
argument of pbapply::pblapply() for details. If NULL, no parallelization will
take place. See vignette("fwb-rep") for details.

... other arguments passed to statistic.

x an fwb object; the output of a call to fwb().

digits the number of significant digits to print

index the index or indices of the position of the quantity of interest in x$t0 if more
than one was specified in fwb(). Default is to print all quantities.

Details

fwb() implements the fractional weighted bootstrap and is meant to function as a drop-in for
boot::boot(., stype = "f") (i.e., the usual bootstrap but with frequency weights representing
the number of times each unit is drawn). In each bootstrap replication, when wtype = "exp" (the
default), the weights are sampled from independent exponential distributions with rate parameter 1
and then normalized to have a mean of 1, equivalent to drawing the weights from a Dirichlet dis-
tribution. Other weights are allowed as determined by the wtype argument (see below for details).
The function supplied to statistic must incorporate the weights to compute a weighted statis-
tic. For example, if the output is a regression coefficient, the weights supplied to the w argument of
statistic should be supplied to the weights argument of lm(). These weights should be used any
time frequency weights would be, since they are meant to function like frequency weights (which,
in the case of the traditional bootstrap, would be integers). Unfortunately, there is no way for fwb()
to know whether you are using the weights correctly, so care should be taken to ensure weights are
correctly incorporated into the estimator.

When fitting binomial regression models (e.g., logistic) using glm(), it may be useful to change
the family to a "quasi" variety (e.g., quasibinomial()) to avoid a spurious warning about "non-
integer #successes".

fwb 5

The cluster bootstrap can be requested by supplying a vector of cluster membership to cluster.
Rather than generating a weight for each unit, a weight is generated for each cluster and then
applied to all units in that cluster.

Bootstrapping can be performed within strata by supplying a vector of stratum membership to
strata. This essentially rescales the weights within each stratum to have a mean of 1, ensuring
that the sum of weights in each stratum is equal to the stratum size. For multinomial weights, using
strata is equivalent to drawing samples with replacement from each stratum. Strata do not affect
bootstrapping when using Poisson weights.

Ideally, statistic should not involve a random element, or else it will not be straightforward to
replicate the bootstrap results using the seed included in the output object. Setting a seed using
set.seed() is always advised. See vignette("fwb-rep") for details.

The print() method displays the value of the statistics, the bias (the difference between the statistic
and the mean of its bootstrap distribution), and the standard error (the standard deviation of the
bootstrap distribution).

Weight types:
Different types of weights can be supplied to the wtype argument. A global default can be set
using set_fwb_wtype(). The allowable weight types are described below.
"exp" Draws weights from an exponential distribution with rate parameter 1 using rexp(). These

weights are the usual "Bayesian bootstrap" weights described in Xu et al. (2020). They are
equivalent to drawing weights from a uniform Dirichlet distribution, which is what gives
these weights the interpretation of a Bayesian prior. The weights are scaled to have a mean
of 1 within each stratum (or in the full sample if strata is not supplied).

"multinom" Draws integer weights using sample(), which samples unit indices with replace-
ment and uses the tabulation of the indices as frequency weights. This is equivalent to draw-
ing weights from a multinomial distribution. Using wtype = "multinom" is the same as using
boot::boot(., stype = "f") instead of fwb() (i.e., the resulting estimates will be identi-
cal). When strata is supplied, unit indices are drawn with replacement within each stratum
so that the sum of the weights in each stratum is equal to the stratum size.

"poisson" Draws integer weights from a Poisson distribution with 1 degree of freedom using
rpois(). This is an alternative to the multinomial weights that yields similar estimates (es-
pecially as the sample size grows) but can be faster. Note strata is ignored when using
"poisson".

"mammen" Draws weights from a modification of the distribution described by Mammen (1983)
for use in the wild bootstrap. These positive weights have a mean, variance, and skewness of
1, making them second-order accurate (in contrast to the usual exponential weights, which
are only first-order accurate). The weights w are drawn such that P (w = (3 +

√
5)/2) =

(
√
5− 1)/2

√
5 and P (w = (3−

√
5)/2) = (

√
5 + 1)/2

√
5. The weights are scaled to have

a mean of 1 within each stratum (or in the full sample if strata is not supplied).
"exp" is the default due to it being the formulation described in Xu et al. (2020) and in the most
formulations of the Bayesian bootstrap; it should be used if one wants to remain in line with these
guidelines or to maintain a Bayesian flavor to the analysis, whereas "mammen" might be preferred
for its frequentist operating characteristics, though its performance has not been studied in this
context. "multinom" and "poisson" should only be used for comparison purposes.

Value

An fwb object, which also inherits from boot, with the following components:

6 fwb

t0 The observed value of statistic applied to data with uniform weights.

t A matrix with R rows, each of which is a bootstrap replicate of the result of
calling statistic.

R The value of R as passed to fwb().

data The data as passed to fwb().

seed The value of .Random.seed just prior to generating the weights (after the first
call to statistic with uniform weights).

statistic The function statistic as passed to fwb().

call The original call to fwb().

cluster The vector passed to cluster, if any.

strata The vector passed to strata, if any.

wtype The type of weights used as determined by the wtype argument.

fwb objects have coef() and vcov() methods, which extract the t0 component and covariance of
the t components, respectively.

Methods (by generic)

• print(fwb): Print an fwb object

References

Mammen, E. (1993). Bootstrap and Wild Bootstrap for High Dimensional Linear Models. The
Annals of Statistics, 21(1). doi:10.1214/aos/1176349025

Rubin, D. B. (1981). The Bayesian Bootstrap. The Annals of Statistics, 9(1), 130–134. doi:10.1214/
aos/1176345338

Xu, L., Gotwalt, C., Hong, Y., King, C. B., & Meeker, W. Q. (2020). Applications of the Fractional-
Random-Weight Bootstrap. The American Statistician, 74(4), 345–358. doi:10.1080/00031305.2020.1731599

The use of the "mammen" formulation of the bootstrap weights was suggested by Lihua Lei here.

See Also

fwb.ci() for calculating confidence intervals; summary.fwb() for displaying output in a clean
way; plot.fwb() for plotting the bootstrap distributions; vcovFWB() for estimating the covariance
matrix of estimates using the FWB; set_fwb_wtype() for an example of using weights other than
the default exponential weights; boot::boot() for the traditional bootstrap.

See vignette("fwb-rep") for information on reproducibility.

Examples

Performing a Weibull analysis of the Bearing Cage
failure data as done in Xu et al. (2020)
set.seed(123, "L'Ecuyer-CMRG")
data("bearingcage")

weibull_est <- function(data, w) {

https://doi.org/10.1214/aos/1176349025
https://doi.org/10.1214/aos/1176345338
https://doi.org/10.1214/aos/1176345338
https://doi.org/10.1080/00031305.2020.1731599
https://x.com/lihua_lei_stat/status/1641538993090351106

fwb.array 7

fit <- survival::survreg(survival::Surv(hours, failure) ~ 1,
data = data, weights = w,
dist = "weibull")

c(eta = unname(exp(coef(fit))), beta = 1/fit$scale)
}

boot_est <- fwb(bearingcage, statistic = weibull_est,
R = 199, verbose = FALSE)

boot_est

#Get standard errors and CIs; uses bias-corrected
#percentile CI by default
summary(boot_est, ci.type = "bc")

#Plot statistic distributions
plot(boot_est, index = "beta", type = "hist")

fwb.array Recover Bootstrap Weights

Description

fwb.array() returns the bootstrap weights generated by fwb().

Usage

fwb.array(fwb.out)

Arguments

fwb.out an fwb object; the output of a call to fwb().

Details

The original seed is used to recover the bootstrap weights before being reset.

Bootstrap weights are used in computing BCa confidence intervals by approximating the empirical
influence function for each unit with respect to each parameter (see Examples).

Value

A matrix with R rows and n columns, where R is the number of bootstrap replications and n is the
number of observations in boot.out$data.

See Also

fwb() for performing the fractional weighted bootstrap; boot::boot.array() for the equivalent
function in boot; vignette("fwb-rep") for information on replicability.

8 fwb.ci

Examples

set.seed(123, "L'Ecuyer-CMRG")
data("infert")

fit_fun <- function(data, w) {
fit <- glm(case ~ spontaneous + induced, data = data,

family = "quasibinomial", weights = w)
coef(fit)

}

fwb_out <- fwb(infert, fit_fun, R = 300,
verbose = FALSE)

fwb_weights <- fwb.array(fwb_out)

dim(fwb_weights)

Recover computed estimates:
est1 <- fit_fun(infert, fwb_weights[1,])

stopifnot(all.equal(est1, fwb_out$t[1,]))

Compute empirical influence function:
empinf <- lm.fit(x = fwb_weights / ncol(fwb_weights),

y = fwb_out$t)$coefficients

empinf <- sweep(empinf, 2L, colMeans(empinf))

fwb.ci Fractional Weighted Bootstrap Confidence Intervals

Description

fwb.ci() generates several types of equi-tailed two-sided nonparametric confidence intervals. These
include the normal approximation, the basic bootstrap interval, the percentile bootstrap interval, the
bias-corrected percentile bootstrap interval, and the bias-correct and accelerated (BCa) bootstrap
interval.

Usage

fwb.ci(
fwb.out,
conf = 0.95,
type = "bc",
index = 1L,
h = base::identity,
hinv = base::identity,
...

)

fwb.ci 9

S3 method for class 'fwbci'
print(x, hinv = NULL, ...)

Arguments

fwb.out an fwb object; the output of a call to fwb().

conf the desired confidence level. Default is .95 for 95% confidence intervals.

type the type of confidence interval desired. Allowable options include "wald" (Wald
interval), "norm" (normal approximation), "basic" (basic interval), "perc"
(percentile interval), "bc" (bias-correct percentile interval), and "bca" (BCa
interval). More than one is allowed. Can also be "all" to request all of them.
BCa intervals require that the number of bootstrap replications is larger than the
sample size.

index the index of the position of the quantity of interest in fwb.out$t0 if more than
one was specified in fwb(). Only one value is allowed at a time. By default the
first statistic is used.

h a function defining a transformation. The intervals are calculated on the scale of
h(t) and the inverse function hinv applied to the resulting intervals. It must be
a function of one variable only and for a vector argument, it must return a vector
of the same length. Default is the identity function.

hinv a function, like h, which returns the inverse of h. It is used to transform the
intervals calculated on the scale of h(t) back to the original scale. The default is
the identity function. If h is supplied but hinv is not, then the intervals returned
will be on the transformed scale.

... ignored

x an fwbci object; the output of a call to fwb.ci().

Details

fwb.ci() functions similarly to boot::boot.ci() in that it takes in a bootstrapped object and
computes confidence intervals. This interface is a bit old-fashioned, but was designed to mimic that
of boot.ci(). For a more modern interface, see summary.fwb().

The bootstrap intervals are defined as follows, with α = 1 - conf, t0 the estimate in the original
sample, t̂ the average of the bootstrap estimates, st the standard deviation of the bootstrap estimates,
t(i) the set of ordered estimates with i corresponding to their quantile, and zα

2
and z1−α

2
the upper

and lower critical z scores.

"wald" [
t0 + stzα

2
, t0 + stz1−α

2

]
This method is valid when the statistic is normally distributed around the estimate.

"norm" (normal approximation)[
2t0 − t̂+ stzα

2
, 2t0 − t̂+ stz1−α

2

]
This involves subtracting the "bias" (t̂ − t0) from the estimate t0 and using a standard Wald-
type confidence interval. This method is valid when the statistic is normally distributed.

10 fwb.ci

"basic" [
2t0 − t(1−

α
2), 2t0 − t(

α
2)
]

"perc" (percentile confidence interval) [
t(

α
2), t(1−

α
2)
]

"bc" (bias-corrected percentile confidence interval)[
t(l), t(u)

]
l = Φ

(
2z0 + zα

2

)
, u = Φ

(
2z0 + z1−α

2

)
, where Φ(.) is the normal cumulative density func-

tion (i.e., pnorm()) and z0 = Φ−1(q) where q is the proportion of bootstrap estimates less
than the original estimate t0. This is similar to the percentile confidence interval but changes
the specific quantiles of the bootstrap estimates to use, correcting for bias in the original esti-
mate. It is described in Xu et al. (2020). When t0 is the median of the bootstrap distribution,
the "perc" and "bc" intervals coincide.

"bca" (bias-corrected and accelerated confidence interval)[
t(l), t(u)

]
l = Φ

(
z0 +

z0+zα
2

1−a(z0+zα
2
)

)
, u = Φ

(
z0 +

z0+z1−α
2

1−a(z0+z1−α
2
)

)
, using the same definitions as

above, but with the additional acceleration parameter a, where a = 1
6

∑
L3

(
∑

L2)3/2
. L is the em-

pirical influence value of each unit, which is computed using the regression method described
in boot::empinf(). When a = 0, the "bca" and "bc" intervals coincide. The acceleration
parameter corrects for bias and skewness in the statistic. It can only be used when clusters are
absent and the number of bootstrap replications is larger than the sample size. Note that BCa
intervals cannot be requested when simple = TRUE and there is randomness in the statistic
supplied to fwb().

Interpolation on the normal quantile scale is used when a non-integer order statistic is required, as
in boot::boot.ci(). Note that unlike with boot::boot.ci(), studentized confidence intervals
(type = "stud") are not allowed.

Value

An fwbci object, which inherits from bootci and has the following components:

R the number of bootstrap replications in the original call to fwb().

t0 the observed value of the statistic on the same scale as the intervals (i.e., after
applying h and then hinv.

call the call to fwb.ci().

There will be additional components named after each confidence interval type requested. For
"wald" and "norm", this is a matrix with one row containing the confidence level and the two
confidence interval limits. For the others, this is a matrix with one row containing the confidence
level, the indices of the two order statistics used in the calculations, and the confidence interval
limits.

get_ci 11

Functions

• print(fwbci): Print a bootstrap confidence interval

See Also

fwb() for performing the fractional weighted bootstrap; get_ci() for extracting confidence inter-
vals from an fwbci object; summary.fwb() for producing clean output from fwb() that includes
confidence intervals calculated by fwb.ci(); boot::boot.ci() for computing confidence inter-
vals from the traditional bootstrap; vcovFWB() for computing parameter estimate covariance matri-
ces using the fractional weighted bootstrap

Examples

set.seed(123, "L'Ecuyer-CMRG")
data("infert")

fit_fun <- function(data, w) {
fit <- glm(case ~ spontaneous + induced, data = data,

family = "quasibinomial", weights = w)
coef(fit)

}

fwb_out <- fwb(infert, fit_fun, R = 199,
verbose = FALSE)

Bias corrected percentile interval
bcci <- fwb.ci(fwb_out, index = "spontaneous",

type = "bc")
bcci

Using `get_ci()` to extract confidence limits

get_ci(bcci)

Interval calculated on original (log odds) scale,
then transformed by exponentiation to be on OR
fwb.ci(fwb_out, index = "induced", type = "norm",

hinv = exp)

get_ci Extract Confidence Intervals from a bootci Object

Description

get_ci() extracts the confidence intervals from the output of a call to boot::boot.ci() or fwb.ci()
in a clean way. Normally the confidence intervals can be a bit challenging to extract because of the
unusual structure of the object.

12 plot.fwb

Usage

get_ci(x, type = "all")

Arguments

x a bootci object; the output of a call to boot::boot.ci() or fwb.ci().

type the type of confidence intervals to extract. Only those available in x are allowed.
Should be a given as a subset of the types passed to type in boot.ci() or
fwb.ci(). The default, "all", extracts all confidence intervals in x.

Value

A list with an entry for each confidence interval type; each entry is a numeric vector of length 2
with names "L" and "U" for the lower and upper interval bounds, respectively. The "conf" attribute
contains the confidence level.

See Also

fwb.ci(), confint.fwb(), boot::boot.ci()

Examples

#See example at help("fwb.ci")

plot.fwb Plots of the Output of a Fractional Weighted Bootstrap

Description

plot.fwb() takes an fwb object and produces plots for the bootstrap replicates of the statistic of
interest.

Usage

S3 method for class 'fwb'
plot(
x,
index = 1L,
qdist = "norm",
nclass = NULL,
df,
type = c("hist", "qq"),
...

)

plot.fwb 13

Arguments

x an fwb object; the output of a call to fwb().

index the index of the position of the quantity of interest in x$t0 if more than one was
specified in fwb(). Only one value is allowed at a time. By default the first
statistic is used.

qdist character; when a Q-Q plot is requested (as it is by default; see type argument
below), the distribution against which the Q-Q plot should be drawn. Allowable
options include "norm" (normal distribution - the default) and "chisq" (chi-
squared distribution).

nclass when a histogram is requested (as it is by default; see type argument below),
the number of classes to be used. The default is the integer between 10 and
100 closest to ceiling(length(R)/25) where R is the number of bootstrap
replicates.

df if qdist is "chisq", the degrees of freedom for the chi-squared distribution
to be used. If not supplied, the degrees of freedom will be estimated using
maximum likelihood.

type the type of plot to display. Allowable options include "hist" for a histogram
of the bootstrap estimates and "qq" for a Q-Q plot of the estimates against the
distribution supplied to qdist.

... ignored.

Details

This function can produces two side-by-side plots: a histogram of the bootstrap replicates and a
Q-Q plot of the bootstrap replicates against theoretical quantiles of a supplied distribution (normal
or chi-squared). For the histogram, a vertical dotted line indicates the position of the estimate
computed in the original sample. For the Q-Q plot, the expected line is plotted.

Value

x is returned invisibly.

See Also

fwb(), summary.fwb(), boot::plot.boot(), hist(), qqplot()

Examples

See examples at help("fwb")

14 set_fwb_wtype

set_fwb_wtype Set weights type

Description

Set the default for the type of weights used in the weighted bootstrap computed by fwb() and
vcovFWB().

Usage

set_fwb_wtype(wtype = getOption("fwb_wtype", "exp"))

get_fwb_wtype(fwb)

Arguments

wtype string; the type of weights to use. Allowable options include "exp" (the default),
"pois", "multinom", and "mammen". Abbreviations allowed. See fwb() for
what these mean.

fwb optional; an fwb object, the output of a call to fwb(). If left empty, will extract
the weights type from options().

Details

set_fwb_wtype(x) is equivalent to calling options(fwb_wtype = x). get_fwb_wtype() is equiv-
alent to calling getOption("fwb_wtype") when no argument is supplied and to extracting the
wtype component of an fwb object when supplied.

Value

set_fwb_wtype() returns a call to options() with the options set to those prior to set_fwb_wtype()
being called. This makes it so that calling options(op), where op is the output of set_fwb_wtype(),
resets the fwb_wtype to its original value. get_fwb_wtype() returns a string containing the fwb_wtype
value set globally (if no argument is supplied) or used in the supplied fwb object.

See Also

fwb() for a definition of each types of weights; vcovFWB(); options(); boot::boot() for the
traditional bootstrap.

Examples

Performing a Weibull analysis of the Bearing Cage
failure data as done in Xu et al. (2020)
set.seed(123, "L'Ecuyer-CMRG")
data("bearingcage")

#Set fwb type to "mammen"

summary.fwb 15

op <- set_fwb_wtype("mammen")

weibull_est <- function(data, w) {
fit <- survival::survreg(survival::Surv(hours, failure) ~ 1,

data = data, weights = w,
dist = "weibull")

c(eta = unname(exp(coef(fit))), beta = 1/fit$scale)
}

boot_est <- fwb(bearingcage, statistic = weibull_est,
R = 199, verbose = FALSE)

boot_est

#Get the fwb type used in the bootstrap
get_fwb_wtype(boot_est)
get_fwb_wtype()

#Restore original options
options(op)

get_fwb_wtype()

summary.fwb Summarize fwb Output

Description

summary() creates a regression summary-like table that displays the bootstrap estimates, their em-
pirical standard errors, their confidence intervals, and, optionally, p-values for tests against a null
value. confint() produces just the confidence intervals, and is called internally by summary().

Usage

S3 method for class 'fwb'
summary(
object,
conf = 0.95,
ci.type = "bc",
p.value = FALSE,
index = seq_len(ncol(object$t)),
null = 0,
simultaneous = FALSE,
...

)

S3 method for class 'fwb'
confint(object, parm, level = 0.95, ci.type = "bc", simultaneous = FALSE, ...)

16 summary.fwb

Arguments

object an fwb object; the output of a call to fwb().

conf, level the desired confidence level. Default is .95 for 95% confidence intervals. Set to
0 to prevent calculation of confidence intervals.

ci.type the type of confidence interval desired. Allowable options include "wald" (Wald
interval), "norm" (normal approximation), "basic" (basic interval), "perc"
(percentile interval), "bc" (bias-corrected percentile interval), and "bca" (bias-
corrected and accelerated [BCa] interval). Only one is allowed. BCa intervals
require the number of bootstrap replications to be larger than the sample size.
See fwb.ci() for details. The default is "bc". Ignored if both conf = 0 and
p.values = FALSE.

p.value logical; whether to display p-values for the test that each parameter is equal to
null. Default is FALSE. See Details.

index, parm the index or indices of the position of the quantity of interest if more than one
was specified in fwb(). Default is to display all quantities.

null numeric; when p.value = TRUE, the value of the estimate under the null hy-
pothesis. Default is 0. Only one value can be supplied and it is applied to all
tests.

simultaneous logical; whether to adjust confidence intervals and p-values to ensure correct
familywise coverage/size across all specified estimates. See Details. Default is
FALSE for standard pointwise intervals. TRUE is only allowed when ci.type is
"wald" or "perc".

... ignored.

Details

P-values are computed by inverting the confidence interval for each parameter, i.e., finding the
largest confidence level yielding a confidence interval that excludes null, and taking the p-value to
be one minus that level. This ensures conclusions from tests based on the p-value and whether the
confidence interval contains the null value always yield the same conclusion. Prior to version 0.5.0,
all p-values were based on inverting Wald confidence intervals, regardless of ci.type.

Simultaneous confidence intervals are computed using the "sup-t" confidence band, which involves
modifying the confidence level so that the intersection of all the adjusted confidence intervals con-
tain the whole parameter vector with the specified coverage. This will always be less conservative
than Bonferroni or Holm adjustment. See Olea and Plagborg-Møller (2019) for details on imple-
mentation for Wald and percentile intervals. Simultaneous p-values are computed by inverting the
simultaneous bands. Simultaneous inference is only allowed when ci.type is "wald" or "perc"
and index has length greater than 1. When ci.type = "wald", the mvtnorm package must be
installed.

tidy() and print() methods are available for summary.fwb objects.

Value

For summary(), a summary.fwb object, which is a matrix with the following columns:

• Estimate: the statistic estimated in the original sample

summary.fwb 17

• Std. Error: the standard deviation of the bootstrap estimates

• CI {L}% and CI {U}%: the upper and lower confidence interval bounds computed using the
argument to ci.type (only when conf is not 0).

• z value: when p.value = TRUE and ci.type = "wald", the z-statistic for the test of the
estimate against against null.

• Pr(>|z|): when p.value = TRUE, the p-value for the test of the estimate against against null.

For confint(), a matrix with a row for each statistic and a column for the upper and lower confi-
dence interval limits.

References

Montiel Olea, J. L., & Plagborg-Møller, M. (2019). Simultaneous confidence bands: Theory,
implementation, and an application to SVARs. Journal of Applied Econometrics, 34(1), 1–17.
doi:10.1002/jae.2656

See Also

fwb() for performing the fractional weighted bootstrap; fwb.ci() for computing multiple confi-
dence intervals for a single bootstrapped quantity

Examples

set.seed(123, "L'Ecuyer-CMRG")
data("infert")

fit_fun <- function(data, w) {
fit <- glm(case ~ spontaneous + induced, data = data,

family = "quasibinomial", weights = w)
coef(fit)

}

fwb_out <- fwb(infert, fit_fun, R = 199,
verbose = FALSE)

Basic confidence interval for both estimates
summary(fwb_out, ci.type = "basic")

Just for "induced" coefficient; p-values requested,
no confidence intervals
summary(fwb_out, ci.type = "norm", conf = 0,

index = "induced", p.value = TRUE)

https://doi.org/10.1002/jae.2656

18 vcovFWB

vcovFWB Fractional Weighted Bootstrap Covariance Matrix Estimation

Description

vcovFWB() estimates the covariance matrix of model coefficient estimates using the fractional
weighted bootstrap. It serves as a drop-in for stats::vcov() or sandwich::vcovBS(). Clustered
covariances are can be requested.

Usage

vcovFWB(
x,
cluster = NULL,
R = 1000,
start = FALSE,
wtype = getOption("fwb_wtype", "exp"),
...,
fix = FALSE,
use = "pairwise.complete.obs",
.coef = stats::coef,
verbose = FALSE,
cl = NULL

)

Arguments

x a fitted model object, such as the output of a call to lm() or glm(). The model
object must result from a function that can be updated using update() and has
a weights argument to input non-integer case weights.

cluster a variable indicating the clustering of observations, a list (or data.frame)
thereof, or a formula specifying which variables from the fitted model should be
used (see examples). By default (cluster = NULL), either attr(x, "cluster")
is used (if any) or otherwise every observation is assumed to be its own cluster.

R the number of bootstrap replications.

start logical; should .coef(x) be passed as start to the update(x, weights =
...) call? In case the model x is computed by some numeric iteration, this may
speed up the bootstrapping.

wtype string; the type of weights to use. Allowable options include "exp" (the default),
"pois", "multinom", and "mammen". See fwb() for details. See set_fwb_wtype()
to set a global default.

... ignored.

fix logical; if TRUE, the covariance matrix is fixed to be positive semi-definite in
case it is not.

vcovFWB 19

use character; specification passed to stats::cov() for handling missing coeffi-
cients/parameters.

.coef a function used to extract the coefficients from each fitted model. Must return a
numeric vector. By default, stats::coef is used, but marginaleffects::get_coef
can be a more reliable choice for some models that have a non-standard coef()
method, like that for nnet::multinom() models.

verbose logical; whether to display a progress bar.

cl a cluster object created by parallel::makeCluster(), an integer to indicate
the number of child-processes (integer values are ignored on Windows) for par-
allel evaluations, or the string "future" to use a future backend. See the cl
argument of pbapply::pblapply() for details. If NULL, no parallelization will
take place. See vignette("fwb-rep") for details.

Details

vcovFWB() functions like other vcov()-like functions, such as those in the sandwich package, in
particular, sandwich::vcovBS(), which implements the traditional bootstrap (and a few other boot-
strap varieties for linear models). Sets of weights are generated as described in the documentation
for fwb(), and the supplied model is re-fit using those weights. When the fitted model already has
weights, these are multiplied by the bootstrap weights.

For lm objects, the model is re-fit using .lm.fit() for speed, and, similarly, glm objects are re-fit
using glm.fit() (or whichever fitting method was originally used). For other objects, update()
is used to populate the weights and re-fit the model (this assumes the fitting function accepts non-
integer case weights through a weights argument). If a model accepts weights in some other way,
fwb() should be used instead; vcovFWB() is inherently limited in its ability to handle all possible
models. It is important that the original model was not fit using frequency weights (i.e., weights
that allow one row of data to represent multiple full, identical, individual units) unless clustering is
used.

See sandwich::vcovBS() and sandwich::vcovCL() for more information on clustering covari-
ance matrices, and see fwb() for more information on how clusters work with the fractional weighted
bootstrap. When clusters are specified, each cluster is given a bootstrap weight, and all members of
the cluster are given that weight; estimation then proceeds as normal. By default, when cluster is
unspecified, each unit is considered its own cluster.

Value

A matrix containing the covariance matrix estimate.

See Also

fwb() for performing the fractional weighted bootstrap on an arbitrary quantity; fwb.ci() for com-
puting nonparametric confidence intervals for fwb objects; summary.fwb() for producing standard
errors and confidence intervals for fwb objects; sandwich::vcovBS() for computing covariance
matrices using the traditional bootstrap (the fractional weighted bootstrap is also available but with
limited options).

20 vcovFWB

Examples

set.seed(123, "L'Ecuyer-CMRG")
data("infert")
fit <- glm(case ~ spontaneous + induced, data = infert,

family = "binomial")
lmtest::coeftest(fit, vcov. = vcovFWB, R = 200)

Example from help("vcovBS", package = "sandwich")
data("PetersenCL", package = "sandwich")
m <- lm(y ~ x, data = PetersenCL)

Note: this is not to compare performance, just to
demonstrate the syntax
cbind(

"BS" = sqrt(diag(sandwich::vcovBS(m))),
"FWB" = sqrt(diag(vcovFWB(m))),
"BS-cluster" = sqrt(diag(sandwich::vcovBS(m, cluster = ~firm))),
"FWB-cluster" = sqrt(diag(vcovFWB(m, cluster = ~firm)))

)

Using `wtype = "multinom"` exactly reproduces
`sandwich::vcovBS()`
set.seed(11)
s <- sandwich::vcovBS(m, R = 200)
set.seed(11)
f <- vcovFWB(m, R = 200, wtype = "multinom")

all.equal(s, f)

Using a custom argument to `.coef`
set.seed(123)
data("infert")

fit <- nnet::multinom(education ~ age, data = infert,
trace = FALSE)

vcovFWB(fit, R = 200) ## error
coef(fit) # coef() returns a matrix

Write a custom function to extract vector of
coefficients (can also use marginaleffects::get_coef())
coef_multinom <- function(x) {

p <- t(coef(x))

setNames(as.vector(p),
paste(colnames(p)[col(p)],

rownames(p)[row(p)],
sep = ":"))

}
coef_multinom(fit) # returns a vector

w_mean 21

vcovFWB(fit, R = 200, .coef = coef_multinom)

w_mean Calculate weighted statistics

Description

These functions are designed to compute weighted statistics (mean, variance, standard deviation,
covariance, correlation, median and quantiles) to perform weighted transformation (scaling, center-
ing, and standardization) using bootstrap weights. These automatically extract bootstrap weights
when called from within fwb() to facilitate computation of bootstrap statistics without needing to
think to hard about how to correctly incorporate weights.

Usage

w_mean(x, w = NULL, na.rm = FALSE)

w_var(x, w = NULL, na.rm = FALSE)

w_sd(x, w = NULL, na.rm = FALSE)

w_cov(x, w = NULL, na.rm = FALSE)

w_cor(x, w = NULL)

w_quantile(
x,
w = NULL,
probs = seq(0, 1, by = 0.25),
na.rm = FALSE,
names = TRUE,
type = 7L,
digits = 7L

)

w_median(x, w = NULL, na.rm = FALSE)

w_std(x, w = NULL, na.rm = TRUE, scale = TRUE, center = TRUE)

w_scale(x, w = NULL, na.rm = TRUE)

w_center(x, w = NULL, na.rm = TRUE)

22 w_mean

Arguments

x a numeric variable; for w_cov() and w_cor(), a numeric matrix.

w optional; a numeric vector of weights with length equal to the length of x (or
number of rows if x is a matrix). If unspecified, will use bootstrapped weights
when called from within fwb() or vcovFWB() and unit weights (i.e., for un-
weighted estimates) otherwise.

na.rm logical; whether to exclude NA values in the weights and x when computing
statistics. Default is FALSE for the weighted statistics (like with their unweighted
counterparts) and TRUE for weighted transformations.

probs, names, type, digits
see quantile(). Only type = 7 is allowed.

scale, center logical; whether to scale or center the variable.

Details

These function automatically incorporate bootstrap weights when used inside fwb() or vcovFWB().
This works because fwb() and vcovFWB() temporarily set an option with the environment of the
function that calls the estimation function with the sampled weights, and the w_*() functions access
the bootstrap weights from that environment, if any. So, using, e.g., w_mean() inside the function
supplied to the statistic argument of fwb(), computes the weighted mean using the bootstrap
weights. Using these functions outside fwb() works just like other functions that compute weighted
statistics: when w is supplied, the statistics are weighted, and otherwise they are unweighted.

See below for how each statistic is computed.

Weighted statistics:
For all weighted statistics, the weights are first rescaled to sum to 1. w in the formulas below
refers to these weights.

w_mean() Calculates the weighted mean as

x̄w =
∑
i

wixi

This is the same as weighted.mean().
w_var() Calculates the weighted variance as

s2x,w =

∑
i wi(xi − x̄w)

2

1−
∑

i w
2
i

w_sd() Calculates the weighted standard deviation as

sx,w =
√

s2x,w

w_cov() Calculates the weighted covariances as

sx,y,w =

∑
i wi(xi − x̄w)(yi − ȳw)

1−
∑

i w
2
i

This is the same as cov.wt().

w_mean 23

w_cor() Calculates the weighted correlation as

rx,y,w =
sx,y,w

sx,wsy,w

This is the same as cov.wt().
w_quantile() Calculates the weighted quantiles using linear interpolation of the weighted cu-

mulative density function.
w_median() Calculates the weighted median as w_quantile(., probs = .5).

Weighted transformations:
Weighted transformations use the weighted mean and/or standard deviation to re-center or re-scale
the given variable. In the formulas below, x is the original variable and w are the weights.

w_center() Centers the variable at its (weighted) mean.

xc,w = x− x̄w

w_scale() Scales the variable by its (weighted) standard deviation.

xs,w = x/sx,w

w_std() Centers and scales the variable by its (weighted) mean and standard deviation.

xz,w = (x− x̄w)/sx,w

w_scale() and w_center() are efficient wrappers to w_std() with center = FALSE and scale
= FALSE, respectively.

Value

w_mean(), w_var(), w_sd(), and w_median() return a numeric scalar. w_cov() and w_cor() re-
turn numeric matrices. w_quantile() returns a numeric vector of length equal to probs. w_std(),
w_scale(), and w_center() return numeric vectors of length equal to the length of x.

See Also

• mean() and weighted.mean() for computing the unweighted and weighted mean

• var() and sd() for computing the unweighted variance and standard deviation

• median() and quantile() for computing the unweighted median and quantiles

• cov(), cor(), and cov.wt() for unweighted and weighted covariance and correlation matri-
ces

• scale() for standardizing variables using arbitrary (by default, unweighted) centering and
scaling factors

Examples

G-computation of average treatment effects using lalonde
dataset

data("lalonde", package = "cobalt")

24 w_mean

ate_est <- function(data, w) {
fit <- lm(re78 ~ treat * (age + educ + married + race +

nodegree + re74 + re75),
data = data, weights = w)

p0 <- predict(fit, newdata = transform(data, treat = 0))
p1 <- predict(fit, newdata = transform(data, treat = 1))

Weighted means using bootstrap weights
m0 <- w_mean(p0)
m1 <- w_mean(p1)

c(m0 = m0, m1 = m1, ATE = m1 - m0)
}

set.seed(123, "L'Ecuyer-CMRG")
boot_est <- fwb(lalonde, statistic = ate_est,

R = 199, verbose = FALSE)
summary(boot_est)

Using `w_*()` data transformations inside a model
supplied to vcovFWB():
fit <- lm(re78 ~ treat * w_center(age),

data = lalonde)

lmtest::coeftest(fit, vcov = vcovFWB, R = 500)

Index

∗ datasets
bearingcage, 2

.lm.fit(), 19

bearingcage, 2
boot::boot(), 6, 14
boot::boot.array(), 7
boot::boot.ci(), 9, 11, 12
boot::empinf(), 10
boot::plot.boot(), 13

coef(), 6
confint.fwb (summary.fwb), 15
confint.fwb(), 12
cor(), 23
cov(), 23
cov.wt(), 22, 23

fwb, 3
fwb(), 7, 9, 11, 13, 14, 16–19, 21, 22
fwb.array, 7
fwb.ci, 8
fwb.ci(), 6, 11, 12, 16, 17, 19

get_ci, 11
get_ci(), 11
get_fwb_wtype (set_fwb_wtype), 14
glm(), 4
glm.fit(), 19

hist(), 13

mean(), 23
median(), 23

options(), 14

parallel::makeCluster(), 4, 19
pbapply::pblapply(), 4, 19
plot.fwb, 12
plot.fwb(), 6

pnorm(), 10
print.fwb (fwb), 3
print.fwbci (fwb.ci), 8

qqplot(), 13
quantile(), 22, 23
quasibinomial(), 4

rexp(), 5
rpois(), 5

sample(), 5
sandwich::vcovBS(), 19
sandwich::vcovCL(), 19
scale(), 23
sd(), 23
set.seed(), 5
set_fwb_wtype, 14
set_fwb_wtype(), 4–6, 18
stats::coef, 19
stats::cov(), 19
summary.fwb, 15
summary.fwb(), 6, 9, 11, 13, 19

update(), 18, 19

var(), 23
vcov(), 6
vcovFWB, 18
vcovFWB(), 6, 11, 14, 22

w_center (w_mean), 21
w_cor (w_mean), 21
w_cov (w_mean), 21
w_mean, 21
w_median (w_mean), 21
w_quantile (w_mean), 21
w_scale (w_mean), 21
w_sd (w_mean), 21
w_std (w_mean), 21
w_var (w_mean), 21
weighted.mean(), 22, 23

25

	bearingcage
	fwb
	fwb.array
	fwb.ci
	get_ci
	plot.fwb
	set_fwb_wtype
	summary.fwb
	vcovFWB
	w_mean
	Index

