
Package ‘future.apply’
June 6, 2025

Version 1.20.0

Title Apply Function to Elements in Parallel using Futures

Depends R (>= 3.2.0), future (>= 1.49.0)

Imports globals, parallel, utils

Suggests datasets, stats, tools, listenv, R.rsp, markdown

VignetteBuilder R.rsp

Description Implementations of apply(), by(), eapply(), lapply(), Map(), .mapply(), mapply(), repli-
cate(), sapply(), tapply(), and vapply() that can be resolved using any future-supported back-
end, e.g. parallel on the local machine or distributed on a compute cluster. These fu-
ture_*apply() functions come with the same pros and cons as the corresponding base-R *ap-
ply() functions but with the additional feature of being able to be processed via the future frame-
work <doi:10.32614/RJ-2021-048>.

License GPL (>= 2)

LazyLoad TRUE

URL https://future.apply.futureverse.org,

https://github.com/futureverse/future.apply

BugReports https://github.com/futureverse/future.apply/issues

Language en-US

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation no

Author Henrik Bengtsson [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-7579-5165>),

R Core Team [cph, ctb]

Maintainer Henrik Bengtsson <henrikb@braju.com>

Repository CRAN

Date/Publication 2025-06-06 08:00:02 UTC

1

https://doi.org/10.32614/RJ-2021-048
https://future.apply.futureverse.org
https://github.com/futureverse/future.apply
https://github.com/futureverse/future.apply/issues
https://orcid.org/0000-0002-7579-5165

2 future.apply

Contents
future.apply . 2
future.apply.options . 4
future_apply . 5
future_by . 7
future_eapply . 9
future_Filter . 15
future_kernapply . 18

Index 20

future.apply future.apply: Apply Function to Elements in Parallel using Futures

Description

The future.apply packages provides parallel implementations of common "apply" functions pro-
vided by base R. The parallel processing is performed via the future ecosystem, which provides
a large number of parallel backends, e.g. on the local machine, a remote cluster, and a high-
performance compute cluster.

Details

Currently implemented functions are:

• future_apply(): a parallel version of apply()

• future_by(): a parallel version of by()

• future_eapply(): a parallel version of eapply()

• future_lapply(): a parallel version of lapply()

• future_mapply(): a parallel version of mapply()

• future_sapply(): a parallel version of sapply()

• future_tapply(): a parallel version of tapply()

• future_vapply(): a parallel version of vapply()

• future_Map(): a parallel version of Map()

• future_replicate(): a parallel version of replicate()

• future_.mapply(): a parallel version of .mapply()

Reproducibility is part of the core design, which means that perfect, parallel random number gener-
ation (RNG) is supported regardless of the amount of chunking, type of load balancing, and future
backend being used.

Since these future_*() functions have the same arguments as the corresponding base R function,
start using them is often as simple as renaming the function in the code. For example, after attaching
the package:

future.apply 3

library(future.apply)

code such as:

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
y <- lapply(x, quantile, probs = 1:3/4)

can be updated to:

y <- future_lapply(x, quantile, probs = 1:3/4)

The default settings in the future framework is to process code sequentially. To run the above in
parallel on the local machine (on any operating system), use:

plan(multisession)

first. That’s it!

To go back to sequential processing, use plan(sequential). If you have access to multiple ma-
chines on your local network, use:

plan(cluster, workers = c("n1", "n2", "n2", "n3"))

This will set up four workers, one on n1 and n3, and two on n2. If you have SSH access to some
remote machines, use:

plan(cluster, workers = c("m1.myserver.org", "m2.myserver.org))

See the future package and future::plan() for more examples.

The future.batchtools package provides support for high-performance compute (HPC) cluster
schedulers such as SGE, Slurm, and TORQUE / PBS. For example,

• plan(batchtools_slurm): Process via a Slurm scheduler job queue.

• plan(batchtools_torque): Process via a TORQUE / PBS scheduler job queue.

This builds on top of the queuing framework that the batchtools package provides. For more details
on backend configuration, please see the future.batchtools and batchtools packages.

These are just a few examples of parallel/distributed backend for the future ecosystem. For more
alternatives, see the ’Reverse dependencies’ section on the future CRAN package page.

Author(s)

Henrik Bengtsson, except for the implementations of future_apply(), future_Map(), future_replicate(),
future_sapply(), and future_tapply(), which are adopted from the source code of the corre-
sponding base R functions, which are licensed under GPL (>= 2) with ’The R Core Team’ as the
copyright holder. Because of these dependencies, the license of this package is GPL (>= 2).

https://cran.r-project.org/package=future

4 future.apply.options

See Also

Useful links:

• https://future.apply.futureverse.org

• https://github.com/futureverse/future.apply

• Report bugs at https://github.com/futureverse/future.apply/issues

future.apply.options Options used for future.apply

Description

Below are the R options and environment variables that are used by the future.apply package and
packages enhancing it.

WARNING: Note that the names and the default values of these options may change in future ver-
sions of the package. Please use with care until further notice.

Details

For settings specific to the future package, see future::future.options page.

Options for debugging future.apply

‘future.apply.debug’: (logical) If TRUE, extensive debug messages are generated. (Default:
FALSE)

Environment variables that set R options

All of the above R ‘future.apply.*’ options can be set by corresponding environment variable
R_FUTURE_APPLY_* when the future.apply package is loaded. For example, if R_FUTURE_APPLY_DEBUG=TRUE,
then option ‘future.apply.debug’ is set to TRUE (logical).

See Also

To set R options or environment variables when R starts (even before the future package is loaded),
see the Startup help page. The startup package provides a friendly mechanism for configuring R’s
startup process.

Examples

Not run:
options(future.apply.debug = TRUE)

End(Not run)

https://future.apply.futureverse.org
https://github.com/futureverse/future.apply
https://github.com/futureverse/future.apply/issues
https://cran.r-project.org/package=startup

future_apply 5

future_apply Apply Functions Over Array Margins via Futures

Description

future_apply() implements base::apply() using future with perfect replication of results, re-
gardless of future backend used. It returns a vector or array or list of values obtained by applying a
function to margins of an array or matrix.

Usage

future_apply(
X,
MARGIN,
FUN,
...,
simplify = TRUE,
future.envir = parent.frame(),
future.stdout = TRUE,
future.conditions = "condition",
future.globals = TRUE,
future.packages = NULL,
future.seed = FALSE,
future.scheduling = 1,
future.chunk.size = NULL,
future.label = "future_apply-%d"

)

Arguments

X an array, including a matrix.

MARGIN A vector giving the subscripts which the function will be applied over. For
example, for a matrix 1 indicates rows, 2 indicates columns, c(1, 2) indicates
rows and columns. Where X has named dimnames, it can be a character vector
selecting dimension names.

FUN A function taking at least one argument.

simplify a logical indicating whether results should be simplified if possible.

future.envir An environment passed as argument envir to future::future() as-is.

future.stdout If TRUE (default), then the standard output of the underlying futures is captured,
and re-outputted as soon as possible. If FALSE, any output is silenced (by sinking
it to the null device as it is outputted). If NA (not recommended), output is not
intercepted.

future.conditions

A character string of conditions classes to be captured and relayed. The default
is the same as the condition argument of future::Future(). To not intercept
conditions, use conditions = character(0L). Errors are always relayed.

6 future_apply

future.globals A logical, a character vector, or a named list for controlling how globals are
handled. For details, see below section.

future.packages

(optional) a character vector specifying packages to be attached in the R envi-
ronment evaluating the future.

future.seed A logical or an integer (of length one or seven), or a list of length(X) with
pre-generated random seeds. For details, see below section.

future.scheduling

Average number of futures ("chunks") per worker. If 0.0, then a single future
is used to process all elements of X. If 1.0 or TRUE, then one future per worker
is used. If 2.0, then each worker will process two futures (if there are enough
elements in X). If Inf or FALSE, then one future per element of X is used. Only
used if future.chunk.size is NULL.

future.chunk.size

The average number of elements per future ("chunk"). If Inf, then all elements
are processed in a single future. If NULL, then argument future.scheduling is
used.

future.label If a character string, then each future is assigned a label sprintf(future.label,
chunk_idx). If TRUE, then the same as future.label = "future_lapply-%d".
If FALSE, no labels are assigned.

... (optional) Additional arguments passed to FUN(), except future.* arguments,
which are passed on to future_lapply() used internally.

Value

Returns a vector or array or list of values obtained by applying a function to margins of an array or
matrix. See base::apply() for details.

Author(s)

The implementations of future_apply() is adopted from the source code of the corresponding
base R function, which is licensed under GPL (>= 2) with ’The R Core Team’ as the copyright
holder.

Examples

apply()

X <- matrix(c(1:4, 1, 6:8), nrow = 2L)

Y0 <- apply(X, MARGIN = 1L, FUN = table)
Y1 <- future_apply(X, MARGIN = 1L, FUN = table)
print(Y1)
stopifnot(all.equal(Y1, Y0, check.attributes = FALSE)) ## FIXME

Y0 <- apply(X, MARGIN = 1L, FUN = stats::quantile)
Y1 <- future_apply(X, MARGIN = 1L, FUN = stats::quantile)
print(Y1)

future_by 7

stopifnot(all.equal(Y1, Y0))

Parallel Random Number Generation

Regardless of the future plan, the number of workers, and
where they are, the random numbers produced are identical

X <- matrix(c(1:4, 1, 6:8), nrow = 2L)

plan(multisession)
set.seed(0xBEEF)
Y1 <- future_apply(X, MARGIN = 1L, FUN = sample, future.seed = TRUE)
print(Y1)

plan(sequential)
set.seed(0xBEEF)
Y2 <- future_apply(X, MARGIN = 1L, FUN = sample, future.seed = TRUE)
print(Y2)

stopifnot(all.equal(Y1, Y2))

future_by Apply a Function to a Data Frame Split by Factors via Futures

Description

Apply a Function to a Data Frame Split by Factors via Futures

Usage

future_by(
data,
INDICES,
FUN,
...,
simplify = TRUE,
future.envir = parent.frame()

)

Arguments

data An R object, normally a data frame, possibly a matrix.

INDICES A factor or a list of factors, each of length nrow(data).

8 future_by

FUN a function to be applied to (usually data-frame) subsets of data.

simplify logical: see base::tapply().

future.envir An environment passed as argument envir to future::future() as-is.

... Additional arguments pass to future_lapply() and then to FUN().

Details

Internally, data is grouped by INDICES into a list of data subset elements which is then processed
by future_lapply(). When the groups differ significantly in size, the processing time may differ
significantly between the groups. To correct for processing-time imbalances, adjust the amount of
chunking via arguments future.scheduling and future.chunk.size.

Value

An object of class "by", giving the results for each subset. This is always a list if simplify is false,
otherwise a list or array (see base::tapply()). See also base::by() for details.

Note on ’stringsAsFactors’

The future_by() is modeled as closely as possible to the behavior of base::by(). Both functions
have "default" S3 methods that calls data <- as.data.frame(data) internally. This call may in
turn call an S3 method for as.data.frame() that coerces strings to factors or not depending on
whether it has a stringsAsFactors argument and what its default is. For example, the S3 method
of as.data.frame() for lists changed its (effective) default from stringsAsFactors = TRUE to
stringsAsFactors = TRUE in R 4.0.0.

Examples

by()

library(datasets) ## warpbreaks
library(stats) ## lm()

y0 <- by(warpbreaks, warpbreaks[,"tension"],
function(x) lm(breaks ~ wool, data = x))

plan(multisession)
y1 <- future_by(warpbreaks, warpbreaks[,"tension"],

function(x) lm(breaks ~ wool, data = x))

plan(sequential)
y2 <- future_by(warpbreaks, warpbreaks[,"tension"],

function(x) lm(breaks ~ wool, data = x))

future_eapply 9

future_eapply Apply a Function over a List or Vector via Futures

Description

future_lapply() implements base::lapply() using futures with perfect replication of results,
regardless of future backend used. Analogously, this is true for all the other future_nnn() func-
tions.

Usage

future_eapply(
env,
FUN,
...,
all.names = FALSE,
USE.NAMES = TRUE,
future.envir = parent.frame(),
future.label = "future_eapply-%d"

)

future_lapply(
X,
FUN,
...,
future.envir = parent.frame(),
future.stdout = TRUE,
future.conditions = "condition",
future.globals = TRUE,
future.packages = NULL,
future.seed = FALSE,
future.scheduling = 1,
future.chunk.size = NULL,
future.label = "future_lapply-%d"

)

future_replicate(
n,
expr,
simplify = "array",
future.seed = TRUE,
...,
future.envir = parent.frame(),
future.label = "future_replicate-%d"

)

future_sapply(

10 future_eapply

X,
FUN,
...,
simplify = TRUE,
USE.NAMES = TRUE,
future.envir = parent.frame(),
future.label = "future_sapply-%d"

)

future_tapply(
X,
INDEX,
FUN = NULL,
...,
default = NA,
simplify = TRUE,
future.envir = parent.frame(),
future.label = "future_tapply-%d"

)

future_vapply(
X,
FUN,
FUN.VALUE,
...,
USE.NAMES = TRUE,
future.envir = parent.frame(),
future.label = "future_vapply-%d"

)

Arguments

env An R environment.

FUN A function taking at least one argument.

all.names If TRUE, the function will also be applied to variables that start with a period (.),
otherwise not. See base::eapply() for details.

USE.NAMES See base::sapply().

future.envir An environment passed as argument envir to future::future() as-is.

future.label If a character string, then each future is assigned a label sprintf(future.label,
chunk_idx). If TRUE, then the same as future.label = "future_lapply-%d".
If FALSE, no labels are assigned.

X An R object for which a split method exists. Typically vector-like, allowing
subsetting with [, or a data frame.

future.stdout If TRUE (default), then the standard output of the underlying futures is captured,
and re-outputted as soon as possible. If FALSE, any output is silenced (by sinking
it to the null device as it is outputted). If NA (not recommended), output is not
intercepted.

future_eapply 11

future.conditions

A character string of conditions classes to be captured and relayed. The default
is the same as the condition argument of future::Future(). To not intercept
conditions, use conditions = character(0L). Errors are always relayed.

future.globals A logical, a character vector, or a named list for controlling how globals are
handled. For details, see below section.

future.packages

(optional) a character vector specifying packages to be attached in the R envi-
ronment evaluating the future.

future.seed A logical or an integer (of length one or seven), or a list of length(X) with
pre-generated random seeds. For details, see below section.

future.scheduling

Average number of futures ("chunks") per worker. If 0.0, then a single future
is used to process all elements of X. If 1.0 or TRUE, then one future per worker
is used. If 2.0, then each worker will process two futures (if there are enough
elements in X). If Inf or FALSE, then one future per element of X is used. Only
used if future.chunk.size is NULL.

future.chunk.size

The average number of elements per future ("chunk"). If Inf, then all elements
are processed in a single future. If NULL, then argument future.scheduling is
used.

n The number of replicates.

expr An R expression to evaluate repeatedly.

simplify See base::sapply() and base::tapply(), respectively.

INDEX A list of one or more factors, each of same length as X. The elements are coerced
to factors by as.factor(). Can also be a formula, which is useful if X is a
data frame; see the f argument in split() for interpretation.

default See base::tapply().

FUN.VALUE A template for the required return value from each FUN(X[ii], ...). Types
may be promoted to a higher type within the ordering logical < integer < double
< complex, but not demoted. See base::vapply() for details.

... (optional) Additional arguments passed to FUN(). For future_*apply() func-
tions and replicate(), any future.* arguments part of \ldots are passed on
to future_lapply() used internally. Importantly, if this is called inside another
function which also declares . . . arguments, do not forget to explicitly pass such
. . . arguments down to the future_*apply() function too, which will then pass
them on to FUN(). See below for an example.

Value

A named (unless USE.NAMES = FALSE) list. See base::eapply() for details.

For future_lapply(), a list with same length and names as X. See base::lapply() for details.

future_replicate() is a wrapper around future_sapply() and return simplified object accord-
ing to the simplify argument. See base::replicate() for details. Since future_replicate()
usually involves random number generation (RNG), it uses future.seed = TRUE by default in order

12 future_eapply

produce sound random numbers regardless of future backend and number of background workers
used.

For future_sapply(), a vector with same length and names as X. See base::sapply() for details.

future_tapply() returns an array with mode "list", unless simplify = TRUE (default) and FUN
returns a scalar, in which case the mode of the array is the same as the returned scalars. See
base::tapply() for details.

For future_vapply(), a vector with same length and names as X. See base::vapply() for details.

Global variables

Argument future.globals may be used to control how globals should be handled similarly how
the globals argument is used with future(). Since all function calls use the same set of globals,
this function can do any gathering of globals upfront (once), which is more efficient than if it would
be done for each future independently. If TRUE (default), then globals are automatically identified
and gathered. If a character vector of names is specified, then those globals are gathered. If a named
list, then those globals are used as is. In all cases, FUN and any \ldots arguments are automatically
passed as globals to each future created as they are always needed.

Reproducible random number generation (RNG)

Unless future.seed is FALSE or NULL, this function guarantees to generate the exact same sequence
of random numbers given the same initial seed / RNG state - this regardless of type of futures,
scheduling ("chunking") strategy, and number of workers.

RNG reproducibility is achieved by pregenerating the random seeds for all iterations (over X) by
using parallel RNG streams. In each iteration, these seeds are set before calling FUN(X[[ii]],
...). Note, for large length(X) this may introduce a large overhead.

If future.seed = TRUE, then .Random.seed is used if it holds a parallel RNG seed, otherwise one
is created randomly.

If future.seed = FALSE, it is expected that none of the FUN(X[[ii]], ...) function calls use
random number generation. If they do, then an informative warning or error is produces depend-
ing on settings. See future::future() for more details. Using future.seed = NULL, is like
future.seed = FALSE but without the check whether random numbers were generated or not.

As input, future.seed may also take a fixed initial seed (integer), either as a full parallel RNG seed,
or as a seed generating such a full parallel seed. This seed will be used to generated length(X)
parallel RNG streams.

In addition to the above, it is possible to specify a pre-generated sequence of RNG seeds as a list
such that length(future.seed) == length(X) and where each element is an integer seed vector
that can be assigned to .Random.seed. One approach to generate a set of valid RNG seeds based
on fixed initial seed (here 42L) is:

seeds <- future_lapply(seq_along(X), FUN = function(x) .Random.seed,
future.chunk.size = Inf, future.seed = 42L)

Note that as.list(seq_along(X)) is not a valid set of such .Random.seed values.
In all cases but future.seed = FALSE and NULL, the RNG state of the calling R processes after this
function returns is guaranteed to be "forwarded one step" from the RNG state that was before the

future_eapply 13

call and in the same way regardless of future.seed, future.scheduling and future strategy used.
This is done in order to guarantee that an R script calling future_lapply() multiple times should
be numerically reproducible given the same initial seed.

Control processing order of elements

Attribute ordering of future.chunk.size or future.scheduling can be used to control the
ordering the elements are iterated over, which only affects the processing order and not the order
values are returned. This attribute can take the following values:

• index vector - an numeric vector of length length(X)

• function - an function taking one argument which is called as ordering(length(X)) and
which must return an index vector of length length(X), e.g. function(n) rev(seq_len(n))
for reverse ordering.

• "random" - this will randomize the ordering via random index vector sample.int(length(X)).
For example, future.scheduling = structure(TRUE, ordering = "random"). Note, when
elements are processed out of order, then captured standard output and conditions are also
relayed in that order, that is out of order.

Author(s)

The implementations of future_replicate(), future_sapply(), and future_tapply() are adopted
from the source code of the corresponding base R functions, which are licensed under GPL (>= 2)
with ’The R Core Team’ as the copyright holder.

Examples

lapply(), sapply(), tapply()

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE, FALSE, FALSE, TRUE))
y0 <- lapply(x, FUN = quantile, probs = 1:3/4)
y1 <- future_lapply(x, FUN = quantile, probs = 1:3/4)
print(y1)
stopifnot(all.equal(y1, y0))

y0 <- sapply(x, FUN = quantile)
y1 <- future_sapply(x, FUN = quantile)
print(y1)
stopifnot(all.equal(y1, y0))

y0 <- vapply(x, FUN = quantile, FUN.VALUE = double(5L))
y1 <- future_vapply(x, FUN = quantile, FUN.VALUE = double(5L))
print(y1)
stopifnot(all.equal(y1, y0))

Parallel Random Number Generation

14 future_eapply

Regardless of the future plan, the number of workers, and
where they are, the random numbers produced are identical

plan(multisession)
set.seed(0xBEEF)
y1 <- future_lapply(1:5, FUN = rnorm, future.seed = TRUE)
str(y1)

plan(sequential)
set.seed(0xBEEF)
y2 <- future_lapply(1:5, FUN = rnorm, future.seed = TRUE)
str(y2)

stopifnot(all.equal(y1, y2))

Process chunks of data.frame rows in parallel

iris <- datasets::iris
chunks <- split(iris, seq(1, nrow(iris), length.out = 3L))
y0 <- lapply(chunks, FUN = function(iris) sum(iris$Sepal.Length))
y0 <- do.call(sum, y0)
y1 <- future_lapply(chunks, FUN = function(iris) sum(iris$Sepal.Length))
y1 <- do.call(sum, y1)
print(y1)
stopifnot(all.equal(y1, y0))

Remember to pass down '...' arguments

It is important that we don't use '...' as a global variable,
as attempted in the following not_okay_fcn()
bad_fcn <- function(X, ...) {

y <- future_lapply(X, FUN = function(x) {
mean(x, ...) ## here '...' is a global variable

})
y

}

Instead, make sure to pass '...' via arguments all the way through
good_fcn <- function(X, ...) { ## outer '...'

y <- future_lapply(X, FUN = function(x, ...) {
mean(x, ...) ## here '...' is an argument of FUN()

}, ...) ## pass outer '...' to FUN()
y

}

future_Filter 15

future_Filter Apply a Function to Multiple List or Vector Arguments

Description

future_mapply() implements base::mapply() using futures with perfect replication of results,
regardless of future backend used. Analogously to mapply(), future_mapply() is a multivariate
version of future_sapply(). It applies FUN to the first elements of each \ldots argument, the
second elements, the third elements, and so on. Arguments are recycled if necessary.

Usage

future_Filter(f, x, ...)

future_Map(
f,
...,
future.envir = parent.frame(),
future.label = "future_Map-%d"

)

future_mapply(
FUN,
...,
MoreArgs = NULL,
SIMPLIFY = TRUE,
USE.NAMES = TRUE,
future.envir = parent.frame(),
future.stdout = TRUE,
future.conditions = "condition",
future.globals = TRUE,
future.packages = NULL,
future.seed = FALSE,
future.scheduling = 1,
future.chunk.size = NULL,
future.label = "future_mapply-%d"

)

future_.mapply(FUN, dots, MoreArgs, ..., future.label = "future_.mapply-%d")

Arguments

f A function of the arity k if future_Map() is called with k arguments.

x A vector-like object to iterate over.

future.envir An environment passed as argument envir to future::future() as-is.

16 future_Filter

future.label If a character string, then each future is assigned a label sprintf(future.label,
chunk_idx). If TRUE, then the same as future.label = "future_lapply-%d".
If FALSE, no labels are assigned.

FUN A function to apply, found via base::match.fun().

MoreArgs A list of other arguments to FUN.

SIMPLIFY A logical or character string; attempt to reduce the result to a vector, matrix or
higher dimensional array; see the simplify argument of base::sapply().

USE.NAMES A logical; use names if the first \ldots argument has names, or if it is a character
vector, use that character vector as the names.

future.stdout If TRUE (default), then the standard output of the underlying futures is captured,
and re-outputted as soon as possible. If FALSE, any output is silenced (by sinking
it to the null device as it is outputted). If NA (not recommended), output is not
intercepted.

future.conditions

A character string of conditions classes to be captured and relayed. The default
is the same as the condition argument of future::Future(). To not intercept
conditions, use conditions = character(0L). Errors are always relayed.

future.globals A logical, a character vector, or a named list for controlling how globals are
handled. For details, see future_lapply().

future.packages

(optional) a character vector specifying packages to be attached in the R envi-
ronment evaluating the future.

future.seed A logical or an integer (of length one or seven), or a list of max(lengths(list(...)))
with pre-generated random seeds. For details, see future_lapply().

future.scheduling

Average number of futures ("chunks") per worker. If 0.0, then a single future
is used to process all elements of X. If 1.0 or TRUE, then one future per worker
is used. If 2.0, then each worker will process two futures (if there are enough
elements in X). If Inf or FALSE, then one future per element of X is used. Only
used if future.chunk.size is NULL.

future.chunk.size

The average number of elements per future ("chunk"). If Inf, then all elements
are processed in a single future. If NULL, then argument future.scheduling is
used.

dots A list of arguments to vectorize over (vectors or lists of strictly positive length,
or all of zero length).

... Arguments to vectorize over, will be recycled to common length, or zero if one
of them is of length zero.

Details

Note that base::.mapply(), which future_.mapply() is modeled after is listed as an "internal"
function in R despite being exported.

future_Filter 17

Value

See base::Filter() for details.

future_Map() is a simple wrapper to future_mapply() which does not attempt to simplify the
result. See base::Map() for details.

future_mapply() returns a list, or for SIMPLIFY = TRUE, a vector, array or list. See base::mapply()
for details.

future_.mapply() returns a list. See base::.mapply() for details.

Author(s)

The implementations of future_Filter() is adopted from the source code of the corresponding
base R function Filter(), which is licensed under GPL (>= 2) with ’The R Core Team’ as the
copyright holder.

The implementations of future_Map() is adopted from the source code of the corresponding base
R function Map(), which is licensed under GPL (>= 2) with ’The R Core Team’ as the copyright
holder.

Examples

Filter()

is_even <- function(x) { x %% 2 == 0 }
x <- sample.int(100, size = 1000, replace = TRUE)
y <- future_Filter(is_even, x)

mapply()

y0 <- mapply(rep, 1:4, 4:1)
y1 <- future_mapply(rep, 1:4, 4:1)
stopifnot(identical(y1, y0))

y0 <- mapply(rep, times = 1:4, x = 4:1)
y1 <- future_mapply(rep, times = 1:4, x = 4:1)
stopifnot(identical(y1, y0))

y0 <- mapply(rep, times = 1:4, MoreArgs = list(x = 42))
y1 <- future_mapply(rep, times = 1:4, MoreArgs = list(x = 42))
stopifnot(identical(y1, y0))

y0 <- mapply(function(x, y) seq_len(x) + y,
c(a = 1, b = 2, c = 3), # names from first
c(A = 10, B = 0, C = -10))

y1 <- future_mapply(function(x, y) seq_len(x) + y,
c(a = 1, b = 2, c = 3), # names from first
c(A = 10, B = 0, C = -10))

stopifnot(identical(y1, y0))

18 future_kernapply

word <- function(C, k) paste(rep.int(C, k), collapse = "")
y0 <- mapply(word, LETTERS[1:6], 6:1, SIMPLIFY = FALSE)
y1 <- future_mapply(word, LETTERS[1:6], 6:1, SIMPLIFY = FALSE)
stopifnot(identical(y1, y0))

Parallel Random Number Generation

Regardless of the future plan, the number of workers, and
where they are, the random numbers produced are identical

plan(multisession)
set.seed(0xBEEF)
y1 <- future_mapply(stats::runif, n = 1:4, max = 2:5,

MoreArgs = list(min = 1), future.seed = TRUE)
print(y1)

plan(sequential)
set.seed(0xBEEF)
y2 <- future_mapply(stats::runif, n = 1:4, max = 2:5,

MoreArgs = list(min = 1), future.seed = TRUE)
print(y2)

stopifnot(all.equal(y1, y2))

future_kernapply Apply Smoothing Kernel in Parallel

Description

future_kernapply() is a futurized version of stats::kernapply(), i.e. it computes, in parallel,
the convolution between an input sequence and a specific kernel. Parallelization takes place over
columns when x is a matrix, including a ts matrix.

Usage

future_kernapply(x, ...)

Default S3 method:
future_kernapply(x, k, circular = FALSE, ...)

S3 method for class 'ts'
future_kernapply(x, k, circular = FALSE, ...)

future_kernapply 19

Arguments

x an input vector, matrix, time series or kernel to be smoothed.

... arguments passed to or from other methods.

k smoothing "tskernel" object.

circular a logical indicating whether the input sequence to be smoothed is treated as
circular, i.e., periodic.

Value

See stats::kernapply() for details.

Examples

library(datasets)
library(stats)

X <- EuStockMarkets[, 1:2]
k <- kernel("daniell", 50) # a long moving average
X_smooth <- future_kernapply(X, k = k)

Index

∗ iteration
future.apply, 2
future_eapply, 9
future_Filter, 15

∗ manip
future.apply, 2
future_eapply, 9
future_Filter, 15

∗ programming
future.apply, 2
future_eapply, 9
future_Filter, 15

.Random.seed, 12

.mapply(), 2
[, 10

apply(), 2
as.factor(), 11

base::.mapply(), 16, 17
base::apply(), 5, 6
base::by(), 8
base::eapply(), 10, 11
base::Filter(), 17
base::lapply(), 9, 11
base::Map(), 17
base::mapply(), 15, 17
base::match.fun(), 16
base::replicate(), 11
base::sapply(), 10–12, 16
base::tapply(), 8, 11, 12
base::vapply(), 11, 12
by(), 2

eapply(), 2
environment, 5, 8, 10, 15

factor, 11
future.apply, 2
future.apply-package (future.apply), 2

future.apply.debug
(future.apply.options), 4

future.apply.options, 4
future::Future(), 5, 11, 16
future::future(), 5, 8, 10, 12, 15
future::future.options, 4
future::plan(), 3
future_.mapply (future_Filter), 15
future_.mapply(), 2
future_apply, 5
future_apply(), 2
future_by, 7
future_by(), 2
future_eapply, 9
future_eapply(), 2
future_Filter, 15
future_kernapply, 18
future_lapply (future_eapply), 9
future_lapply(), 2, 6, 8, 16
future_Map (future_Filter), 15
future_Map(), 2
future_mapply (future_Filter), 15
future_mapply(), 2
future_replicate (future_eapply), 9
future_replicate(), 2
future_sapply (future_eapply), 9
future_sapply(), 2
future_tapply (future_eapply), 9
future_tapply(), 2
future_vapply (future_eapply), 9
future_vapply(), 2

lapply(), 2

Map(), 2
mapply(), 2

R_FUTURE_APPLY_DEBUG
(future.apply.options), 4

replicate(), 2

20

INDEX 21

sapply(), 2
split, 10
split(), 11
Startup, 4
stats::kernapply(), 18, 19

tapply(), 2

vapply(), 2

	future.apply
	future.apply.options
	future_apply
	future_by
	future_eapply
	future_Filter
	future_kernapply
	Index

