
A Bayesian Model for the Endpoint Event Incidence
Rate in an Interim Analysis of Operational Futility

Let nk and Tk denote, respectively, the event count and the observed total person-time at risk
at the time of the k-th futility analysis, pooling over all treatment arms. Additionally, let
T ∗ denote the estimated total person-time at risk for the primary efficacy analysis. Let the
prior distribution of the treatment arm-pooled incidence rate p be Ga(α, β) parametrized such
that the prior mean E p = α/β (the same Bayesian method applies to treatment arm-specific
incidence rates). For the treatment arm-pooled incidence rate, we additionally consider a
robust prior distribution described in Section 1.

Generally, assuming that, conditional on p, the times to event follow Exp(p), the posterior
mean of p at the time of the k-th analysis equals

E[p | data] =
α + nk
β + Tk

=
α

β

β

β + Tk
+
nk
Tk

Tk
β + Tk

, (1)

i.e., the posterior mean can be interpreted as a convex combination of the prior mean and
the observed incidence rate. For a given β > 0, the weight on the prior mean at the first
analysis depends on the accumulated person-time at risk (T1), and the weight will decrease
at subsequent analyses because β/(β+Tk) is a decreasing function of Tk, which is a desirable
Bayesian property.

In order to identify α and β, it is desirable that the prior mean equals the pre-trial assumed
treatment arm-pooled incidence rate p∗ (e.g., in a trial in which participants are randomized
to treatment and placebo in the 2:1 ratio, assuming the incidence rate of 0.055 endpoints
per person-year at risk in the placebo group and TE = 60%, p∗ = (1/3) × 0.055 + (2/3) ×
0.4× 0.055 = 0.033), i.e.,

α

β
= p∗. (2)

Furthermore, we propose to consider three values of β that correspond to the weights w = 1
2
,

1
3

and 1
4

on the prior mean at the time when 50% of the estimated total person-time at risk
has been accumulated, i.e., for each value of w, β is defined as the solution to the equation

β

β + T ∗/2
= w.
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It follows that

β = β(w, T ∗) =
wT ∗

2(1− w)
, (3)

and the estimation of T ∗ is described in Section 2. For w = 1
2
, 1

3
and 1

4
, we obtain β = T ∗

2
,

T ∗

4
, and T ∗

6
, respectively.

At the k-th futility analysis and for each of the three values of β, we will sample the incidence
rate from Ga(α + nk, β + Tk) for generating future data and report the weight β

β+Tk
on the

prior mean in the convex combination (1).

1 A Robust Mixture Prior Distribution for the End-

point Event Incidence Rate

The robust prior model (Schmidli et al., 2014) is implemented since it is designed to maxi-
mize the probability of meeting, e.g., an enrollment expansion guideline for large downward
deviations from the protocol-assumed incidence rates, while minimizing a false trigger for
protocol-assumed incidence rates.

The prior distribution of p is defined as a weighted mixture of two gamma distributions,

(1− wR)Ga(αI , βI) + wRGa(αV , βV ),

where we set, e.g., wR = 0.2, and Ga(αV , βV ) and Ga(αI , βI) represent the weakly informative
and informative component of the mixture prior, respectively. The parameters βV and βI
are calculated following (3) with, e.g., w = 1/1000 and w = 1/3, respectively (and T ∗ per
Section 2). Subsequently, αV and αI are calculated following (2) with p∗ set to the pre-trial
assumed treatment arm-pooled incidence rate for both components of the mixture.

The posterior distribution at the time of the k-th analysis is derived following the conjugacy
principle, as in (1), which results in a mixture of conjugate posteriors with updated weights

(1− w̃R,k)Ga(αI + nk, βI + Tk) + w̃R,kGa(αV + nk, βV + Tk),

where
w̃R,k ∝ wR,kfV / {wR,kfV + (1− wR,k)fI}

with f· equal to

f· =
Γ(α· + nk)/(β· + Tk)

α·+nk

Γ(α·)/β
α·
·

(see, e.g., Bernardo and Smith, 2000, Section 5.2.3, pages 279–282).
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2 Estimation of the Total Person-Years at Risk (T ∗)

We consider the standard right-censored failure time analysis framework. Denoting the
failure and censoring times as T and C, respectively, we assume that T is independent of C,
T ∼ Exp(p∗), and C ∼ Exp(d∗). It follows that X := min(T,C) ∼ Exp(p∗ + d∗) and

T ∗ = N × E[min(X, τ)]

= N ×
{
E[X | X ≤ τ ]P (X ≤ τ) + τ P (X > τ)

}
= N ×

{
(p∗ + d∗)

∫ τ

0

xe−(p∗+d∗)xdx+ τe−(p∗+d∗)τ

}
= N × 1− e−(p∗+d∗)τ

p∗ + d∗
.

To illustrate, we consider the total target sample size N = 1, 500 with a 2:1 randomization
ratio to treatment vs. placebo, the duration of follow-up per participant τ = 80/52 years,
the pre-trial assumed dropout rate d∗ = 0.1 dropouts per person-year at risk (PYR), and
the pre-trial assumed constant incidence rate of 0.055 endpoints/PYR in the placebo group.
Then, in the TE = 60% scenario, the pre-trial assumed treatment arm-pooled endpoint
event incidence rate is p∗ = (1/3)× 0.055 + (2/3)× 0.4× 0.055 = 0.033 endpoints/PYR.

These assumptions result in T ∗ = 2086.91 PYRs. For comparison, if all N participants were
followed for τ years, the total PYRs would be Nτ = 2307.69 years.

Subsequently, for T ∗ = 2086.91 PYRs, if T1 = 0.2T ∗, the weights β
β+T1

on the prior mean at

the first futility analysis corresponding to w = 1
2
, 1

3
, and 1

4
are 0.71, 0.56, 0.45, respectively.

If T1 = 0.3T ∗, the respective weights on the prior mean are 0.63, 0.45, and 0.36.
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