Package ‘frscore’

July 5, 2025

Title Calculate the Fit-Robustness of CNA-Solutions
Version 0.5.2

Description Automatically perform
a reanalysis series
on a data set using CNA, and calculate the fit-robustness
of the resulting models, as described in
Parkkinen and Baumgartner (2021) <doi:10.1177/0049124120986200>.

License AGPL (>=3)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Imports dplyr, Rfast, magrittr, rlang, withr, visNetwork, igraph
Depends R (>=3.5), cna (>=3.5.1), lifecycle (>= 1.0.0)
Suggests spelling, testthat (>= 3.0.0)

Config/testthat/edition 3

Language en-US

NeedsCompilation no

Author Veli-Pekka Parkkinen [aut, cre, cph],
Michael Baumgartner [aut, cph],
Mathias Ambuehl [aut, cph]

Maintainer Veli-Pekka Parkkinen <parkkinenv@gmail.com>
Repository CRAN
Date/Publication 2025-07-05 16:40:02 UTC

Contents

causal_submodel e

d.error . . .
frscore . . .
frscored_cna

https://doi.org/10.1177/0049124120986200

2 causal _submodel

plot_submodel_network 12
TEAN_ CNA . . . o v o v e e e e e e e e e e e e 13
submodel_adjacencies_to_igraph oL oL 15
Index 16
causal_submodel Determine if a model is a causal submodel of another model
Description

Determine whether the causal relevance ascriptions made by candidate solution/model x are con-
tained in the causal relevance ascriptions made by target model y.

Usage

causal_submodel(x, y, dat = NULL)

Arguments
X A string that specifies a valid cna model.
y A string that specifies a valid cna model.
dat A configTable, a data frame, a matrix, or a list that specifies the range of
admissible factor values for the factors featured in x and y. Only needed when
the models x and y are multi-valued, otherwise ignored.
Details

causal_submodel () checks whether the causal relevance claims made by the candidate model x are
contained within the causal relevance claims made by the target model y. When x and y are multi-
valued models, a further argument dat must be provided to determine the admissible factor values
for the factors featured in x and y. This would typically be the data set that x and y were inferred
from. causal_submodel() is similar to, and based on is.submodel() from the cna package,
with one important difference. is.submodel() checks whether a model is a syntactic submodel
of another, and can thus be used to check whether all syntactically explicit causal ascriptions, i.e.
claims about direct causation only, of one model are contained in another. causal_submodel ()
checks if all causal relevance claims made by x, i.e. claims of either direct or indirect causation,
have a counterpart causal relevance ascription in y. In case when all causal relevance claims of x
have a suitable (see below) counterpart in y, x is a causal submodel of y.

For x to be causal submodel of y, (1), every ascription of direct causal relevance made by x must
either have a counterpart direct causal ascription in y, or a counterpart indirect causal ascription in
y such that x omits any factors that mediate the relation according to y. (2), every ascription of
indirect causal relevance made by x must have a counterpart indirect causal ascription in y. That is,
every pair of factors represented as direct cause and effect in x must either be represented as direct
cause and effect in y, or be connected by a transitive chain of direct causal relations according to
y. In the latter case, x must in addition omit the factors that according to y mediate the causal
relation in question. Direct causal relations are those causal relations that can be read off from the

causal _submodel 3

explicit syntax of an atomic solution/model ("asf"). For example, according to AxF+B<->C, A and
B are direct causes of C on alternative paths. Furthermore, candidate model A+B<->C is a causal
submodel of the target A*F+B<->C, but A+B*U<->C is not, since the latter makes a claim about the
causal relevance of U to C which is not made by the target. Each direct cause is a difference-maker
for its effect in some circumstances where alternative sufficient causes of the effect are not present,
and the co-factors located on the same path are present. For example, AxF+B<->C claims that when
B is absent and F is present, difference in the presence of A will associate with differences in C, given
some suitable configuration of factors not explicitly represented in A*xF+B<->C. When both x and y
are asfs, i.e. represent direct causal relations only, x is a causal submodel of y if, and only if x is is
a syntactic submodel of y, as the syntax of an asf is such that every causal ascription is explicitly
represented.

Judgments of direct vs. indirect causation are relative to the set of factors included in a model.
A+B<->E describes A and B as direct causes of E, but another model that includes additional fac-
tors besides {A, B, E} might describe these causal relations as causal chains that include intermedi-
ate steps, as in (A+B<->C)*(C+D<->E). A+B<->E makes no claim that would contradict the chain
model; it merely says that relative to the factor set {A,B,E}, the factors are causally ordered so
that A and B are causes of E, and there is no causal relation between A and B. Causal order refers
to the ordering of the factors by the relation of direct causation that determines what is causally
"upstream" and "downstream" of what. The exogenous factors {A,B,D} are top-level upstream
causes in (A+B<->C)*(C+D<->E), as they are not caused by any other factor included in the model.
Endogenous factors C and E are downstream of {A,B} by one and two levels respectively, and E
is one level downstream of D. The chain model agrees with the direct cause model on the causal
ordering of {A,B,E} — A and B are upstream of E and not causes of each other — but also includes
an additional cause of E, C, that is ordered between {A,B} and E along a chain of direct causal
relations. (A+B<->C)*(C+D<->E) represents a transitive causal chain where A and B are indirectly
causally relevant for E in virtue of being causes of E’s more proximate cause C and the difference-
making ability they have on E via C. A+B<->E is a causal submodel of (A+B<->C)*(C+D<->E), as
the models agree on the causal relevance ascriptions over {A, B, E}, and the former makes no claims
whatsoever about the additional factors {C,D} included in the latter model. Both models can be
seen as descriptions of the same causal structure, one more complete in detail than the other. An
intransitive chain is a causal chain where the influence of some upstream causes is not transmitted
to some downstream effects. For example, (A+B<->C)*(Cxa+D<->E) represents a chain where A is
not causally relevant to E despite being a cause of one of E’s direct causes (C). That is, according to
this model, A is not a difference-maker for E, and A+B<->E, which makes this claim, is not its causal
submodel.

Besides avoiding causal relevance ascriptions that are not present in the target at all, the candidate
should also attribute causal relevance correctly in the sense of causally ordering the represented
causes in a way that is compatible with the target. Factors that appear as direct causes of the same
outcome both in the target and the candidate should be grouped into alternative disjuncts similarly
in both. Analogously, causes that appear on different levels in a causal chain according to the target
should not be represented as same-level causes by the candidate. Say, for example, that the target is
(A+B<->C)x (C+D<->E) * (E+F<->G). Candidate models (A+B<->G) and (A+B<->E)* (E+F<->G) are
both causal submodels of this target. By contrast, neither of (A+C<->G) and (A+B<->C)* (C+E<->G)
is a causal submodel of the target. Both of the latter two models commit the error of representing
as same-level causes factors that the target represents as cause and effect. For example, (A+C<->G)
claims that A and C are same-level causes of G, whereas the target says A is a cause of C. In other
words, relative to a factor set that include C, the candidate claims that A is a direct cause of E,
which is false according to the target. It is instructive to consider the difference in implications for

causal _submodel

difference-making: (A+C<->G) claims that differences in A associate with differences in G when C
is fixed absent, but the target claims that this is impossible.

Finally, a causal submodel relation requires that any claims of indirect causal relevance made by a
candidate model are claims made by the target also. Consider the target model (A+BxD<->C)x (C+D<->G)
and a candidate (A+B*D<->C)*(C<->G). Despite superficial similarity (the candidate is a syntactic
submodel of the target), the candidate is not a causal submodel of the target. Namely, the candidate
makes a claim that B is indirectly causally relevant for G, a claim that is not made by the target.
Again, it is best to examine the specific difference-making claim in question. The candidate model
claims that differences in B make a difference to the presence of G when D is fixed to be present. But
this is false according to the target. The target claims that G is always present whenever D is: B is

not causally relevant for G despite being a cause of an intermediary factor C.

In its implementation, causal_submodel () relies on the fact that when both the target and candi-
date are asfs, a syntactic submodel relation that can be verified with is. submodel() is a necessary
and sufficient condition for causal submodel relation. If both the candidate and the target are asfs,
a check for syntactic submodel relation is performed, and the result returned. When the target, or
both the target and candidate comprise more than one asf, the process is more complicated. First,
causal_submodel () checks if the component asfs of the candidate are syntactic submodels of the
target as is. If yes for all, each of the candidate’s direct causal relevance ascriptions is contained
in the target, and the function proceeds to the second phase. For those direct causal relations that
are not contained in the target, the function searches for counterpart indirect relations in the target.
Since cna models do not represent indirect relations explicitly, these are explicated by syntactically
manipulating the target. This involves finding asfs in the target with the same outcomes as those
candidate asfs that are not syntactic submodels of the target as is. For each such component asf of
the target, factors in the disjunction on the left hand side of the equivalence sign ("<->") are substi-
tuted with the disjunctions, if any, that according to the target represent their causes. The resulting
expression is then minimized to render it causally interpretable. What is left is an asf representing
some of the target’s indirect causal claims as direct causal claims. Then, the candidate asfs that are
not syntactic submodels of the target as is are tested against the manipulated target asfs for syn-
tactic submodel relation. This process is repeated until all the submodel checks return TRUE, or no
further substitutions are possible. In the former case, the function proceeds to the second phase. In
the latter case, the candidate is deemed not to be a causal submodel of the target, and the function
returns FALSE.

An example is in order to illustrate the procedure so far. Say that the target and candidate are
(A+B<->C)* (C+D<->E) and A+B<->E, respectively. Since the sole candidate asf is not a syntactic
submodel of the target, one then attempts to find indirect causal relevance ascriptions in the target to
license the direct causal claims made by the candidate asf. By the procedure described above, one
focuses on the second asf of the target, C+D<->E, and seeks to syntactically manipulate that until
it is transformed into a syntactic supermodel of A+B<->E, or until no transformation is possible.
According to the first component asf of the target, C is equivalent to (caused by) A+B. Hence, C
in C+D<->E can be replaced with A+B, which yields (A+B)+D<->E, reducing simply to A+B+D<->E.
Since A+B<->E is a syntactic submodel of A+B+D<->E, we have shown that the causal relevance
claims made by the candidate are contained in the target.

The purpose of the second phase is to check that all indirect causal claims made by the candidate
model have a counterpart in the target. This involves doing all the substitutions of left-hand side
factors by their causes in the candidate model, to generate expressions that explicitly represent
the indirect claims of the candidate. The asfs generated by such manipulations of the candidate
model are then tested for causal compatibility with the target, following the exact same procedure

causal _submodel 5

described above. For example, say that (A+B*D<->C)*(C+D<->G) and (A+B*D<->C)*(C<->G) are
the target and the candidate, respectively. Here, each candidate asf A+B*D<->C and C<->G has a
supermodel in one of the target asfs A+B*D<->C and C+D<->G, i.e. each direct causal claim of the
candidate has a counterpart direct causal claim in the target, and the function proceeds to the second
phase. In the second phase, the indirect causal claims of the candidate are first made explicit.
By substituting A+B*D in place of C in the second asf of the candidate and minimizing, one gets
A+B*D<->G, which represents the indirect causal relevance, as claimed by the candidate, of A+BxD
on G. This expression is then tested against the target as in the first phase: the target asf with G
as the outcome is manipulated to reflect the indirect claims that the target makes about G, based
on what the target says about the indirect causes of G. After substitution and minimization, we get
A+D<->G, meaning that the target does not make a claim of indirect causal relevance of B for G. That
the candidate’s indirect causal ascriptions are not contained in the target is shown by the fact that
A+B*D<->G is not a syntactic submodel of A+D<->G, and the function returns FALSE.

Due to the computational demands of some of the steps in the above procedure, causal_submodel ()
is an approximation of a strictly speaking valid check for causal submodel relations. Since the
syntactic manipulations and especially the minimization of the resulting expressions is so costly,
causal_submodel() relies on the rreduce() function from the cna package for minimization.
rreduce () randomly chooses a single reduction path to produce only one minimal form of an ex-
pression whenever more than one exists, i.e. when the expression is ambiguous in its causal claims.
In the case of ambiguous models, the output of causal_submodel () may depend on which reduc-
tion path(s) were chosen. These cases are rare enough to not significantly affect the intended use of
causal_submodel () in the context of frscore. Another instance of causal_submodel () taking
a shortcut is when processing cyclic models like (A+B<->C)=*(C+D<->A). Here the problems are as
much philosophical as computational. It is clear that a cyclic candidate model cannot be a causal
submodel of a non-cyclic target. However, problems arise when testing a non-cyclic candidate
against a cyclic target: it is not clear what counts as an incompatibility in causal ordering, given that
a cyclic target model includes factors that are causally relevant for themselves. Since many conclu-
sions can be argued for here but some approach must be taken to ensure that causal_submodel ()
works on all valid cna models, causal_submodel () takes the least costly option and simply checks
whether the candidate is a syntactic submodel of the target, and returns the result.

Value

Named logical.

See Also

cna: :is.submodel()

Examples

target <- "(A+B<->C)*(C+D<->E)"

candidatel <- "A+B<->E"

causal_submodel (candidatel, target) # TRUE
candidate2 <- "A+C<->E"
causal_submodel(candidate2, target) # FALSE

dat <- cna::d.pban
target_mv <- "C=1 + F=2 + T=1 + C=0*F=1 <-> PB=1"
candidate_mv <- "C=1 + F=2 + T=1 <-> PB=1"

6 frscore

causal_submodel (candidate_mv, target_mv, dat = dat) # mv models require the 'dat' argument

d.error Simulated data of sixteen cases with measurement error in one case

Description

A simulated set of crisp-set configurational data that conforms to the structure A + B*C <-> E except
for one case, 'c16’, which simulates measurement error in that case, and including one irrelevant
factor "D".

Usage

d.error

Format

An object of class data. frame with 16 rows and 5 columns.

frscore frscore

Description

Calculate fit-robustness scores for a set of cna solutions/models

Usage

frscore(
sols,
dat = NULL,
normalize = c("truemax”, "idealmax", "none"),
maxsols = 50,
verbose = FALSE,
print.all = FALSE,
comp.method = c(”causal_submodel”, "is.submodel”)

frscore 7

Arguments

sols Character vector of class "stdAtomic" or "stdComplex" (as generated by cna())
that contains the solutions/models to be scored.

dat A configTable, a data frame, a matrix, or a list that specifies the range of
admissible factor values for the factors featured in the models included in sols.
Only needed when the models in sols are multi-valued, otherwise ignored.

normalize String that determines the method used in normalizing the scores. "truemax”
(default) normalizes by the highest score among the elements of sols, such that
the highest scoring solution types get score 1. "idealmax” normalizes by a
theoretical maximum score (see Details).

maxsols Integer determining the maximum number of unique solution types found in
sols to be included in the scoring (see Details).

verbose Logical; if TRUE, additional information about causal compatibility relations
among the unique solution types found in sols is printed. Defaults to FALSE.

print.all Logical, controls the number of entries printed when printing the results. If
TRUE, results are printed as when using the defaults of print.data.frame. If
FALSE, 20 highest scoring solutions/models are printed.

comp.method String that determines how the models in sols are compared to determine their
fr-score. "causal_submodel"” (the default) checks for causal submodel re-
lations using causal_submodel(), "is.submodel” checks for syntactic sub-
model relations with is. submodel ()

Details

frscore() implements fit-robustness scoring as introduced in Parkkinen and Baumgartner (2021).
The function calculates the fit-robustness scores of Boolean solutions/models output by the cna()
function of the cna package. The solutions are given to frscore() as a character vector sols
obtained by reanalyzing a data set repeatedly, e.g. with rean_cna(), using different consistency
and coverage thresholds in each analysis.

For multi-valued models, the range of admissible values for the factors featured in the models must
be provided via the argument dat, which accepts a data frame, configTable, or a list of factor-
value ranges as its value, in the same manner as cna::full.ct(). Typically, one would use the
data set that the models in sols were inferred from, and this is what is done automatically when
frscore() is called within frscored_cna(). When the models in sols are binary, dat should be
left to its default value NULL, and will in any case be ignored.

The fit-robustness scores can be normalized in two ways. In the default setting normalize =
"truemax”, the score of each sols[i] is divided by the maximum score obtained by an element
of sols. In case of normalize = "idealmax"”, the score is normalized not by an actually obtained
maximum but by an idealized maximum, which is calculated by assuming that all solutions of equal
complexity in sols are identical and that for every sols[i] of a given complexity, all less complex
elements of sols are its submodels and all more complex elements of sols are its supermodels.
When normalization is applied, the normalized score is shown in its own column norm. score in
the results. The raw scores are shown in the column score.

If the size of the consistency and coverage interval scanned in the reanalysis series generating
sols is large or there are many model ambiguities, sols may contain so many different types

8 frscore

of solutions/models that robustness cannot be calculated for all of them in reasonable time. In that
case, the argument maxsols allows for capping the number of solution types to be included in the
scoring (defaults to 50). frscore() then selects the most frequent solutions/models in sols of each
complexity level until maxsols is reached and only scores the thus selected elements of sols.

If the argument verbose is set to TRUE, frscore() also prints a list indicating for each sols[i]
how many raw score points it receives from which elements of sols. The verbose list is ordered
with decreasing fit robustness scores.

Value

A named list where the first element is a data frame containing the unique solution/model types
and their scores. Rest of the elements contain additional information about the submodel relations
among the unique solutions types and about how the function was called.

References

V.P. Parkkinen and M. Baumgartner (2021), “Robustness and Model Selection in Configurational
Causal Modeling,” Sociological Methods and Research, doi:10.1177/0049124120986200.

Basurto, Xavier. 2013. “Linking Multi-Level Governance to Local Common-Pool Resource Theory
using Fuzzy-Set Qualitative Comparative Analysis: Insights from Twenty Years of Biodiversity
Conservation in Costa Rica.” Global Environmental Change 23 (3):573-87.

See Also

rean_cna(), cna(), causal_submodel (), is. submodel ()

Examples

Artificial data from Parkkinen and Baumgartner (2021)
sols1 <- rean_cna(d.error, attempt = seq(l1, 0.8, -0.1))
sols1 <- do.call(rbind, sols1)
frscore(sols1$condition)

Real fuzzy-set data from Basurto (2013)
sols2 <- rean_cna(d.autonomy, type="fs", ordering = list("EM", "SP"),
strict = TRUE, maxstep = c(3,3,9))
sols2 <- do.call(rbind, sols2)$condition # there are 217 solutions
At the default maxsols only 50 of those solutions are scored.
frscore(sols2)
By increasing maxsols the number of solutions to be scored can be controlled.
frscore(sols2, maxsols = 100)

Multi-valued data/models (data from Hartmann and Kemmerzell (2010))

Short reanalysis series, change ~attempt™ value to mimick a more realistic use case
sols3 <- rean_cna(d.pban, outcome = "PB=1", attempt = seq(@.8, 0.7, -0.1), type = "mv"
sols3 <- do.call(rbind, sols3)$condition

For mv data, frscore() needs the data to determine admissible factor values
frscore(sols3, dat = d.pban)

frscored_cna 9

Changing the normalization

frscore(sols2, normalize = "none")
frscore(sols2, normalize = "truemax")
frscore(sols2, normalize = "idealmax")
verbose

frscore(sols2, maxsols = 20, verbose = TRUE)

frscored_cna frscored_cna

Description

Perform a reanalysis series on a data set and calculate the fit-robustness scores of the resulting
solutions/models

Usage

frscored_cna(
X)
fit.range = c(1, 0.7),
granularity = 0.1,
output = c("csf"”, "asf”, "msc"),
normalize = c("truemax”, "idealmax", "none"),
verbose = FALSE,
maxsols = 50,
test.model = NULL,
print.all = FALSE,
comp.method = c("causal_submodel”, "is.submodel”),
n.init = 1000,
quiet = TRUE,

Arguments

X A data.frame or configTable to be analyzed with cna(). In case of multi-
value or fuzzy-set data, the data type must be indicated by type = "mv" and type
="fs", respectively.

fit.range Numeric vector of length 2; determines the maximum and minimum values of
the interval of consistency and coverage thresholds used in the reanalysis series.
Defaults to c(1, 0.7).

granularity Numeric scalar; consistency and coverage are varied by this value in the reanal-
ysis series. Defaults to 0. 1.

10 frscored_cna

output String that determines whether csfs, asfs, or mscs are returned; "csf” (default)
returns csfs, "asf"” asfs, and "msc” mscs.

normalize String that determines the method used in normalizing the scores. "truemax”
(default) normalizes by the highest score among the elements of sols, such that
the highest scoring solution types get score 1. "idealmax” normalizes by a
theoretical maximum score (see Details).

verbose Logical; if TRUE, additional information about causal compatibility relations
among the unique solution types found in sols is printed. Defaults to FALSE.

maxsols Integer determining the maximum number of unique solution types found in the
reanalysis series to be included in the scoring (see Details).

test.model String that specifies a single candidate cna() solution/model whose fit-robustness
score is calculated against the results of the reanalysis series.

print.all Logical that controls the number of entries printed when printing the results. If
TRUE, results are printed as when using the defaults of print.data.frame. If
FALSE, 20 highest scoring solutions/models are printed.

comp.method String that determines how the models in sols are compared to determine their
fr-score. "causal_submodel” (the default) checks for causal submodel re-
lations using causal_submodel(), "is.submodel” checks for syntactic sub-
model relations with is. submodel ()

n.init Integer that determines the maximum number of csfs built in the analyses, see
cna: :csf(). Only applied when output = "csf".

quiet Logical. When TRUE, messages and warnings from cna functions are suppressed
when executing a reanalysis series.

Any arguments to be passed to cna() except con, cov or con.msc. The effect
of argument what is overriden by output.

Details

frscored_cna() is a wrapper function that sequentially executes rean_cna() and frscore(),
meaning it performs both computational phases of fit-robustness scoring as introduced in Parkkinen
and Baumgartner (2021). In the first phase, the function conducts a reanalysis series on the input
data x at all combinatorially possible combinations of fit thresholds that can be generated from the
interval given by fit.range at increments given by granularity and collects all solutions/models
in a set M. In the second phase, it calculates the fit-robustness scores of the atomic (asf) and/or
complex (csf) solution formulas in M. The argument output allows for controlling whether csf or
only asf are built, the latter normally being faster but less complete.

The fit-robustness scores can be normalized in two ways. In the default setting normalize =
"truemax”, the score of each sols[i] is divided by the maximum score obtained by an element
of sols. In case of normalize = "idealmax"”, the score is normalized not by an actually obtained
maximum but by an idealized maximum, which is calculated by assuming that all solutions of equal
complexity in sols are identical and that for every sols[i] of a given complexity, all less complex
elements of sols are its submodels and all more complex elements of sols are its supermodels.
When normalization is applied, the normalized score is shown in its own column norm.score in
the results. The raw scores are shown in the column score.

frscored_cna 11

If the argument verbose is set to TRUE, frscored_cna() also prints a list indicating for each so-
Iution/model how many raw score points it receives from which elements of M. The verbose list is
ordered with decreasing fit robustness scores.

If the size of the consistency and coverage range scanned in the reanalysis series generating M is
large or there are many model ambiguities, M may contain so many different types of solutions
that robustness cannot be calculated for all of them in reasonable time. In that case, the argument
maxsols allows for capping the number of solution types to be included in the scoring (defaults to
50). frscored_cna() then selects the most frequent solutions in M of each complexity level until
maxsols is reached and only scores the thus selected elements of M.

If the user is interested in the robustness of one specific candidate model, that model can be given
to frscored_cna() by the argument test.model. The result for that model will then be printed
separately, provided the model is found in the reanalysis series, if not, the function stops.

As executing a reanalysis series involves repeated calls to various cna functions, numerous warnings
about the value of n.init, and messages about asf being returned separately, may be generated.
The argument quiet is used to suppress or display these warnings/messages: the default quiet =
TRUE suppresses all such warnings and messages.

Value

A list whose first element is a data frame that contains the model types returned from a reanalysis
series of the input data, their details such as consistency and coverage, together with the unadjusted
fit-robustness score of each model type shown in column ’score’, and a normalized score in column
’norm.score’ in case normalize = "truemax” or normalize = "idealmax”. The other elements
contain additional information about the submodel relations among the unique solution types and
about how the function was called.

References

P. Emmenegger (2011) “Job Security Regulations in Western Democracies: A Fuzzy Set Analysis.”
European Journal of Political Research 50(3):336-64.

C. Hartmann and J. Kemmerzell (2010) “Understanding Variations in Party Bans in Africa.” De-
mocratization 17(4):642-65. doi:10.1080/13510347.2010.491189.

V.P. Parkkinen and M. Baumgartner (2021), “Robustness and Model Selection in Configurational
Causal Modeling,” Sociological Methods and Research, doi:10.1177/0049124120986200.

See Also

frscore(), rean_cna(), causal_submodel (), cna: :is.submodel ()

Examples

Robustness analysis from sect. 4 of Parkkinen and Baumgartner (2021)
frscored_cna(d.error, fit.range = c(1, 0.75), granularity = 0.05,
ordering = list("E"), strict = TRUE)

Multi-value data from Hartmann and Kemmerzell (2010)
frscored_cna(d.pban, type = "mv", fit.range = c(0.9, 0.7), granularity

= 0.
normalize = "none”, ordering = list("T", "PB"), strict =

1 ’
TRUE)

12 plot_submodel_network

Fuzzy-set data from Emmenegger (2011)
frscored_cna(d. jobsecurity, type = "fs”, fit.range = c(0.9, 0.6), granularity = 0.05,
ordering = list("JSR"), strict = TRUE)

Artificial data
dat <- data.frame(
= ¢(1,1,0,0,0,0,1,1),
c(0,1,0,0,0,0,1,1),
=c(1,0,1,0,1,0,1,0),
=¢(1,1,0,0,1,1,0,0),
E=c(,1,1,1,0,0,0,0))
frscored_cna(dat)
frscored_cna(dat, output = "asf")
frscored_cna(dat, maxsols = 10)
frscored_cna(dat, test.model = "(bxe+tA*E<->D)*(B<->A)")

O o W >
1

plot_submodel_network Visualize submodel networks

Description

Visualize the output of frscore() and frscored_cna() by generating a network representation of
submodel relations among the scored model types.

Usage

plot_submodel_network(
X,
show_clusters = TRUE,
directed = FALSE,
igraphlayout = TRUE,

Arguments

X An object of class "frscore” or "frscored_cna".
show_clusters Logical; should clusters be visualized?

directed Logical; should submodel relations be represented as directional?
igraphlayout Logical; should igraph layout be used?

additional arguments to visNetwork().

rean_cna 13

Details

plot_submodel_network() takes as input a results object returned by frscore() or frscored_cna(),
and creates a network visualization of the submodel relations among the scored models using
visNetwork(). The nodes of the network represent unique model types, and an edge between two
nodes represents a submodel relation between those model types. By default, the edges of the net-
work are undirected. Setting directed = TRUE creates a directed network with edges pointing from
submodels to supermodels. As it is only the presence of and not the direction of submodel relations
that matters for the fr-score of a model type, the directed network provides no additional information
about fr-scores over and above the undirected network. By default, the network color-codes clusters
of model types based on edge-betweenness, calculated with cluster_edge_betweenness() from
the package igraph. The clusters are always based on undirected edge-betweenness to reflect the
fact that only the presence of submodel-relations, not their direction, is relevant for fr-scores. The
clusters can be turned off by setting show_clusters = FALSE. The network plot uses igraph layout
by default, this can be changed to visNetwork default by setting igraphlayout = FALSE. The vi-
sualization can be customized by passing other visNetwork() argumentsin . . ., and by using other
functions from the visNetwork package (see examples). The purpose of plot_submodel_network()
is to provide a convenient way of visualizing submodel relations calculated by the frscore func-
tions, at the expense of limited flexibility. For further analysis of the submodel network and more
visualization options, “submodel_adjacencies_to_igraph() " produces an igraph graph of submodel
relations from an adjacency matrix included in frscore() and frscored_cna() output.

Value

A visNetwork object.

Examples

<- frscored_cna(d.error)
<- plot_submodel_network(r)

r
v

v

customize or override general options

v <- visNetwork::visOptions(v, highlightNearest = TRUE)
v

rean_cna rean_cna

Description

Perform a reanalysis series on a data set with cna() using all combinations of consistency and
coverage threshold values in a given range of values

Usage

rean_cna(x, attempt = seq(1, 0.7, -0.1), ncsf = deprecated(),
output = c("csf”, "asf", "msc"),
n.init = 1000, quiet = TRUE, ...)

14

Arguments

X

attempt

ncsf

output

n.init

quiet

Details

rean_cna

A data.frame or configTable to be analyzed with cna(). In case of multi-
value or fuzzy-set data, the data type must be indicated by type = "mv" and type
= "fs", respectively.

Numeric vector that contains the values from which combinations of consistency
and coverage thresholds are formed, to be used in the analyses.

[Deprecated] Allowed for backward compatibility, due to be dropped in future
versions. Please use n.init instead.

Character vector that determines whether csfs, asfs, or mscs are returned; "csf”
(default) returns csfs, "asf" asfs, and "msc” mscs.

Integer that determines the maximum number of csfs built in the analyses. See
csf()

Logical. When TRUE, messages and warnings from cna functions are suppressed
when executing a reanalysis series.

Any arguments to be passed to cna() except con, cov or con.msc. The effect
of argument what is overriden by output.

rean_cna() performs a reanalysis series of a data set x, which constitutes the first computational
phase of fit-robustness scoring as introduced in Parkkinen and Baumgartner (2021). The series
consists of cna() calls at all combinatorially possible consistency and coverage settings drawn
from the vector attempt. If the output argument is set to its default value "csf”, rean_cna()
returns complex solutions formulas (csf), in case of "asf" only atomic solution formulas ("asf") are
built, which is faster. The argument n.init allows for controlling the number of csf to be built, if
output = "csf”. As executing a reanalysis series involves repeated calls to various cna functions,
numerous warnings about the value of n.init, and messages about asfs being returned separately,

may be generated.

the default quiet =

Value

The argument quiet is used to suppress or display these warnings/messages:
TRUE suppresses all such warnings and messages.

A list where each element is a data frame containing the results of a single analysis of the input data
set with cna(), each using a different combination of consistency and coverage threshold values.
These values are added to the output as extra columns ’cnacon’ and ’cnacov’.

References

V.P. Parkkinen and M. Baumgartner (2021), “Robustness and Model Selection in Configurational
Causal Modeling,” Sociological Methods and Research, doi:10.1177/0049124120986200.

See Also

frscore(), cna()

submodel_adjacencies_to_igraph 15

Examples

Crisp-set data

sols1 <- rean_cna(d.error, attempt = seq(1, 0.8, -0.1))
sols1 <- do.call(rbind, sols1)

solsi

Multi-value data

sols2 <- rean_cna(d.pban, type = "mv", attempt = seq(@.9, 0.7, -0.1),
ordering = list("T", "PB"), strict = TRUE)

sols2 <- do.call(rbind, sols2)

sols2

Fuzzy-set data
sols3 <- rean_cna(d. jobsecurity, type = "fs", attempt = seq(@.9, 0.7, -0.1),
ordering = list("JSR"), strict = TRUE) # execution takes a couple of seconds
sols3 <- do.call(rbind, sols2)
sols3

submodel_adjacencies_to_igraph
Generate igraph from submodel adjacencies.

Description

Generate igraph from submodel adjacencies.

Usage

submodel_adjacencies_to_igraph(x)

Arguments

X An object of class "frscore” or "frscored_cna”.

Details

frscore() and frscored_cna() output includes an adjacency matrix of submodel relations among
the scored model types. submodel_adjacencies_to_igraph() is a convenience function that
extracts the adjacency matrix and produces an igraph graph from it.

Value

An igraph graph.

Examples

r <- frscored_cna(d.error)
sg <- submodel_adjacencies_to_igraph(r)
sg

Index

x datasets
d.error, 6

causal_submodel, 2
causal_submodel(), 8, 11
cluster_edge_betweenness(), 13
cna, 2,5

cna(), 7-10, 13, 14
cna::csf(), 10
cna::full.ct(),”7

cna: :is.submodel(), 5, 11
csf(), 14

d.error, 6

frscore, 6
frscore(), 10, 11, 13-15
frscored_cna, 9
frscored_cna(), 13, 15

is.submodel(), 2,4, 8
plot_submodel_network, 12

rean_cna, 13
rean_cna(), 8, 10, 11
rreduce(), 5

submodel_adjacencies_to_igraph, 15
syntactic submodel, 3

visNetwork(), 13

“submodel_adjacencies_to_igraph() -, I3

16

	causal_submodel
	d.error
	frscore
	frscored_cna
	plot_submodel_network
	rean_cna
	submodel_adjacencies_to_igraph
	Index

