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freqdom.fda-package Functional time series: dynamic FPCA

Description

Implementation of dynamic functional principle component analysis (FDPCA), simulation of func-
tional AR and functional MA processes and frequency domain tools for funcional data. The package
is a wrapper for functionality of the multivariate package freqdom for applying frequency domain
on objects from fda. Compared to freqdom some new visualization methods are added – adequate
only if data has functional structure.

Details

fda.ts package allows you to analyse functional time series objects in both time and frequency
domain. The main feature is dynamic functional principal component analysis. This method allows
to transform a stationary functional time series into a vector process with mutually uncorrelated
component processes.

There are two key differnces between classical PCA and dynamic PCA:

• Component processes returned by the dynamic procedure are mutually uncorrelated,

• The mapping maximizes the long run variance of compoments, which, in case of stationary
functional time series, means that the process reconstructed from and d > 0 first dynamic
principal components better approximates the original functional time series process than the
first d classic principal components.

For functional data one can conveniently visualize properties of the filters, covariances or the spec-
tral density operator.

For details we refer to the literature below and to help pages of functions fts.dpca for estimating
the components, fts.dpca.scores for estimating scores and fts.dpca.KLexpansion for retriev-
ing the signal from components.

The package fda.ts require the package freqdom provides the analogue multivariate toolset.
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References

Hormann Siegfried, Kidzinski Lukasz and Hallin Marc. Dynamic functional principal components.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 77.2 (2015): 319-348.
Hormann Siegfried, Kidzinski Lukasz and Kokoszka Piotr. Estimation in functional lagged regres-
sion. Journal of Time Series Analysis 36.4 (2015): 541-561.
Hormann Siegfried and Kidzinski Lukasz. A note on estimation in Hilbertian linear models. Scan-
dinavian journal of statistics 42.1 (2015): 43-62.

fts.cov.structure Estimate autocovariance and cross-covariances operators

Description

This function is used to estimate a collection of cross-covariances operators of two stationary func-
tional series.

Usage

fts.cov.structure(X, Y = X, lags = 0)

Arguments

X an object of class fd containing T functional observations.
Y an object of class fd containing T functional observations.
lags an integer-valued vector (`1, . . . , `K) containing the lags for which covariances

are calculated.

Details

Let X1(u), . . . , XT (u) and Y1(u), . . . , YT (u) be two samples of functional data. This function
determines empirical lagged covariances between the series (Xt(u)) and (Yt(u)). More precisely
it determines

(ĉXYh (u, v):h ∈ lags),
where ĉXYh (u, v) is the empirical version of the covariance kernel Cov(Xh(u), Y0(v)). For a sample
of size T we set µ̂X(u) = 1

T

∑T
t=1Xt(u) and µ̂Y (v) = 1

T

∑T
t=1 Yt(v). Now for h ≥ 0

1

T

T−h∑
t=1

(Xt+h(u)− µ̂X(u))(Yt(v)− µ̂Y (v))

and for h < 0

1

T

T∑
t=|h|+1

(Xt+h(u)− µ̂X(u))(Yt(v)− µ̂Y (v)).

Since Xt(u) = b′1(u)xt and Yt(u) = y′tb2(u) we can write

ĉXYh (u, v) = b′1(u)Ĉxyb2(v),

where Ĉxy is defined as for the function “cov.structure” for series of coefficient vectors (xt: 1 ≤
t ≤ T ) and (yt: 1 ≤ t ≤ T ).
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Value

An object of class fts.timedom. The list contains the following components:

• operators an array. Element [,,k] contains the covariance matrix of the coefficient
vectors of the two time series related to lag `k.

• lags the lags vector from the arguments.

• basisX X$basis, an object of class basis.fd (see create.basis)

• basisY Y$basis, an object of class basis.fd (see create.basis)

See Also

The multivariate equivalent in the freqdom package: cov.structure

Examples

# Generate an autoregressive process
fts = fts.rar(d=3)

# Get covariance at lag 0
fts.cov.structure(fts, lags = 0)

# Get covariance at lag 10
fts.cov.structure(fts, lags = 10)

# Get entire covariance structure between -20 and 20
fts.cov.structure(fts, lags = -20:20)

# Compute covariance with another process
fts0 = fts + fts.rma(d=3)
fts.cov.structure(fts, fts0, lags = -2:2)

fts.dpca Compute Functional Dynamic Principal Components and dynamic
Karhunen Loeve extepansion

Description

Functional dynamic principal component analysis (FDPCA) decomposes functional time series to
a vector time series with uncorrelated components. Compared to classical functional principal
components, FDPCA decomposition outputs components which are uncorrelated in time, allowing
simpler modeling of the processes and maximizing long run variance of the projection.

Usage

fts.dpca(X, q = 30, freq = (-1000:1000/1000) * pi, Ndpc = X$basis$nbasis)
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Arguments

X a functional time series as a fd object from fda package.

q window size for the kernel estimator, i.e. a positive integer.

freq a vector containing frequencies in [−π, π] on which the spectral density should
be evaluated.

Ndpc is the number of principal component filters to compute as in fts.dpca.filters

Details

This convenient function applies the FDPCA methodology and returns filters (fts.dpca.filters),
scores (fts.dpca.scores), the spectral density (fts.spectral.density), variances (fts.dpca.var)
and Karhunen-Leove expansion (fts.dpca.KLexpansion).

See the example for understanding usage, and help pages for details on individual functions.

Value

A list containing

• scores DPCA scores (fts.dpca.scores)

• filters DPCA filters (fts.dpca.filters)

• spec.density spectral density of X (fts.spectral.density)

• var amount of variance explained by dynamic principal components (fts.dpca.var)

• Xhat Karhunen-Loeve expansion using Ndpc dynamic principal components (fts.dpca.KLexpansion)

References

Hormann, S., Kidzinski, L., and Hallin, M. Dynamic functional principal components. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 77.2 (2015): 319-348.

Brillinger, D. Time Series (2001), SIAM, San Francisco.

Shumway, R., and Stoffer, D. Time series analysis and its applications: with R examples (2010),
Springer Science & Business Media

Examples

# Load example PM10 data from Graz, Austria
data(pm10) # loads functional time series pm10 to the environment
X = center.fd(pm10)

# Compute functional dynamic principal components with only one component
res.dpca = fts.dpca(X, Ndpc = 1, freq=(-25:25/25)*pi) # leave default freq for higher precision
plot(res.dpca$Xhat)
fts.plot.filters(res.dpca$filters)

# Compute functional PCA with only one component
res.pca = prcomp(t(X$coefs), center = TRUE)
res.pca$x[,-1] = 0
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# Compute empirical variance explained
var.dpca = (1 - sum( (res.dpca$Xhat$coefs - X$coefs)**2 ) / sum(X$coefs**2))*100
var.pca = (1 - sum( (res.pca$x %*% t(res.pca$rotation) - t(X$coefs) )**2 ) / sum(X$coefs**2))*100

cat("Variance explained by PCA (empirical):\t\t",var.pca,"%\n")
cat("Variance explained by PCA (theoretical):\t",

(1 - (res.pca$sdev[1] / sum(res.pca$sdev)))*100,"%\n")
cat("Variance explained by DPCA (empirical):\t\t",var.dpca,"%\n")
cat("Variance explained by DPCA (theoretical):\t",(res.dpca$var[1])*100,"%\n")

# Plot filters
fts.plot.filters(res.dpca$filters)

# Plot spectral density (note that in case of these data it's concentrated around 0)
fts.plot.operators(res.dpca$spec.density,freq = c(-2,-3:3/30 * pi,2))

# Plot covariance of X
fts.plot.covariance(X)

# Compare values of the first PC scores with the first DPC scores
plot(res.pca$x[,1],t='l',xlab = "Time",ylab="Score", lwd = 2.5)
lines(res.dpca$scores[,1], col=2, lwd = 2.5)
legend(0,4,c("first PC score","first DPC score"), # puts text in the legend

lty=c(1,1),lwd=c(2.5,2.5), col=1:2)

fts.dpca.filters Functional dynamic PCA filters

Description

From a given spectral density operator the dynamic principal component filter sequences are com-
puted.

Usage

fts.dpca.filters(F, Ndpc = F$basisX$nbasis, q = 30)

Arguments

F spectral density operator, provided as an object of class fts.freqdom.

Ndpc an integer ∈ {1, . . . , d} with d =F$basisX$nbasis. It is the number of dy-
namic principal components to be computed. By default it is set equal to d.

q a non-negative integer. DPCA filter coefficients at lags |h| ≤ q will be com-
puted. By default q=30.
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Details

Dynamic principal components are linear filters (φ`k(u): k ∈ Z), 1 ≤ ` ≤ d. They are defined as
the Fourier coefficients of the dynamic eigenvector ϕ`(ω)(u) of a spectral density kernel fω(u, v),
i.e.

∫ 1

0
fω(u, v)ϕ`(ω)(v)dv = λ`(ω)ϕ`(ω)(u) and

φ`k(u) :=
1

2π

∫ π

−π
ϕ`(ω)(u) exp(−ikω)dω.

The index ` is referring to the `-th largest dynamic eigenvalue λ`(ω). For a given spectral density
operator (provided as on object of class fts.freqdom) the function fts.dpca.filters computes
φ`k(u) for |k| ≤ q. Filters will be computed for 1 ≤ ` ≤ Ndpc.

For more details we refer to Hormann et al. (2015).

Value

An object of class fts.timedom. The list has the following components:

• operators an array. Each matrix in this array has dimension Ndpc × d and is assigned to
a certain lag. For a given lag k, the rows of the matrix correspond to the coefficient vector of
the filter functions.

• lags a vector with the lags of the filter coefficients.

• basisX F$basis, hence an object of class basis.fd (see create.basis).

• correspondence the correspondence matrix: all scalar products between basis functions.

References

Hormann, S., Kidzinski, L., and Hallin, M. Dynamic functional principal components. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 77.2 (2015): 319-348.

Brillinger, D. Time Series (2001), SIAM, San Francisco.

Shumway, R.H., and Stoffer, D.S. Time Series Analysis and Its Applications (2006), Springer, New
York.

See Also

The multivariate equivalent in the freqdom package: dpca.filters

Examples

data(pm10)
X = center.fd(pm10)

# Compute the spectral density operator with Bartlett weights
SD = fts.spectral.density(X, freq = (-50:50/50) * pi, q = 2, weight="Bartlett")
filters = fts.dpca.filters(SD, 2, q = 10)

# Plot filters 1 and 2
fts.plot.filters(filters, 2, one.plot = TRUE)
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# Recompute with a different estimate of the spectral density (largerg q)
SD = fts.spectral.density(X, freq = (-50:50/50) * pi, q = 5, weight="Bartlett")
filters = fts.dpca.filters(SD, 2, q = 10)

# Plot filters 1 and 2
fts.plot.filters(filters, 2, one.plot = TRUE)

fts.dpca.KLexpansion Dynamic KL expansion

Description

Computes the dynamic KL expansion up to a given order.

Usage

fts.dpca.KLexpansion(X, dpcs = fts.dpca.filters(fts.spectral.density(X)))

Arguments

X a functional time series given as an object of class fd.
dpcs an object of class fts.timedom, representing the dpca filters obtained from the

sample X. If dpsc = NULL, then dpcs = fts.dpca.filter(fts.spectral.density(X))
is used.

Details

This function computes the L-order dynamic functional principal components expansion, defined
by

X̂L
t (u) :=

L∑
`=1

∑
k∈Z

Y`,t+kφ`k(u), 1 ≤ L ≤ d,

where φ`k(v) and d are explained in fts.dpca.filters and Y`k are the dynamic functional PC
scores as in fts.dpca.scores. For the sample version the sum extends over the range of lags for
which the φ`k are defined.

For more details we refer to Hormann et al. (2015).

Value

An object of class fd.

References

Hormann, S., Kidzinski, L., and Hallin, M. Dynamic functional principal components. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 77.2 (2015): 319-348.

See Also

The multivariate equivalent in the freqdom package: dpca.KLexpansion
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fts.dpca.scores Functional dynamic principal component scores

Description

Computes the dynamic principal component scores of a functional time series.

Usage

fts.dpca.scores(X, dpcs = fts.dpca.filters(spectral.density(X)))

Arguments

X a functional time series given as an object of class fd.

dpcs an object of class fts.timedom, representing the dpca filters obtained from the
sample X. If dpsc = NULL, then dpcs = fts.dpca.filter(fts.spectral.density(X))
is used.

Details

The `-th dynamic principal components score sequence is defined by

Y`t :=
∑
k∈Z

∫ 1

0

φ`k(v)Xt−k(v)dv, 1 ≤ ` ≤ d,

where φ`k(v) and d are explained in fts.dpca.filters. (The integral is not necessarily restricted
to the interval [0, 1], this depends on the data.) For the sample version the sum extends over the
range of lags for which the φ`k are defined.

For more details we refer to Hormann et al. (2015).

Value

A (T × Ndpc)-matix with Ndpc = dim(dpcs$operators)[1]. The `-th column contains the `-th
dynamic principal component score sequence.

References

Hormann, S., Kidzinski, L., and Hallin, M. Dynamic functional principal components. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 77.2 (2015): 319-348.

See Also

The multivariate equivalent in the freqdom package: dpca.scores
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fts.dpca.var Proportion of variance explained by dynamic principal components

Description

Computes the proportion and cumulative proportion of variance explained by dynamic principal
components.

Usage

fts.dpca.var(F)

Arguments

F spectral density operator, provided as an object of class fts.freqdom. To guar-
antee accuracy of numerical integration it is important that F$freq is a dense
grid of frequencies in [−π, π].

Details

Consider a spectral density operator Fω and let λ`(ω) by the `-th dynamic eigenvalue. The propor-
tion of variance described by the `-th dynamic principal component is given as v` :=

∫ π
−π λ`(ω)dω/

∫ π
−π tr(Fω)dω.

This function numerically computes the vectors (v`).

For more details we refer to Hormann et al. (2015).

Value

A vector containing the v`.

References

Hormann, S., Kidzinski, L., and Hallin, M. Dynamic functional principal components. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 77.2 (2015): 319-348.

See Also

The multivariate equivalent in the freqdom package: dpca.var
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fts.freqdom Creates an object of class fts.freqdom.

Description

Creates an object of class fts.freqdom.

Usage

fts.freqdom(F, basisX, basisY = basisX)

Arguments

F an object of class freqdom.

basisX an object of class basis.fd (see create.basis)

basisY an object of class basis.fd (see create.basis)

Details

This class is used to describe a frequency domain operator (for example a spectral density operator)
on selected frequencies. Formally we consider an object of class freqdom and add some basis
functions. Depending on the context, we have different interpretations for the new object.

(I) In order to define an operator which maps between two functions spaces, the we interpret
F$operators as coefficients in the basis function expansion of the kernel of some finite rank oper-
ators

Fk : span(basisY) + i span(basisY)→ span(basisX) + i span(basisX).

The kernels are fk(u, v) = b′1(u)Fk b2(v), where b1(u) = (b11(u), . . . , b1d1(u))′ and b2(u) =
(b21(u), . . . , b2d1(u))′ are the basis functions provided by the arguments basisX and basisY, re-
spectively. Moreover, we consider frequencies {ω1, . . . , ωK} ⊂ [−π, π]. The object this function
creates corresponds to the mapping ωk 7→ fk(u, v).

(II) We may ignore basisX, and represent the linear mapping

Fk : span(basisY) + i span(basisY)→ Cd1 ,

by considering fk(v) := Fk b2(v) and Fk(x) =
∫
fk(v)x(v)dv.

(III) We may ignore basisY, and represent the linear mapping

Fk : Cd1 → span(basisX) + i span(basisX),

by considering fk(u) := b′1(u)Fk and Fk(y) = fk(u)y.
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Value

Returns an object of class fts.freqdom. An object of class fts.freqdom is a list containing the
following components:

• operators returns the array F$operators.

• basisX returns basisX as given in the argument.

• basisY returns basisY as given in the argument.

• freq returns the vector F$freq.

See Also

The multivariate equivalent in the freqdom package: freqdom

fts.plot.covariance Contour plot for the kernels of cross-covariance operators.

Description

Contour plot for the kernels of cross-covariance operators.

Usage

fts.plot.covariance(X, Y = X, cor = FALSE, res = 200, lags = 0:3, nlevels = 25)

Arguments

X an object of class fd representing a functional data sample.

Y an object of classfd representing a functional data sample.

cor if FALSE covariance kernels are plotted, if TRUE correlation kernel will be plotted.

res number of discretization points to evaluate functional data.

lags lags to plot, dafauts 0:3

nlevels number of color levels for the contour plot.

Examples

fts = fts.rar(100)

# Plot covariance operators of the time series curves
# We chose resolution equal 150 for better precision
fts.plot.covariance(fts, lags=0:2, res = 150)

# Plot correlation operators of the time series curves
fts.plot.covariance(fts, lags=0:2, cor = TRUE, res = 50)

# Make the grid of levels more dense
fts.plot.covariance(fts, lags=0:1, nlevels = 100)
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fts.plot.filters Plot kernels

Description

Plot kernels

Usage

fts.plot.filters(A, Ndpc = 1, lags = -3:3, one.plot = FALSE, ...)

Arguments

A a functional filter sequence given as object of class fts.timedom.

Ndpc if Ndpc = k the first k filter sequences are plotted.

lags number of lags to plot.

one.plot if TRUE then functional filters corresponding belonging to the respective scores
will all be plotted in the same graph.

... arguments col, lwd, lty passed to plot

Examples

# Load example PM10 data from Graz, Austria
data(pm10) # loads functional time series pm10 to the environment
X = center.fd(pm10)

# Compute functional dynamic principal components with only one component
res.dpca = fts.dpca(X, Ndpc = 1, freq=(-25:25/25)*pi) # leave default freq for higher precision

# Plot Functional Dynamic Principal Component Filters
fts.plot.filters(res.dpca$filters)

fts.plot.operators Contour plot of operator kernels.

Description

Contour plot of operator kernels.

Usage

fts.plot.operators(A, res = 200, lags = 0, freq = 0, axis = "Re", nlevels = 25)
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Arguments

A an object of class fts.timedom or fts.freqdom.

res number of discretization points to evaluate functional data.

lags a vector of integers. For objects of class fts.timedom the lags of the operators
we want to plot.

freq a vector of frequencies in [−π, π]. For an object of class fts.freqdom the
frequencies at which we want to plot the operator. If the chosen frequencies are
not contained in A$freq, the closest frequencies will be used.

axis if "Re" we plot the real part, if "Im" we plot the imaginary part of a complex-
valued operator.

nlevels number of color levels for the contour plot.

Examples

# Load example PM10 data from Graz, Austria
data(pm10) # loads functional time series pm10 to the environment
X = center.fd(pm10)

# Compute functional dynamic principal components with only one component
res.dpca = fts.dpca(X, Ndpc = 1, freq=(-25:25/25)*pi) # leave default freq for higher precision

# Plot the spectral density operator at frequencies -2, -3:3/30 * pi and 2
fts.plot.operators(res.dpca$spec.density,freq = c(-2,-3:3/30 * pi,2))

fts.rar Simulate functional autoregressive processes

Description

Generates functional autoregressive process.

Usage

fts.rar(
n = 100,
d = 11,
Psi = NULL,
op.norms = NULL,
burnin = 20,
noise = "mnorm",
sigma = diag(d:1)/d,
df = 4

)
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Arguments

n number of observations to generate.

d dimension of the underlying multivariate VAR model.

Psi an array of p ≥ 1 coefficient matrices (need to be square matrices). Psi[,,k] is
the k-th coefficient matrix. If Psi is provided then d=dim(Psi)[1]. If no value
is set then we generate a functional autoregressive process of order 1. Then,
Psi[,,1] is proportional to exp(−|i − j|: 1 ≤ i, j ≤ d) and such that Hilbert-
Schmidt norm of the corresponding lag-1 AR operator is 1/2.

op.norms a vector with non-negative scalar entries to which the Psi are supposed to be
scaled. The length of the vector must equal to the order of the model.

burnin an integer ≥ 0. It specifies a number of initial observations to be trashed to
achieve stationarity.

noise "mnorm" for normal noise or "t" for student t noise. If not specified "mvnorm"
is chosen.

sigma covariance or scale matrix of the coefficients corresponding to functional inno-
vations. The default value is diag(d:1)/d.

df degrees of freqdom if noise = "mt".

Details

The purpose is to simulate a functional autoregressive process of the form

Xt(u) =

p∑
k=1

∫ 1

0

Ψk(u, v)Xt−k(v)dv + εt(u), 1 ≤ t ≤ n.

Here we assume that the observations lie in a finite dimensional subspace of the function space
spanned by Fourier basis functions b′(u) = (b1(u), . . . , bd(u)). That isXt(u) = b′(u)Xt, εt(u) =
b′(u)εt and Ψk(u, v) = b′(u)Ψkb(v). Then it follows that

Xt = Ψ1Xt−1 + · · ·+ ΨpXt−p + εt.

Hence the dynamic of the functional time series is described by a VAR(p) process.

In this mathematical model the law of εt is determined by noise. The matrices Psi[,,k] corre-
spond to Ψk. If op.norms is provided, then the coefficient matrices will be rescaled, such that the
Hilbert-Schmidt norms of Ψk correspond to the vector.

Value

An object of class fd.

See Also

The multivariate equivalent in the freqdom package: rar
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Examples

# Generate a FAR process without burnin (starting from 0)
fts = fts.rar(n = 5, d = 5, burnin = 0)
plot(fts)

# Generate a FAR process with burnin 50 (starting from observations
# already resambling the final distribution)
fts = fts.rar(n = 5, d = 5, burnin = 50)
plot(fts)

# Generate observations with very strong dependance
fts = fts.rar(n = 100, d = 5, burnin = 50, op.norms = 0.999)
plot(fts)

fts.rma Simulate functional moving average processes

Description

Generate a functional moving average process.

Usage

fts.rma(
n = 100,
d = 11,
Psi = NULL,
op.norms = NULL,
noise = "mnorm",
sigma = diag(d:1)/d,
df = 4

)

Arguments

n number of observations to generate.

d dimension of the underlying multivariate VAR model.

Psi an array of p ≥ 1 coefficient matrices (need to be square matrices). Psi[,,k] is
the k-th coefficient matrix. If Psi is provided then d=dim(Psi)[1]. If no value
is set then we generate a functional autoregressive process of order 1. Then,
Psi[,,1] is proportional to exp(−|i − j|: 1 ≤ i, j ≤ d) and such that Hilbert-
Schmidt norm of the corresponding lag-1 MA operator is 1/2.

op.norms a vector with non-negative scalar entries to which the Psi are supposed to be
scaled. The length of the vector must equal to the order of the model.

noise "mnorm" for normal noise or "mt" for student t noise. If not specified "mvnorm"
is chosen.
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sigma covariance or scale matrix of the coefficients corresponding to functional inno-
vations. The default value is diag(d:1)/d.

df degrees of freqdom if noise = "mt".

Details

The purpose is to simulate a functional autoregressive process of the form

Xt(u) =

p∑
k=1

∫ 1

0

Ψk(u, v)Xt−k(v)dv + εt(u), 1 ≤ t ≤ n.

Here we assume that the observations lie in a finite dimensional subspace of the function space
spanned by Fourier basis functions b′(u) = (b1(u), . . . , bd(u)). That isXt(u) = b′(u)Xt, εt(u) =
b′(u)εt and Ψk(u, v) = b′(u)Ψkb(v). Then it follows that

Xt = Ψ1Xt−1 + · · ·+ ΨpXt−p + εt.

Hence the dynamic of the functional time series is described by a VAR(p) process.

In this mathematical model the law of εt is determined by noise. The matrices Psi[,,k] corre-
spond to Ψk. If op.norms is provided, then the coefficient matrices will be rescaled, such that the
Hilbert-Schmidt norms of Ψk correspond to the vector.

Value

An object of class fd.

See Also

The multivariate equivalent in the freqdom package: rma

Examples

# Generate a FMA process without burnin (starting from 0)
fts = fts.rma(n = 5, d = 5)
plot(fts)

# Generate observations with very strong dependance
fts = fts.rma(n = 100, d = 5, op.norms = 0.999)
plot(fts)

# Generate observations with very strong dependance and noise
# from the multivariate t distribution
fts = fts.rma(n = 100, d = 5, op.norms = 0.999, noise = "mt")
plot(fts)
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fts.spectral.density Functional spectral and cross-spectral density operator

Description

Estimates the spectral density operator and cross spectral density operator of functional time series.

Usage

fts.spectral.density(
X,
Y = X,
freq = (-1000:1000/1000) * pi,
q = ceiling((dim(X$coefs)[2])^{ 0.33 }),
weights = "Bartlett"

)

Arguments

X an object of class fd containing T functional observations.
Y an object of class fd containing T functional observations.
freq a vector containing frequencies in [−π, π] on which the spectral density should

be evaluated. By default freq=(-1000:1000/1000)*pi.
q window size for the kernel estimator, i.e. a positive integer. By default we

choose q = max(1, floor((dim(X$coefs)[2])^{0.33})).
weights kernel used in the spectral smoothing. For possible choices see spectral.density

in package freqdom. By default the Bartlett kernel is chosen.

Details

LetX1(u), . . . , XT (u) and Y1(u), . . . , YT (u) be two samples of functional data. The cross-spectral
density kernel between the two time series (Xt(u)) and (Yt(u)) is defined as

fXYω (u, v) =
∑
h∈Z

Cov(Xh(u), Y0(v))e−ihω.

The function fts.spectral.density determines the empirical cross-spectral density kernel be-
tween the two time series. The estimator is of the form

f̂XYω (u, v) =
∑
|h|≤q

w(|k|/q)ĉXYh (u, v)e−ihω,

with ĉXYh (u, v) defined in fts.cov.structure. The other paremeters are as in cov.structure.

Since Xt(u) = b′1(u)xt and Yt(u) = y′tb2(u) we can write

f̂XYω (u, v) = b′1(u)F̂xy(ω)b2(v),

where F̂xy(ω) is defined as for the function spectral.density for series of coefficient vectors
(xt: 1 ≤ t ≤ T ) and (yt: 1 ≤ t ≤ T ).
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Value

Returns an object of class fts.timedom. The list is containing the following components:

• operators an array. Element [,,k] in the coefficient matrix of the spectral density matrix
evaluated at the k-th frequency listed in freq.

• lags returns the lags vector from the arguments.

• basisX returns X$basis, an object of class basis.fd (see create.basis).

• basisY returns Y$basis, an object of class basis.fd (see create.basis)

See Also

The multivariate equivalent in the freqdom package: spectral.density

Examples

data(pm10)
X = center.fd(pm10)

# Compute the spectral density operator with Bartlett weights
SD = fts.spectral.density(X, freq = (-50:50/50) * pi, q = 2, weight="Bartlett")
fts.plot.operators(SD, freq = -2:2)

# Compute the spectral density operator with Tukey weights
SD = fts.spectral.density(X, freq = (-50:50/50) * pi, q = 2, weight="Tukey")
fts.plot.operators(SD, freq = -2:2)
# Note relatively small difference between the two plots

# Now, compute the spectral density operator with Tukey weights and larger q
SD = fts.spectral.density(X, freq = (-50:50/50) * pi, q = 5, weight="Tukey")
fts.plot.operators(SD, freq = -2:2)

fts.timedom Object of class fts.timedom

Description

Creates an object of class fts.timedom. This object corresponds to a sequence of linear operators.

Usage

fts.timedom(A, basisX, basisY = basisX)

Arguments

A an object of class timedom.

basisX an object of class basis.fd (see create.basis)

basisY an object of class basis.fd (see create.basis)
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Details

This class is used to describe a functional linear filter, i.e. a sequence of linear operators, each of
which corresponds to a certain lag. Formally we consider an object of class timedom and add some
basis functions. Depending on the context, we have different interpretations for the new object.

(I) In order to define operators which maps between two functions spaces, the we interpret A$operators
as coefficients in the basis function expansion of the kernel of some finite rank operators

Ak : span(basisY)→ span(basisX).

The kernels are ak(u, v) = b′1(u)Ak b2(v), where b1(u) = (b11(u), . . . , b1d1(u))′ and b2(u) =
(b21(u), . . . , b2d1(u))′ are the basis functions provided by the arguments basisX and basisY, re-
spectively. Moreover, we consider lags `1 < `2 < · · · < `K . The object this function creates
corresponds to the mapping `k 7→ ak(u, v).

(II) We may ignore basisX, and represent the linear mapping

Ak : span(basisY)→ Rd1 ,

by considering ak(v) := Ak b2(v) and Ak(x) =
∫
ak(v)x(v)dv.

(III) We may ignore basisY, and represent the linear mapping

Ak : Rd1 → span(basisX),

by considering ak(u) := b′1(u)Ak and Ak(y) = ak(u)y.

Value

Returns an object of class fts.freqdom. An object of class fts.freqdom is a list containing the
following components:

• operators returns the array A$operators.

• basisX returns basisX as given in the argument.

• basisY returns basisY as given in the argument.

• lags returns A$lags.

See Also

The multivariate equivalent in the freqdom package: timedom

is.fts.freqdom Checks if an object belongs to the class fts.freqdom

Description

Checks if an object belongs to the class fts.freqdom.

Usage

is.fts.freqdom(X)
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Arguments

X some object

Value

TRUE if X is of type fts.freqdom, FALSE otherwise

See Also

fts.freqdom, fts.timedom, is.fts.timedom

is.fts.timedom Checks if an object belongs to the class fts.timedom

Description

Checks if an object belongs to the class fts.timedom.

Usage

is.fts.timedom(X)

Arguments

X some object

Value

TRUE if X is of type fts.timedom, FALSE otherwise

See Also

fts.freqdom, fts.timedom, is.fts.freqdom
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pm10 PM10 dataset

Description

Concentration of partical matter of diameter 10 micrometers or smaller (PM10) is one of the most
widely adopted measurements for assesment of ambient air quality. In this dataset, we provide 175
measurement of daily temporal distribution of PM10 in Graz, Austria, collected between December
2004 and June 2005.

For the purpose of this R package, raw data of 48 observations per day, was transformed to func-
tional objects in Fourier basis using fda package.

Usage

pm10

Format

175 daily distribution functions in the fd format from the fda package

Source

Styrian Government, FA 17C Technical Environmental Protection and Safety, Air Quality Control
Section,

References

Hormann, Siegfried, Brigitte Pfeiler, and Ernst Stadlober. Analysis and prediction of particulate
matter PM10 for the winter season in Graz. Austrian Journal of Statistics 34.4 (2005): 307-326.

Examples

data(pm10)
summary(pm10)
plot(pm10)
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