Package ‘freealg’

August 27, 2024

Type Package

Title The Free Algebra

Version 1.1-8

Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>
Depends R (>= 3.5.0), methods

Description The free algebra in R with non-commuting indeterminates.
Uses 'disordR' discipline
(Hankin, 2022, <doi:10.48550/ARXIV.2210.03856>). To cite the
package in publications please use Hankin (2022)
<doi:10.48550/ARX1V.2211.04002>.

License GPL (>=2)

LazyData yes

Imports Rcpp (>= 1.0-7), partitions (>= 1.9-22), disordR (>= 0.9-5-1)
LinkingTo Rcpp

Suggests knitr,testthat,magrittr,markdown,rmarkdown,covr

VignetteBuilder knitr

URL https://github.com/RobinHankin/freealg,
https://robinhankin.github.io/freealg/

BugReports https://github.com/RobinHankin/freealg/issues
NeedsCompilation yes

Author Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)
Repository CRAN

Date/Publication 2024-08-26 23:30:02 UTC

Contents

freealg-package . . . . . . . ..
abelianize . . . . . . ...
ACCESSOT « v o v v e v e e e e e e e e e e e


https://doi.org/10.48550/ARXIV.2210.03856
https://doi.org/10.48550/ARXIV.2211.04002
https://github.com/RobinHankin/freealg
https://robinhankin.github.io/freealg/
https://github.com/RobinHankin/freealg/issues
https://orcid.org/0000-0001-5982-0415

2 freealg-package

adjoint . . . . .. e e e e 6
CONSTANE . . . . . . o v v i e e e e e e e e e e e e e e e e e 7
deriv . . . . e e e 8
dot-class . . . . . . .. e e 10
drop . . .. 11
freealg . . . . . . L 12
freealg-class . . . . . . . . e e 14
grade . . ... e 14
horner . . . . . . . e e 16
INVEISE . . . o v v v e e e e e e e e e e e e e e 17
Tetters . . . . . . e e e e e e e e 18
linear . . . . . . .. e e e 18
013 0 0 T 19
Ops.freealg . . . . . . . . e 20
PEPPET - « o o o o e e e e e e e e e 21
PIINt . . o o e e 22
rfalg . . e e e 24
SUDS . . . e e 25
ZETO . v o e e e e e e e e e e e e e e e e e e e 26
Index 28
freealg-package The Free Algebra
Description

The free algebra in R with non-commuting indeterminates. Uses ’disordR’ discipline (Hankin,
2022, <doi:10.48550/ARX1IV.2210.03856>). To cite the package in publications please use Hankin
(2022) <doi:10.48550/ARXIV.2211.04002>.

Details
The DESCRIPTION file:
Package: freealg
Type: Package
Title: The Free Algebra
Version: 1.1-8
Authors@R: person(given=c("Robin", "K. S."), family="Hankin", role = c¢("aut","cre"), email="hankin.robin @ gmail.co
Maintainer: Robin K. S. Hankin <hankin.robin@ gmail.com>
Depends: R (>=13.5.0), methods
Description: The free algebra in R with non-commuting indeterminates. Uses ’disordR’ discipline (Hankin, 2022, <doi:
License: GPL (>=2)
LazyData: yes
Imports: Repp (>= 1.0-7), partitions (>= 1.9-22), disordR (>= 0.9-5-1)
LinkingTo: Repp

Suggests: knitr,testthat,magrittr,markdown,rmarkdown,covr



freealg-package

VignetteBuilder:  knitr

URL: https://github.com/RobinHankin/freealg, https://robinhankin.github.io/freealg/
BugReports: https://github.com/RobinHankin/freealg/issues
Author: Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)
Index of help topics:
abelianize Abelianize a 'freealg' object

accessor Accessor methods for freealg objects
adjoint The adjoint map

constant The constant term

deriv Differentiation of 'freealg' objects
dot-class Class "dot"

drop Drop redundant information

freealg The free algebra

freealg-class
freealg-package
grade

Class "freealg”
The Free Algebra
The grade (or degree) of terms in a 'freealg'

object
horner Horner's method
inverse Inverses
letters Single-letter symbols
linear A simple free algebra object
nterms Number of terms in a freealg object
Ops.freealg Arithmetic Ops methods for the the free algebra
pepper Combine variables in every possible order
print.freealg Print freealg objects
rfalg Random free algebra objects
subs Substitution
zero The zero algebraic object
Author(s)

Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)

Maintainer: Robin K. S. Hankin <hankin.robin @ gmail.com>

Examples

a <- as.freealg("x+xyx")
b <- as.freealg("4x +XyX") # upper-case interpreted as inverse

atb
stopifnot(a+tb==b+a) # should be TRUE

a*xb ==bxa # FALSE; noncommutative algebra

as.freealg("1+X+xy")*3



4 abelianize

rfalg()
rfalg()*2

abelianize Abelianize a freealg object

Description
Function abelianize() returns a freealg object that is equivalent to its argument under assump-
tion of Abelianness. The symbols are placed in alphabetical order.

Usage

abelianize(x)

Arguments

X A freealg object

Details

Abelianizing a free group element means that the symbols can commute past one another. Abelian-
ization is vectorized.

Value

Returns an object of class freealg.

Note

There is a very similar function in the freegroup package. However, the frab package is the best
way to work with the free Abelian group.

Author(s)
Robin K. S. Hankin

Examples

abelianize(as.freealg("ba + 2abbba + 3abAB"))

abelianize(.[rfalg(),rfalg()1)


https://CRAN.R-project.org/package=freegroup
https://CRAN.R-project.org/package=frab

accessor 5

accessor Accessor methods for freealg objects

Description

Accessor methods for free algebra objects

Usage

words (x)
coeffs(x,drop=TRUE)
coeffs(x) <- value

Arguments
X Object of class freealg
value Numeric vector of length 1
drop Boolean, with default TRUE meaning to drop the disord attribute, as per disordR: :drop()
and FALSE meaning to consistently return a disord object irregardless
Details

Access or set the different parts of a freealg object. The constant term is technically a coefficient
but is documented under constant.Rd.

“Pure” extraction and replacement (as in a[i] and a[i] <- value is implemented exprimentally.
The code for extraction is cute but not particularly efficient.

Note
There is an extended discussion of disordR discipline in the context of algebras in the mvp package
at accessor.Rd.

Author(s)
Robin K. S. Hankin

See Also

constant

Examples

a <- rfalg()

a

coeffs(a)

words(a) # NB: hash is identical to that of coeffs(a)

coeffs(a) <- 7 # replacement methods work


https://CRAN.R-project.org/package=disordR
https://CRAN.R-project.org/package=mvp

6 adjoint

a
coeffs(a) #

adjoint The adjoint map

Description

The adjoint ad x of X is a map from a Lie group G to the endomorphism group of G defined by

adx(Y) = [X,Y]

Usage
ad(x)
Arguments
X Object nominally of class freealg but other classes accepted where they make
sense
Details

details here

Note

Vignette adjoint gives more description

Author(s)
Robin K. S. Hankin

Examples

x <- rfalg()
y <- rfalg()

f <- ad(x)
fy)

f(f(y)) # [x,[x,yl]



constant 7

constant The constant term

Description

Get and set the constant term of a freealg object

Usage
## S3 method for class 'freealg'
constant(x)
## S3 method for class 'numeric'
constant(x)

## S3 replacement method for class 'freealg'
constant(x) <- value
is.constant(x)

Arguments
X Object of class freealg
value Scalar value for the constant
Details

The constant term in a free algebra object is the coefficient of the empty term. In a freealg object,
the map including ) — v implies that v is the constant.

If x is a freealg object, constant(x) returns the value of the constant in the multivariate polyno-
mial; if x is numeric, it returns a constant freealg object with value x.

Function is.constant() returns TRUE if its argument has no variables and FALSE otherwise.

Setting the coefficients of the empty freealg returns the zero (empty) object.

Author(s)
Robin K. S. Hankin

Examples

p <- as.freealg("1+X+Y+xy")

constant(p)
constant(p*5)

constant(p) <- 1000
p



8 deriv

deriv Differentiation of freealg objects

Description

Differentiation of freealg objects

Usage
## S3 method for class 'freealg'
deriv(expr, r, ...)
Arguments
expr Object of class freealg
r Integer vector. Elements denote variables to differentiate with respect to. If r is
a character vector, it is interpreted as a=1,b=2, .. .,z=26; if of length 1, “aab”

is interpreted as c("a"”,"a","b")

Further arguments, currently ignored

Details

Experimental function deriv(S,v) returns %. The Leibniz product rule
10vV2...0U,

(u-v) =uw' +u'v

operates even if (as here) u, v do not commute. For example, if we wish to differentiate aaba with
respect to a, we would write f(a) = aaba and then

fla+da) = (a+ da)(a+ da)b(a + da)
and working to first order we have

fla+da) — f(a) = (da)aba + a(da)ba + aab(da).
In the package:

> deriv(as.freealg("”aaba"),"a")
free algebra element algebraically equal to
+ 1xaab(da) + 1*a(da)ba + 1x(da)aba

A term of a freealg object can include negative values which correspond to negative powers of
variables. Thus:



deriv 9

> deriv(as.freealg("AAAA"),"a")
free algebra element algebraically equal to
- 1%AAAA(da)A - 1*%AAA(da)AA - TxAA(da)AAA - TxA(da)AAAA

(see also the examples). Vector r may include negative integers which mean to differentiate with
respect to the inverse of the variable:

> deriv(as.freealg("3abchCC"),"C")
free algebra element algebraically equal to
+ 3*abcbC(dC) + 3xabcb(dC)C - 3xabc(dC)chCC

It is possible to perform repeated differentiation by passing a suitable value of r. For 8‘2—236:

> deriv(as.freealg("aaabAcx"),"ac")
free algebra element algebraically equal to
- 1*aaabA(da)A(dc)x + 1*aa(da)bA(dc)x + 1*xa(da)abA(dc)x + 1x(da)aabA(dc)x

The infinitesimal indeterminates (“da” etc) are represented by SHRT_MAX+r, where r is the integer
for the symbol, and SHRT_MAX is the maximum short integer. This includes negative r. So the
maximum number for any symbol is SHRT_MAX. Inverse elements such as A, being represented by
negative integers, have differentials that are SHRT_MAX-r.

Function deriv () calls helper function lowlevel _diffn() which is documented at Ops. freealg.Rd.

A vignette illustrating this concept and furnishing numerical verification of the code in the context
of matrix algebra is given at inst/freealg_matrix.Rmd.

Author(s)

Robin K. S. Hankin

Examples

deriv(as.freealg("4*aaaabaacAc”),1)

x <- rfalg()
deriv(x,1:3)

y <- rfalg(7,7,17,TRUE)

deriv(y,1:5)-deriv(y,sample(1:5)) # should be zero



10 dot-class

dot-class Class “dot”

Description

The dot object is defined so that . [x,y] returns the commutator of x and y, that is, xy-yx or the
Lie bracket [z, y]. It would have been nice to use [x,y] (that is, without the dot) but although this
is syntactically consistent, it cannot be done in R.

The “meat” of the dot functionality is:

setClass("dot"”, slots = c(ignore='numeric'))
T.7 <= new("dot")
setMethod("[",signature(x="dot",i="ANY", j="ANY"), function(x,i,j,drop){i*j-j*i})

The package code includes other bits and pieces such as informative error messages for idiom
such as .[]. The package defines a matrix method for the dot object. This is because “*” returns
(incorrectly, in my view) the elementwise product, not the matrix product.

The Jacobi identity, satisfied by any associative algebra, is

[:Cv [y»ZH + [ya [Z, CCH + [27 [:c,y]] =0

and the left hand side is returned by jacobi (), which should be zero (for some definition of “zero”).

Function ad () returns the adjoint operator. The adjoint vignette provides details and examples of
the adjoint operator.

The dot object is generated by running script inst/dot.Rmd, which includes some further discus-
sion and technical documentation, and creates file dot . rda which resides in the data/ directory.
Value

Always returns an object of the same class as xy.

Slots

ignore: Object of class "numeric”, just a formal placeholder

Methods
[ signature(x ="dot", i = "ANY", j ="ANY"): ..
[ signature(x ="dot", i ="ANY", j="missing"): ...
[ signature(x = "dot", i = "function”, j="function”): ...
[ signature(x ="dot"”, i = "matrix”, j ="matrix"): ...
[ signature(x ="dot"”, i = "missing"”, j ="ANY"): ..

[ signature(x ="dot", i = "missing”, j="missing"): ...



drop

Author(s)

11

Robin K. S. Hankin

Examples

.[as.
.[as.
.[as.

X <-

y <=
z <-

freealg(”"x"),as.freealg("y")]
freealg("x"),as.freealg("y+2z")]
freealg("x+y+2xYx"),as.freealg("x+y+2xYx")]

rfalg()
rfalg()
rfalg()

jacobi(x,y,z) # Jacobi identity

LIx, .

f <
fy)

rM <-

M <-
N <-
0 <-

[y,z11 + .Ly,.[z,x1]1 + .[z,.[x,yl] # Jacobi, expanded

ad(x)

function(...){matrix(sample(1:9,9),3,3)} # a random matrix

rMO
rMO)
rM()

.[M,N]
jacobi(M,N,0)

plot(.[sin,tan](seq(from=0,to=1,1en=100)))

drop

Drop redundant information

Description

Coerce constant free algebra objects to numeric

Usage

drop(x)

Arguments

X

Free algebra object



12 freealg

Details

If its argument is a constant freealg object, coerce to numeric. Modelled on base: :drop().

Note
A few functions in the package take drop as an argument which, if TRUE, means that the function
returns a dropped value.

Author(s)
Robin K. S. Hankin

See Also

constant,coeffs

Examples

drop(linear(1:5))
drop(4+linear(1:5)*0)

freealg The free algebra

Description

Create, test for, and coerce to, freealg objects

Usage

freealg(words, coeffs)
is_ok_free(words,coeffs)
is.freealg(x)

as.freealg(x,...)
char_to_freealg(ch)
natural_char_to_freealg(string)
string_to_freealg(string)
vector_to_free(v,coeffs)

Arguments
words Terms of the algebra object, eg c(1,2,-1,-3,-2) corresponds to abACB because
a = 1, b = 2 etc; uppercase, or negative number, means inverse
coeffs Numeric vector corresponding to the coefficients of each element of the word
list
string Character string

ch Character vector



freealg 13

v Vector of integers
X Object possibly of class freealg

Further arguments, passed to the methods

Details

Function freealg() is the formal creation mechanism for freealg objects. However, it is not very
user-friendly; it is better to use as. freealg() in day-to-day use (although it does use heuristics for
the coefficients if not supplied).

Low-level helper function is_ok_freealg() checks for consistency of its arguments.

A freealg object is a two-element list. The first element is a list of integer vectors representing the
indices and the second is a numeric vector of coefficients. Thus, for example:

> as.freealg("a+4bd+3abbbbc")

free algebra element algebraically equal to

+ 1%a + 3%abbbbc + 4xbd

> dput(as.freealg("a+4bd+3abbbbc"))

structure(list(indices = list(1L, c(1L, 2L, 2L, 2L, 2L, 3L),
c(2L, 4L)), coeffs = c(1, 3, 4)), class = "freealg”)

Observe that the order of the terms is not preserved and indeed is undefined (implementation-
specific). Zero entries are stripped out.

Character strings may be coerced to freealg objects; as. freealg() calls natural_char_to_freealg(),
which is user-friendly. Functions char_to_freealg() and string_to_freealg() are low-level
helper functions. These functions assume that upper-case letters are the multiplicative inverses of

the lower-case equivalents; so for example as.freealg(”aA") and as. freealg(aBcCbA) evaluate

to one. This can be confusing with the default print method.

Note

Internally, the package uses signed integers and as such can have .Machine$integer.max different
symbols; on my machine this is 2147483647. Of course the print method cannot deal with this as it
only has 26 symbols for letters a-z (and A-Z for the inverses), but the objects themselves do not care
about the print method. Note also that the experimental calculus facility (as per deriv()) reserves
numbers in the range SHRT_MAX = r for infinitesimals, where r is the integer for a symbol. This
system might change in the future.

Author(s)
Robin K. S. Hankin

Examples

freealg(list(1:2, 2:1,numeric(@),1:6),1:4)
freealg(list(1:2, 2:1,numeric(®),1:6)) # heuristics for coeffs: assume 1

freealg(sapply(1:5,seq_len),1:5)



14 grade

freealg(replicate(5,sample(-5:5,rgeom(1,1/5),replace=TRUE)),1:5)

as.freealg("1+xaX")*5

freealg-class Class “freealg”

Description

The formal S4 class for freealg objects

Objects from the Class

Formal class freealg is used for functions such as drop() which need a S4 object.

Author(s)
Robin K. S. Hankin

grade The grade (or degree) of terms in a freealg object

Description

The free algebra B is a graded algebra: that is, for each integer n > 0 there is a homogeneous
subspace B,, with By = R and

B= @Bn, and B,B,, C B4, forallm,n > 0.

n=0

The elements of U,,>(B,, are called homogeneous and those of B3,, are called homogenous of degree
(or grade) n.

The grade of a term is the number of symbols in it. Thus the grade of xxx and 4xxy is 3; the grade
of a constant is zero. Because the terms are stored in an implementation-specific way, the grade of
a multi-term object is a disord object.

The grade of the zero freealg object, grade(as. freealg(@)), is defined to be —oo, as per Knuth
[TAOCP, volume 2, p436]. This ensures that max(grades(abelianize(x))) <= max(grades(x))
is always satisfied. However, a case for NULL could be made.



grade 15

Usage

grades(x)
grade(x,n)
grade(x,n) <- value
deg(x)

Arguments

X Freealg object
n Integer vector

value Replacement value, a numeric vector

Details

grades(x) returns the grade (number of symbols) in each term of a freealg object x.
deg(x) returns the maximum of the grades of each symbol of x; max(grades(x)).

grade(x,n) returns the freealg object comprising terms with grade n (which may be a vector). Note
that this function is considerably less efficient than clifford: :grade().

grade(x,n) <- value sets the coefficients of terms with grade n. For value, a length-one numeric
vector is accepted (notably zero, which kills terms of grade n) and also a freealg object comprising
terms of grade n.

Value

Returns a disord object

Note

A similar concept grade is discussed in the clifford package

Author(s)
Robin K. S. Hankin

References

H. Munthe-Kaas and B. Owren 1999. “Computations in a free Lie algebra”, Phil. Trans. R. Soc.
Lond. A, 357:957-981 (theorem 3.8)

Examples

X <- as.freealg(”1 -x + 5xy + B*xxxy -8*X*X*kXx*Xxy*x")
X
grades(X)

a <- rfalg(30)
a
grades(a)



16 horner

grade(a,2)
grade(a,2) <- @ # kill all grade-2 terms
a

grade(a,1) <- grade(a,1) * 888
a

horner Horner’s method

Description

Horner’s method for multivariate polynomials

Usage

horner(P,v)

Arguments

P Free algebra polynomial

v Numeric vector of coefficients
Details

This function is (almost) the same as mvp: :horner ().
Given a polynomial
p(l‘) =ap+ a1r + a2m2 + ot apz”

it is possible to express p(x) in the algebraically equivalent form

p(x)=ap+z (a1 +x(az+ - +z(an_1+za,) --))

which is much more efficient for evaluation, as it requires only n multiplications and n additions,
and this is optimal. Function horner () will take a freealg object for its first argument.

Author(s)
Robin K. S. Hankin

Examples
horner(”"x", 1:4) # note constant term is 1.
horner("x+y",1:3) # note presence of xy and yx terms

horner ("1+x+xyX",1:3)



inverse 17

inverse Inverses

Description

Multiplicative inverses of symbols in the free algebra

Usage

all_pos(x)
keep_pos(x)

Arguments

X Freealg object

Details

Function all_pos() tests for its argument having only positive powers (that is, no inverse symbols
present); function keep_pos () discards any term with a negative power.

At various points in the package, it is assumed that upper-case letters are the multiplicative inverses
of the lower-case equivalents; so for example as.freealg(”aA") and as.freealg("aBcChA")
evaluate to one. This can be confusing with the default print method.

Even though individual symbols have multiplicative inverses, a general element of the free algebra
will not have a multiplicative inverse. For example, 1+x does not have an inverse. The free algebra
is not a division algebra, in general.

Author(s)

Robin K. S. Hankin

Examples

all_pos(rfalg(include.negative = TRUE))
all_pos(rfalg(include.negative = FALSE))

as.freealg("1+xaX")*5



18 linear

letters Single-letter symbols
Description
Variables a, b,.. ., z and their inverses A-Z are given their freealg semantic meaning.
Details

Sometimes it is convenient in an R session to have all 26 letters a-z and all 26 uppercase letters A-Z
adopt their free algebra interpretations. To access this, load the lettersymbols dataset, which is
provided with the package in the inst directory:

load(system.file("lettersymbols.rda”,package="freealg"))
Executing this allows you to do cool things such as the following:

> (1+a-b*2)*4

free algebra element algebraically equal to

+ 1 + 4a + 6aa + 4aaa + aaaa - aaabb - 4aabb - aabba + aabbbb - 6abb - 4abba -
abbaa + abbabb + 4abbbb + abbbba - abbbbbb - 4bb - 6bba - 4bbaa - bbaaa +
bbaabb + 4bbabb + bbabba - bbabbbb + 6bbbb + 4bbbba + bbbbaa - bbbbabb -
4bbbbbb - bbbbbba + bbbbbbbb

>

Lowercase letters c, g, t, and uppercase letters C, D, F, I, T might pose difficulties.

These objects can also be generated by running script inst/symb.Rmd, which includes some fur-
ther discussion and technical documentation and creates file lettersymbols. rda which formerly
resided in the data/ directory.

Author(s)
Robin K. S. Hankin

linear A simple free algebra object

Description

Create simple free algebra objects including linear expressions. For example:

> linear(1:3)

free algebra element algebraically equal to
+ 1%a + 2%b + 3*c

> linear(1:3,power=5)

free algebra element algebraically equal to
+ 1%aaaaa + 2xbbbbb + 3*ccccc

>



nterms 19

Usage

linear(x,power=1)

Arguments
X Numeric vector of terms
power Integer vector of powers
Note

It is instructive to compare the functionality documented here with their mvp equivalents. Many of
the functions documented at mvp: : special.Rd do not make sense in the context of the free algebra.
Function mvp: : product (), for example, imposes an order on the expansion.

Function constant () is documented at constant.Rd, but is listed below for convenience.

Author(s)
Robin K. S. Hankin

See Also

constant, zero

Examples

linear(1:3)
linear(1:3, power=5)
linear(1:3,power=3:1)

nterms Number of terms in a freealg object

Description

Number of terms in a freealg object; number of coefficients

Usage

nterms(x)

Arguments

X Freealg object

Value

Returns a non-negative integer


https://CRAN.R-project.org/package=mvp

20 Ops.freealg

Author(s)
Robin K. S. Hankin

Examples

(a <- freealg(list(1:3,4:7,1:10),1:3))
nterms(a)

nterms(a+1)

nterms(ax@)

Ops.freealg Arithmetic Ops methods for the the free algebra

Description

Arithmetic operators for manipulation of freealg objects such as addition, multiplication, powers,
etc

Usage

## S3 method for class 'freealg'

Ops(el, e2)

free_negative(S)

free_power_scalar(S,n)

free_eq_free(el,e2)

free_plus_numeric(S,x)

free_plus_free(el,e2)
lowlevel_simplify(words,coeffs)
lowlevel_free_prod(words1,coeffsl,words2,coeffs2)
lowlevel_free_sum(words1,coeffs1,words2, coeffs2)
lowlevel_free_power (words,coeffs,n)
lowlevel_diffn(words,coeffs,r)
lowlevel_subs(words1, coeffsl, words2, coeffs2, r)

inv(S)
Arguments
S, el, e2 Objects of class freealg
n Integer, possibly non-positive
r Integer vector indicating variables to differentiate with respect to
X Scalar value

words, words1, words?2
A list of words, that is, a list of integer vectors representing the variables in each
term

coeffs, coeffsl, coeffs2
Numeric vector representing the coefficients of each word



pepper 21

Details
The function Ops. freealg() passes binary arithmetic operators (“+”, “=”, “x”, “*”_ and “==") to
the appropriate specialist function.

The caret, as in a*n, denotes arithmetic exponentiation, as in x*3==x*xxx. As an experimental
feature, this is (sort of) vectorised: if n is a vector, then a*n returns the sum of a raised to the
power of each element of n. For example, a*c(n1,n2,n3) is a"n1 +a*n2 + a*n3. Internally, n
is tabulated in the interests of efficiency, so a*c(0,2,5,5,5,) =1+ a*2 + 3a*5 is evaluated with
only a single fifth power. Similar functionality is implemented in the mvp package.

The only comparison operators are equality and inequality; x==y is defined as is.zero(x-y).

Functions lowlevel_foo() are low-level functions that interface directly with the C routines in the
src/ directory and are not intended for the end-user.

Function inv() is defined only for freealg objects with a single term. If x has a single term we
have inv(x)*x=x*inv(x)=1. There is no corresponding division in the package because a/b may
be either a*inv(b) or inv(b)=*a.

Author(s)
Robin K. S. Hankin

Examples

rfalg()

as.freealg("1+x+xy+yx") # variables are non-commutative

as.freealg("x") * as.freealg("X") # upper-case letters are lower-case inverses
constant(as.freealg("x+y+X+Y")"6) # OEIS sequence A@35610

inv(as.freealg("2aaabAAAAX"))

as.freealg("a")*(1:7)

pepper Combine variables in every possible order

Description

Given a list of variables, construct every term comprising only those variables; function pepper ()
returns a free algebra object equal to the sum of these terms.

The function is named for a query from an exam question set by Sarah Marshall in which she

asked how many ways there are to arrange the letters of word “pepper”, the answer being ( 6 ) =

. 123
o = 00.

Function multiset() in the partitions package gives related functionality; for the record, one way
to reproduce pepper ("pepper”) would be

apply(matrix(c("p”,"e","r")[multiset(c(1,1,1,2,2,3))]1,nrow=6),2,paste,collapse="")


https://CRAN.R-project.org/package=mvp
https://CRAN.R-project.org/package=partitions

22 print

Usage

pepper(v)

Arguments

% Variables to combine. If a character string, coerce to variable numbers

Author(s)
Robin K. S. Hankin

See Also

linear

Examples

pepper(c(1,1,1,1,1,1,2)) # 6 a's and 1 b
pepper(c(1,2,2,2,3)) #1a, 3b'sand 1 c
pepper ("pepper”)

print Print freealg objects

Description

Print methods for free algebra objects. The indeterminates are represented using lowercase letters
a-z (currently hard coded).

Usage
## S3 method for class 'freealg'
print(x,...)
Arguments
X Object of class freealg in the print method
Further arguments, currently ignored
Note

The print method does not change the internal representation of a freealg object, which is a two-
element list, the first of which is a list of integer vectors representing words, and the second is a
numeric vector of coefficients.

The print method uses lowercase letters a-z to represent the indeterminates; this is currently hard
coded:



print 23

> (x <- as.freealg("6abbbc + 7cax"))

free algebra element algebraically equal to
+ 6*abbbc + 7*xcax

> unclass(x)

$indices

$indices[[1]]

[1112223

$indices[[2]1]
[1] 3 124

$coeffs
[1]1 67

The print method has special dispensation for length-zero freealg objects but these are not handled
entirely consistently.

The print method is sensitive to the value of getOption("usecaret”), defaulting to “FALSE”. The
default is to use uppercase letters to represent multiplicative inverses. Thus, the inverse of a appears
as either “a*-1” if usecaret is TRUE, and “A” if FALSE. Carets become cumbersome for powers
above the first. For example, the default notation for aba—2 is abAA but becomes aba*-1a*-1 if
usecaret is TRUE.

The symbols for the indeterminates are currently hardcoded as c(letters,LETTERS). The intent
is to be able to signify 52 distinct indeterminates, a-z,A-Z. This works fine if option usecaret is
TRUE. But if option usecaret is FALSE, this can be confusing: for example, indeterminate number
1 appears as a, and its inverse would appear as “A”. But indeterminate number 27 also appears as
“A”. They look the same, but no warning is given: caveat emptor!

The method is also sensitive to getOption(”"mulsym”), defaulting to NULL. This is the multiplica-
tion symbol used between the coefficient and the indeterminate string. Sometimes an asterisk, *
or a space, might be useful. If mulsym takes its default of NULL [or a length zero string], the print
method suppresses coefficients of +1.

Integers exceeding SHRT_MAX are reserved for infinitesimals, which are printed as “da”; see the note
at deriv.Rd for details.

Author(s)
Robin K. S. Hankin

See Also

freealg,deriv
Examples
rfalg()

x <- rfalg(inc=TRUE)
X # default



24 rfalg

options("usecaret” = TRUE) # use caret

X

options("usecaret” = FALSE) # back to the default
X

x <- freealg(list(5,1:4,3,8,7),c(1,1,1,3,22))
X

options(mulsym = "x")
X
options(mulsym = NULL) # restore default

rfalg Random free algebra objects

Description

Random elements of the free algebra, intended as quick “get you going” examples of freealg
objects

Usage

rfalg(n=7, distinct=3, maxsize=4, include.negative=FALSE)
rfalgg(n=30, distinct=8, maxsize=7, include.negative=FALSE)
rfalggg(n=100, distinct=26, maxsize=30, include.negative=FALSE)

Arguments
n Number of terms to generate
distinct Number of distinct symbols to use
maxsize Maximum number of symbols in any word

include.negative
Boolean, with default FALSE meaning to use only positive symbols (lower-case
letters) and TRUE meaning to use upper-case letters as well, corresponding to the
inverse of the lower-case symbols

Details

What you see is what you get, basically. A term such as aaBaAbaC will be simplified to aaaC.

Functions rfalgg() and rfalggg() return successively more complicated freealg objects.

Author(s)
Robin K. S. Hankin



subs
Examples

rfalg()
rfalg(include.negative=TRUE)"2

constant(rfalg())

25

subs Substitution

Description

Substitute symbols in a freealg object for numbers or other freealg objects

Usage

subs(S, ...)
subsu(S1,S2,r)

Arguments
S, S1,S2 Objects of class freealg
r Integer specifying symbol to substitute (a = 1,b = 2 etc)
named arguments corresponding to variables to substitute
Details

Function subs() substitutes variables for freealg objects (coerced if necessary) using natural R

idiom. Observe that this type of substitution is sensitive to order:

> subs("ax",a="1+x",x="1+a")
free algebra element algebraically equal to
+ 2 + 3%xa + 1*aa

> subs("ax",x="1+a",a="1+x")
free algebra element algebraically equal to
+ 2 + 3%X + 1%xx

Functions subsu() is a lower-level formal function, not really intended for the end-user. Function

subsu() takes S1 and substitutes occurrences of symbol r with S2.

No equivalent to mvp: : subvec() is currently implemented.

Value

Returns a freealg object.



26 Zero

Note

Function subs() is one place in the package where the use of letters is effectively hard-wired in.
Idiom such as

subs("abccc”,b="1+3x")

is very nice, but identifies “b” with 2. Note that argument r of subsu() is canonically an integer
but a single character is interpreted as a letter. See also the note at freealg.Rd.

Author(s)
Robin K. S. Hankin

Examples

subs("abccc”,b="1+3x")
subs(”aaaa",a="1+x") # binomial

subs("abA",b=31)

subs("1+a",a="A") # can substitute for an inverse
subs("A",a="1+x") # inverses are not substituted for
## Sequential substitution works:

subs("abccc”,b="1+3x",x="1+d+2e")
subs(rfalg(),a=rfalg())

zero The zero algebraic object

Description

Test for a freealg object’s being zero

Usage

is.zero(x)

Arguments

X Object of class freealg

Details

Function is.zero() returns TRUE if x is indeed the zero free algebra object. It is defined as
length(coeffs(x))==0 for reasons of efficiency, but conceptually it returns x==constant(0).

(Use constant (@) to create the zero object).



Zero

Author(s)
Robin K. S. Hankin

See Also

constant

Examples

stopifnot(is.zero(constant(@)))

27



Index

* classes
freealg-class, 14
* datasets
letters, 18
+ package
freealg-package, 2
* symbolmath
deriv, 8
horner, 16
linear, 18
pepper, 21
subs, 25
zero, 26
. (dot-class), 10
[,dot,ANY,ANY,ANY-method (dot-class), 10
[,dot,ANY,ANY-method (dot-class), 10
[,dot,ANY,missing, ANY-method
(dot-class), 10
[,dot,ANY,missing-method (dot-class), 10
[,dot, function, function, ANY-method
(dot-class), 10
[,dot, function, function-method
(dot-class), 10
[,dot,matrix,matrix, ANY-method
(dot-class), 10
[,dot,matrix,matrix-method (dot-class),
10
[,dot,missing,ANY,ANY-method
(dot-class), 10
[,dot,missing,ANY-method (dot-class), 10
[,dot,missing,missing, ANY-method
(dot-class), 10
[,dot,missing,missing-method
(dot-class), 10
[,dot-method (dot-class), 10
[.dot (dot-class), 10
[.freealg (accessor), 5
[<-.freealg (accessor), 5

abelianize, 4

28

accessor, 5

accessors (accessor), 5
ad (adjoint), 6

aderiv (deriv), 8
adjoint, 6

all_pos (inverse), 17
as.freealg (freealg), 12

char_to_freealg (freealg), 12
coefficients (accessor), 5
coeffs, 12

coeffs (accessor), 5

coeffs<- (accessor), 5
commutator (dot-class), 10
constant, 5,7, 12, 19,27
constant<- (constant), 7

deg (grade), 14

degree (grade), 14

degrees (grade), 14

deriv, 8, 23

deriv_freealg (deriv), 8

dot (dot-class), 10
dot-class, 10

dot_error (dot-class), 10
drop, 11

drop, freealg-method (drop), 11

free_eq_free (Ops.freealg), 20
free_equal_free (Ops.freealg), 20
free_negative (Ops.freealg), 20
free_plus_free (Ops.freealg), 20
free_plus_numeric (Ops.freealg), 20
free_power_scalar (Ops.freealg), 20
free_times_free (Ops.freealg), 20
free_times_scalar (Ops.freealg), 20
freealg, 12, 23

freealg-class, 14

freealg-package, 2
freealg_negative (Ops.freealg), 20



INDEX

grade, 14
grade<- (grade), 14
grades (grade), 14

horner, 16

inv (Ops.freealg), 20
inverse, 17

is.constant (constant), 7
is.freealg (freealg), 12
is.zero (zero), 26
is_ok_free (freealg), 12

jacobi (dot-class), 10
keep_pos (inverse), 17

length (nterms), 19

letters, 18

lettersymbols (letters), 18

linear, 18, 22

lowlevel_deriv (Ops.freealg), 20
lowlevel _diff (Ops.freealg), 20
lowlevel_diffn (Ops.freealg), 20
lowlevel_free_power (Ops.freealg), 20
lowlevel_free_prod (Ops.freealg), 20
lowlevel_free_sum (Ops.freealg), 20
lowlevel_simplify (Ops.freealg), 20
lowlevel_subs (Ops.freealg), 20

namechanger (subs), 25
natural_char_to_freealg (freealg), 12
nterms, 19

numeric_to_free (freealg), 12

ops (Ops.freealg), 20
Ops.freealg, 20

pepper, 21
print, 22

rfalg, 24

rfalgg (rfalg), 24
rfalggg (rfalg), 24
rfree (rfalg), 24
rfreealg (rfalg), 24

string_to_freealg (freealg), 12
subs, 25
substitute (subs), 25

29

subsu (subs), 25
vector_to_free (freealg), 12
words (accessor), 5

zero, 19, 26



	freealg-package
	abelianize
	accessor
	adjoint
	constant
	deriv
	dot-class
	drop
	freealg
	freealg-class
	grade
	horner
	inverse
	letters
	linear
	nterms
	Ops.freealg
	pepper
	print
	rfalg
	subs
	zero
	Index

