Package ‘frair’

April 10, 2025
Type Package
Title Tools for Functional Response Analysis
Version 0.5.203
Date 2025-04-10
Description Tools to support sensible statistics for functional response analysis.
Depends R (>=3.0.0), stats4, bbmle
Imports lamW (>= 1.0), boot, parallel, RcppParallel
License GPL-2
Suggests testthat
LazyData TRUE

URL https://github.com/dpritchard/frair

BugReports https://github.com/dpritchard/frair/issues
RoxygenNote 7.3.2
NeedsCompilation no

Author Daniel Pritchard [aut, cre],
Daniel Barrios-O'Neill [ctb],
Helene Bovy [ctb],

Rachel Paterson [ctb]

Maintainer Daniel Pritchard <daniel@pritchard.co>
Repository CRAN
Date/Publication 2025-04-10 07:20:02 UTC

Contents

frair-package
bythotrephes L e
drawpoly L e e
frair-deprecated e e e
frair_boot e

https://github.com/dpritchard/frair
https://github.com/dpritchard/frair/issues

2 bythotrephes

frair_boot_methods e 8
frair_compare L e e e e e e 10
frair _fit e e e e e 12
frair_fit_methods 16
frair_responses e e 17
frair_test e 18
frremdlIl e 20
fr flexp 22
fr flexpnr L 24
fr hassIIT e 26
fr_hassIIInr e 28
fr_hollingsII o e 30
frorogersIl 32
fr_typel e e e 34
GAMMATUS © . v v v v v o e 36

Index 38

frair-package Functional Response Analysis in R
Description

Tools to support sensible statistics for functional response analysis.

Details
The main workhorses are frair_test, frair_fit, frair_compare and frair_boot. These should
be the starting points for most users.

Author(s)

Development hosted on GitHub: https://github.com/dpritchard/frair
Please file bug reports at: https://github.com/dpritchard/frair/issues

bythotrephes Bythotrephes Functional Response Data

Description
Functional response dataset for Bythotrephes spp. (water fleas) preying on prey items of different
sizes.

Usage

data(bythotrephes)

https://github.com/dpritchard/frair
https://github.com/dpritchard/frair/issues

drawpoly

Format

A dataframe with the following structure:

density:
eaten:
alive:
size:

Details

An integer. The initial density of prey

An integer. The number of prey eaten

An integer. The number of prey left alive

A factor with levels ’small’, 'medium’ and ’large’. The size of prey items.

Bythotrephes spp. (water fleas) preying on prey items of different sizes. Prey were not replaced
during the experiment and total experimental time was 12 hours. Provides a example dataset for
type-III and flexible exponent models.

Source

Daniel Barrios-O’Neill.

Examples

data(bythotrephes)
str(bythotrephes)

with(bythotrephes,

plot(density, eaten, type='n',

xlab="'Density', ylab='No. Prey Eaten'))
with(bythotrephes[bythotrephes$size=="'1large',],
points(density-0.2, eaten, pch=20, col=rgh(0.5,0,0,0.4)))
with(bythotrephes[bythotrephes$size=="'medium',],
points(density, eaten, pch=20, col=rgb(0,0.5,0,0.4)))
with(bythotrephes[bythotrephes$size=="small',],
points(density+@.2, eaten, pch=20, col=rgh(0,0,0.5,0.4)))

legend(1,12, c('Large', 'Medium', 'Small'), pch=20, bty = 'n',
col=c(rgh(0.5,0,0), rgb(0,0.5,0), rgh(0,0,0.5)))

drawpoly

Draw polygons

Description

Draw a closed polygon delineated by an "upper’ and "lower’ y limit.

Usage

drawpoly(x, upper, lower, ...)

4 frair-deprecated

Arguments
X The x values of the polygon
upper The upper ’edge’ of the polygon
lower The lower “edge’ of the polygon
Other arguments passed to polygon
Details

drawpoly is a generic method for drawing polygons where the polygon is drawn as:
polygon(x=c(x, rev(x), x[1]1), y=c(upper, rev(lower), upper[1])

i.e. a line following along the top edge (left-to-right along x) and back along the bottom edge
(right-to-left along x).

The specific method implemented here for FRAIR is drawpoly. frboot.

Author(s)

Daniel Pritchard

See Also

drawpoly. frboot

Examples

datx <- 1:6

upper <- datxx1.2

lower <- datx*0.8

plot(datx, datx, type='n', ylim=c(0,10), xlab='X", ylab='Y")
drawpoly(datx, upper, lower, col=2)

points(datx, datx, pch=20)

frair-deprecated Deprecated Functional Response Models

Description

A list of deprecated (i.e. no longer in use) functions / models.

Usage
bdII(...)
bdII_fit(...)
bdII_nll(...)

bdII_diff(...)
bdII_nll_diff(...)
real77r(...)

frair_boot 5

real77r_fit(...)
real77r_nll(...)
real77r_diff(...)
real77r_nll_diff(...)
real77(...)
real77_fit(...)
real77_nll(...)
real77_diff(...)
real77_nll_diff(...)
hassIIIr(...)
hassIIIr_fit(...)
hassIIIr_nll(...)
hassIIIr_diff(...)
hassIIIr_nll_diff(...)

Arguments

Items to pass through a deprecated function

Details

bdII, bdII_fitandbdII_nll were deprecated and removed from FRAIR in version 0.5. Although
internally consistent, this code did not actually model the Beddington-DeAngelis type-II curve, as
advertised. This code used in these functions was renamed emdIl. A correct implementation of the
Beddington-DeAngelis type-II curve (assuming replacement) will be added at some point in the
future.

The real77* family were deprecated and removed from FRAIR in version 0.5. These functions
were poorly specified, with unhelpful (that is to say: incorrect) definitions of the exponent term (q).
More sensible flexible exponent model specifications (flexp and flexpnr) have been added as a
replacement.

The hassIIIr model was renamed to hassIIInr in version 0.5. The previous name was confusing.
The new name better reflects that it is a 'non-replacement’ model.

Author(s)

Daniel Pritchard

frair_boot Bootstrap a predator-prey functional response.

Description

Bootstraps a previously fitted predator-prey functional response and returns data in a consistent,
predictable way, exposing some useful methods.

6 frair_boot

Usage

frair_boot(frfit, start=NULL, strata=NULL, nboot=999,
para=TRUE, ncores=NaN, WARN.ONLY=FALSE)

Arguments
frfit An object returned by frair_fit
start An optional named list. See Details.
strata A character string. Specifies a column in the original data.
nboot An integer. How many bootstraps to perform?
para A logical. Should the bootstrapping be performed in parallel?
ncores An integer. The number of cores to use for parallelisation. See Details.
WARN. ONLY A logical. If true some errors are suppressed. See Details.
Details

This function provides a simple, consistent way to generate bootstrapped estimates from a func-
tional response fit.

If start is not provided, starting values for the bootstrapping are drawn from the original fit. This
interface is provided so that a single set of starting parameters (e.g. a ’global’ estimate) can be used
when bootstrapping different functional response fits (e.g. different treatments).

Non-parametric bootstrapping and parallelisation is handled by boot from the boot package. Cur-
rently, if you request bootstrapped fits and para=TRUE (the default), then the function will attempt
to use all except one available core. Note this may affect performance of other tasks while the
bootstrap is underway!

If more than 10% of the bootstrapped fits fail, a warning is generated, and if more than 50% of the
fits fail, an error is thrown and nothing is returned. These are sensible defaults, but if you are very
sure that you know what you are doing, you can suppress this with WARN.ONLY=TRUE (a warning is
thrown instead).

Value

This function returns a named list of class frboot with the following named items:

call The original call to frair_fit.

X The original x data supplied to frair_fit.

y The original y data supplied to frair_fit.

response A string. The fitted response.

xvar A string. The right hand side of formula.

yvar A string. The left hand side of formula.

optimvars A character vector. The optimised values (passed to start).
fixedvars A character vector. The fixed values (passed to fixed).

coefficients A named numeric. All coefficients needed to draw the optimised curve.

frair_boot 7

sample A nboot-by-n numeric matrix. Where each row represents one bootstrap sample.
fit The raw object returned by the fitting procedure (response specific).
bootcoefs A named numeric matrix. The bootstrapped coefficients.

n_failed The number of failed fits.

n_duplicated The number of fits that were duplicates.
n_boot The number of (requested) bootstrapped fits.
stratified Was a stratified bootstrap performed?

Objects of class frboot have print, confint, plot, lines and drawpoly methods defined. See the help
for those methods for more information.

Author(s)

Daniel Pritchard

See Also

frair_boot_methods, frair_fit, fr_rogersII.

Examples

data(gammarus)
frair_responses() # See what is available

A typell fit
outll <- frair_fit(eaten~density, data=gammarus, response='rogersII',
start=list(a = 1.2, h = 0.015), fixed=1list(T=40/24))

Not run:
outIIb <- frair_boot(outII) # Slow
confint(outlIIlb)

Illustrate bootlines

plot(outIlb, x1lim=c(@,30), type='n', main='All bootstrapped lines')
lines(outIIb, all_lines=TRUE)

points(outIIb, pch=20, col=rgh(0,0,0,0.2))

Illustrate bootpolys

plot(outIlb, xlim=c(@,30), type='n', main='Empirical 95 percent CI')
drawpoly(outIIb, col=rgh(0,0.5,0))

points(outIlb, pch=20, col=rgb(0,0,0,0.2))

End(Not run)

8 frair_boot_methods

frair_boot_methods frair methods

Description

Documentation for methods for class frboot

Usage
S3 method for class 'frboot'
print(x, ...)
S3 method for class 'frboot'
confint(object, parm='all', level=0.95, ..., citypes='all')
S3 method for class 'frboot'
plot(x, xlab=x$xvar, ylab=x$yvar, ...)

S3 method for class 'frboot'

lines(x, all_lines=FALSE, tozero=FALSE, bootcol=1, bootalpha=1/sqrt(x$n_boot), ...
S3 method for class 'frboot'

drawpoly(x, ..., probs=c(0.025, 0.975), tozero=FALSE)

S3 method for class 'frconf'

print(x, ...)
Arguments
X, object Output from a call to frair_boot (or confint.frboot).
parm A character vector. Which parameter to get Cls for? See Details.
level A numeric. The confidence limit for ClIs.
citypes A character vector. What kind of CI? See Details.
all_lines A logical. Should the bootstrapped results be plotted? See Details.
tozero A logical. Should the line be drawn to the origin? See Details.
xlab Label for the x-axis.
ylab Label for the y-axis.
bootcol A valid colour for the bootstrapped lines.
bootalpha A numeric (0-1). A transparency for the (inevitably overlapping) lines.
probs Lower and upper tails for confidence interval polygons. See quantile.
Other items passed to underlying functions.
Details

This documents standard methods for FRAIR objects of class frboot. However, because standard
naming conventions have been used, some undocumented utility functions might also work (e.g.
coefficients)

frair_boot_methods 9

The code underlying confint.frboot is quite complex and relies heavily on the excellent work
done by Brian Ripley in boot . ci. Some of the complexity of boot. ci is hidden, but, like all FRAIR
objects you can access the original method by passing the output directly (e.g. boot.ci(object$fit)).

Like print.bootci the print() method for objects produced by print. frboot will report poten-
tially unstable intervals. However, these are calculated and returned by confint. frboot, not when
print() is called (see Value, below). When calling confint.frboot you can request (a combi-
nation of) different intervals. The default 'all' is equivalent to c('norm', 'basic', 'stud’,
'perc', 'bca') which are the Normal approximation, Basic, Studentised, Percentile and BCa in-
tervals, respectively. Each has strengths and weaknesses which the user should be aware of.

lines and drawpoly only add lines or polygons to an existing plot, so an active graphics device
needs to be present. By default all is FALSE. The simple reason for this is because the code is a
little slow (on some devices), so currently it is an ’opt-in’ option.

drawpoly draws empirical confidence intervals. The intervals are constructed by evaluating every
set of bootstrapped coefficients at:

seq(from=min(x$x), to=max(x$x), length.out =50).
and then calculating the empirical confidence limits at each value of x by:
apply(val, 2, quantile, na.rm=T, probs=probs)

Note that this is a rough approximation of a bootstrapped confidence interval and does not account
for some of the intricacies (e.g. bootstrap bias) described in boot.ci.

Note also, that if tozero is TRUE, then both lines and drawpoly attempt to draw to zero by
evaluating every set of bootstrapped coefficients at:

seq(from=0, to=max(x$x), length.out =50)

If the coefficients provided by a fit to the orginal data produce a value that is undefined at zero,
then these functions will plot lines to a small, non-zero number (1e-04) instead (with a warning).
However, this does not guarantee that all of the values produced by the bootstrapped coefficients
will produce sensible values. Clearly the intention here is to provide a nice-looking representation
of the fitted curve and it is up to the user to determine why their desired curve is undefined at zero.

Value

confint. frboot returns a nested list with m items at the top level and n items at the second level,
where m is the number of coefficients and n is the number of types of confidence intervals. Each
named object at the second level is a list containing:

lower The upper limit.
upper The lower limit.
bootciout The output from boot.ci (if successful; NA otherwise).

and optionally:

errors The error(s) encountered by boot.ci.
warnings The warning(s) encountered by boot. ci, plus a warning if extreme values were
used.

notes A comment on potential instability of intervals, if justified.

10 frair_compare

These last two items combine ’true’ warnings and the tests for interval stability described in print.bootci.

All confidence intervals are calculated on the original scale. If you want to calculate intervals on a
transformed scale, call boot . ci directly using the boot.ci(object$fit) syntax.

Author(s)

Daniel Pritchard

See Also

frair_boot, lines, polygon.

Examples

This example is not run to save CRAN build server time...
Not run:
data(gammarus)

Holling's is the wrong fit for these data based on the experimental design

But it runs more quickly, so is a useful demonstration

outhol <- frair_fit(eaten~density, data=gammarus, response='hollingsII',
start=list(a = 1, h = 0.08), fixed=1list(T=40/24))

outholb <- frair_boot(outhol)

confint(outholb)

Illustrate bootlines

plot(outholb, xlim=c(0,30), type='n', main='All bootstrapped lines')
lines(outholb, all_lines=TRUE)

points(outholb, pch=20, col=rgbh(0,0,0,0.2))

Illustrate bootpolys

plot(outholb, x1lim=c(0,30), type='n', main='Empirical 95 percent CI')
drawpoly(outholb, col=rgh(0,0.5,0))

points(outholb, pch=20, col=rgb(0,0,0,0.2))

End(Not run)

frair_compare Test the difference between two functional response fits

Description

Explicitly model, and then test, the difference between two functional response fits.

Usage

frair_compare(frfitl, frfit2, start = NULL)

frair_compare 11

Arguments

frfiti An object of class frfit

frfit2 An object of class frfit

start A named numeric list with starting values for the combined fit. See Details.
Details

This function provides a sensible test of the optimised coefficients between two functional responses
fitted by frair_fit. This is achieved by explicitly modelling a ’difference’ (delta) parameter for
each optimised variable following the advice outlined in Juliano (2001). Briefly, consider the fol-
lowing Hollings type-II model:

a*X*T/(1+a*Xxh)

the model containing delta parameters becomes:
(a-Da*grp)*X*T/(1+(a-Da*grp)*Xx(h-Dhxgrp))

where grp is a dummy coding variable and Da and Dh are the delta parameters. Here, the first func-
tional response fit (frfit1)is coded grp=0 and the second fit (frfit2) is coded grp=1. ThereforeDa
and Dh represent the difference between the two modelled coefficients and the standard output from
the maximum likelihood fitting explicitly tests the null hypothesis of no difference between the two
groups.

The difference model is re-fit to the combined data in frfit1 and frfit2 using the same maximum
likelihood approaches outlined in frair_fit.

This function could be seen as a less computationally intensive alternative to bootstrapping but
relies on mle2 successfully returning estimates of the standard error. mle2 does this by inverting a
Hessian matrix, a procedure which might not always be successful.

Future versions of FRAIR will look to improve the integration between mle2 and allow users ac-

cess to the various Hessian control parameters. In the meantime, the following delta functions are
exported so users can ’roll their own’ maximum likelihood implementation using this approach:

Original Function Difference Function Difference NLL Function

typel typel_diff typeI_nll_diff
hollingsII hollingsII_diff hollingsII_nll_diff
rogersII rogersII_diff rogersII_nll_diff
hassIII hassIII_diff hassIII_nll_diff
hassIIInr hassIIInr_diff hassIIInr_nll_diff
emdII emdII_diff emd_nll_diff

flexp flexp_diff flexp_nll_diff
flexpnr flexpnr_diff flexpnr_nll_diff

Value

Prints the results of the test to screen and invisibly returns on object of class frcompare inheriting
from class(list) containing:

frfiti The first FR fit, as supplied.
frfit2 The second FR fit, as supplied.
test_fit The output of the re-fitted model.

result Coefficients from the test that are otherwise printed to screen.

12 frair_fit

Author(s)
Daniel Pritchard

References

Juliano SA (2001) Nonlinear curve fitting: Predation and functional response curves. In: Scheiner
SM, Gurevitch J (eds). Design and analysis of ecological experiments. Oxford University Press,
Oxford, United Kingdom. pp 178-196.

See Also

frair_fit

Examples

data(gammarus)

pulex <- gammarus[gammarus$spp=='G.pulex',]
celt <- gammarus[gammarus$spp=='G.d.celticus',]

pulexfit <- frair_fit(eaten~density, data=pulex,
response='rogersII', start=list(a
fixed=1ist(T=40/24))

celtfit <- frair_fit(eaten~density, data=celt,
response='rogersII', start=list(a
fixed=1ist(T=40/24))

1.2, h = 0.015),

1
—_
N
>

1

0.015),

The following tests the null hypothesis that the

true difference between the coefficients is zero:

frair_compare(pulexfit, celtfit) # Reject null for 'h', do not reject for 'a'
Not run:

Provides a similar conclusion to bootstrapping followed by 95% CIs
pulexfit_b <- frair_boot(pulexfit)

celtfit_b <- frair_boot(celtfit)

confint(pulexfit_b)

confint(celtfit_b) # 'a' definitely overlaps

End(Not run)

frair_fit Fit predator-prey functional responses.

Description

Fits predator-prey functional responses and returns data in a consistent, predictable way, exposing
some useful methods.

frair_fit 13

Usage

frair_fit(formula, data, response, start=list(), fixed=NULL)

Arguments
formula A simple formula of the form y ~ x.
data The dataframe containing x and y.
response A string denoting the response to fit. See Details.
start A named list. Starting values for optimised parameters.
fixed A named list. Values that are not optimised.

Details

frair_fit is a utility function which helps users fit common non-linear predator-prey curves to
integer data. It uses maximum likelihood estimation, via mle2 from the bbmle package.

The response requested must be known to FRAIR. To establish what is supported, inspect the out-
put from frair_responses(). All parameters listed by frair_responses() (except X) must be
provided in either start or fixed and some guidance is given on the help pages for each function
about what should (and should not) be optimised.

Generally speaking fitting non-linear curves to ecological datasets can be challenging. Approaches
to fitting predator-prey functional response curves are described in further detail by Juliano (2001)
and Bolker (2008). Many of the pitfalls (along with very sound advice) in non-linear curve fitting
in general are described by Bolker et al. 2013. Users are directed there for more information.

Note that currently all fits encoded by FRAIR use the optim optimiser with a non-default number
of iterations (5000 [frair] vs. 500 [default]) and that all fits except typel use the ’Nelder-Mead’
method (see Note). This is different from the mle2 default, which currently (bbmle v. 1.0.15) uses
the " BFGS’ method.

mle2 is clever inasmuch as it will return fitted values even if inverting the Hessian matrix at the
optimum fails. However, this will result in a warning along the lines of:

Warning message:
In mle2(fit, start = start, fixed = fixed, data = list(X = dat$X,
couldn't invert Hessian

If this happens it could mean many things, but generally speaking it is indicative of a poor fit to the
data. You might consider:

* Checking the data for transcription errors or outliers

* Trying different starting values

* Trying a different (simpler) curve

* Fitting the curve outside of FRAIR using another optimiser or another approach (see the Note,
below)

* Collecting more data

Note that the advice given in mle2 to use the ’Nelder-Mead” method, is largely redundant because
this is already the default in FRAIR (though you could try the " BFGS’ method quite safely...)

If convergence (i.e. fitting) fails for other reasons, see the manual page of optim.

14 frair_fit

Value

This function returns a named list of class frfit with the following named items:

call The original call to frair_fit.

X The original x data supplied to frair_fit.

y The original y data supplied to frair_fit.

response A string. The fitted response.

xvar A string. The right hand side of formula.

yvar A string. The left hand side of formula.

optimvars A character vector. The optimised values (passed to start).
fixedvars A character vector. The fixed values (passed to fixed).

coefficients A named numeric. All coefficients needed to draw the optimised curve.
sample A numeric vector. Always samp=c(1:nrow(data)) (c.f. class frair_boot).
fit The raw object returned by mle2.

Objects of class frfit have print, plot and lines methods defined. See the help for those methods
for more information.

Note

Future versions will allow the user more control over the underlying fitting algorithms. In the
meantime FRAIR exports all of its (useful) functions so that users can fit the curves directly using
their preferred method if the defaults are undesirable. See the Examples for an illustration of this
approach.

Author(s)

Daniel Pritchard

References

Juliano SA (2001) Nonlinear curve fitting: Predation and functional response curves. In: Scheiner
SM, Gurevitch J (eds). Design and analysis of ecological experiments. Oxford University Press,
Oxford, United Kingdom. pp 178-196.

Bolker BM (2008) Ecological Models and Data in R. Princeton University Press, Princeton, NJ.

Bolker BM and others (2013) Strategies for fitting nonlinear ecological models in R, AD Model
Builder, and BUGS. Methods in Ecology and Evolution 4: 501-512. doi:10.1111/2041-210X.12044.

See Also

frair_boot, frair_responses, fr_rogersII.

frair_fit 15

Examples

data(gammarus)

frair_responses() # See what is available

A typell fit

outll <- frair_fit(eaten~density, data=gammarus, response='rogersII',
start=list(a = 1.2, h = 0.015), fixed=1list(T=40/24))

A linear fit
outl <- frair_fit(eaten~density, data=gammarus, response='typel',
start=1list(a=0.5), fixed=1list(T=40/24))

Visualise fits

plot(outIl, pch=20, col=rgb(0,0,0,0.2), xlim=c(0,30))
lines(outII)

lines(outI, 1lty=3)

Have a look at original fits returned by mle2 (xhighly* recommended)
summary (outII$fit)

summary (outI$fit)

Compare models using AIC

AIC(outI$fit,outII$fit)

Bythotrephes
data("bythotrephes”)
Fit several models and examine them using AIC.
b_flex <- frair_fit(eaten~density, data=bythotrephes,
response="flexpnr',
start=list(b = 1.2, q =0, h = 0.015),
fixed=1ist(T=12/24))
b_II <- frair_fit(eaten~density, data=bythotrephes,
response="'flexpnr',
start=list(b = 1.2, h 0.015),
fixed=1list(T=12/24, q = 0))
b_rogersII <- frair_fit(eaten~density, data=bythotrephes,
response="'rogersII',
start=list(a = 1.2, h = 0.015),
fixed=1list(T=12/24))
AIC(b_flexfit, b_IIfit, b_rogersII$fit)
AICtab(b_flexfit, b_IIfit, b_rogersII$fit)
b_II and b_rogersII are identical, by definition when q = @
b_flex is strongly preferred (delta AIC = 16.9)

The role of T
Users need to be aware that changing T will change
the units of fitted coefficients.
For example, with the Gammarus dataset:
g_T1 <- frair_fit(formula = eaten~density, data = gammarus,
response = "rogersIIl”,
start = list(a =2, h =0.1), fixed = list(T = 1))
g_Td <- frair_fit(formula = eaten~density, data = gammarus,
response = "rogersIIl”,

16 frair_fit_methods

start = list(a =1, h =0.1), fixed = 1list(T = 40/24))
g_Th <- frair_fit(formula = eaten~density, data = gammarus,
response = "rogersIIl”,
start = list(a = 0.05, h = 4), fixed = list(T = 40))
diff_t <- round(rbind(coef(g_T1), coef(g_Td), coef(g_Th)), 2)
row.names(diff_t) <- c("g_T1 (Experimental Time)", "g_Td (Days)", "g_Th (Hours)")
print(diff_t)

Not run:

Fitting curves outside of FRAIR

Many advanced users will not be satisfied with FRAIR current limitations.
To fit models outside FRAIR, you could proceed as follows:

Using mle2 or mle manually:
strt <- list(a = 1.2, h = 0.015)
fxd <- list(T=40/24)
dat <- list('X'=gammarus$density, 'Y'=gammarus$eaten)
manual_fit <- mle2(rogersII_nll, start=strt, fixed=fxd,
method="'SANN', data=dat)
Note that the SANN method is *notx a general-purpose algorithm,
but it will return *something*, so might be helpful for finding starting values.

Controlling iterations, optimisers, etc... See ?mle2 and ?optim

cntrl <- list(trace = 3, maxit = 1000)

manual_fit_2 <- mle2(rogersII_nll, start=strt, fixed=fxd,
method="'BFGS', data=dat, control=cntrl)

End(Not run)

frair_fit_methods frair methods

Description

Documentation for methods for class frfit

Usage
S3 method for class 'frfit'
print(x, ...)
S3 method for class 'frfit'
plot(x, xlab=x$xvar, ylab=x$yvar, ...)
S3 method for class 'frfit'
lines(x, tozero=FALSE, ...)
Arguments
X Output from a call to frair_fit.

xlab Label for the x-axis.

frair_responses 17

ylab Label for the y-axis.
tozero A logical. Should the line be drawn to the origin? See Details.

Other items passed to underlying functions.

Details

This documents standard methods for FRAIR objects of class frfit. However, because standard
naming conventions have been used, some undocumented utility functions might also work (e.g.
coefficients)

lines only adds lines to an existing plot, so an active graphics device needs to be present. lines
draws the curve for the fitted response evaluated at values:

seq(from=min(x$x), to=max(x$x), length.out =50) or

seq(from=0, to=max(x$x), length.out = 50) if tozero is TRUE.

If the supplied function is undefined at zero (and tozero is TRUE), then lines will plot lines to a
small, non-zero number (1e-04) instead (with a warning). Clearly the intention here is to provide a
nice-looking representation of the fitted curve and it is up to the user to determine why their desired
curve is undefined at zero.

Author(s)

Daniel Pritchard

See Also

frair_fit, lines.

Examples

data(gammarus)

outll <- frair_fit(eaten~density, data=gammarus, response='rogersII',
start=list(a = 1.2, h = 0.015), fixed=1list(T=40/24))

Visualise fit
plot(outIl, pch=20, col=rgb(0,0,0,0.2), xlim=c(Q,30))
lines(outIl)

frair_responses FRAIR responses

Description

Auvailable predator-prey functional responses.

Usage

frair_responses(show=TRUE)

18 frair_test

Arguments

show A logical. If TRUE, information is printed to screen and nothing is returned.

Details

frair_responses is both a vector of useful information (via show=TRUE) and a vehicle to keep
track of implemented functional responses. The latter is enforced by matching responses supplied
to frair_fit to the names returned by frair_responses(show=FALSE).

Author(s)

Daniel Pritchard

Examples

resp_known <- names(frair_responses(show=FALSE))
frair_responses(show=TRUE)

frair_test Test for evidence of type-II or type-III functional responses

Description

Implements the phenomenological test of type-II versus type-III functional responses described by
Juliano (2001)

Usage

frair_test(formula, data)
S3 method for class 'frtest'

print(x, ...)

Arguments
formula A simple formula of the form y ~ x.
data The dataframe containing x and y.
X Output from frair_test.

Other items passed to the print method.

frair_test 19

Details

This function wraps up an otherwise trivial test for type-II versus type-III functional responses in a
format consistent with the FRAIR syntax. It can be considered ’phenomenological’ inasmuch as it
tells the user if a type-II or type-III response is preferred, but not what form that curve should take
nor if it is sensible to fit such a curve via non-linear regression.

The test relies on the established principle that a logistic regression on the proportion of prey con-
sumed is a more sensitive test of functional response shape, especially at low prey densities, when
a non-linear curve may not be able to distinguish the subtle difference in curve shape.

The logic follows that on the proportion scale, a type-II response will show an increasing (i.e.
positive and statistically different from zero) initial slope with respect to density whereas a type-II1
response will show a negative slope, followed by a positive higher order slope.

The test proceeds by fitting two models:
glm(cbind(eaten,noteaten)~density, family="'binomial"')
glm(cbind(eaten,noteaten)~density+density*2, family="'binomial')

where eaten is the left hand side of the formula input, density is the right hand side and noteaten
is the difference between the two. The output from these models to determine which functional
response is preferred using the logic above.

Currently no consideration is given to a type-I (i.e. linear) response or any other potentially sensible
fit other than a type-II or type-IIl response. It is up to the user to decide if it is appropriate to continue
with fitting a mechanistic model of the functional response (i.e. frair_fit, frair_compare and/or
frair_boot) on the back of the results of this test.

Value

frair_test returns a list of class frtest with the following items:

call The original call to frair_test.
X The original x data supplied to frair_test.
y The proportion of prey eaten: y/x
xvar A string. The right hand side of formula.
yvar A string. Always 'Proportion’.
modT2 The output from the type-II glm
modT3 The output form the type-III glm
Author(s)
Daniel Pritchard
References

Juliano SA (2001) Nonlinear curve fitting: Predation and functional response curves. In: Scheiner
SM, Gurevitch J (eds). Design and analysis of ecological experiments. Oxford University Press,
Oxford, United Kingdom. pp 178-196.

20 fr_emdIl
See Also
frair_fit
Examples
data(gammarus)
frair_test(eaten~density, data=gammarus)
dat <- data.frame(x=1:100, y=floor(hassIII(1:100,b=0.01,c=0.001,h=0.03,T=1)))
frair_test(y~x, data=dat)
fr_emdII EMD Type Il Response
Description
The *Ecological Models and Data in R’ type-II decreasing prey function.
Usage
emdII_fit(data, samp, start, fixed, boot=FALSE, windows=FALSE)
emdII_nll(a, h, P, T, X, Y)
emdII(X, a, h, P, T)
Arguments
data A dataframe containing X and Y.
samp A vector specifying the rows of data to use in the fit. Provided by boot () or
manually, as required.
start A named list. Starting values for items to be optimised. Usually ’a’ and "h’.
fixed A names list. "Fixed data’ (not optimised). Usually P’ and "T".
boot A logical. Is the function being called for use by boot ()?
windows A logical. Is the operating system Microsoft Windows?
a, h Capture rate and handling time. Usually items to be optimised.
P, T P: Number of predators. T: Total time available
X The X variable. Usually prey density.
Y The Y variable. Usually the number of prey consumed.

fr_emdIl 21

Details
This implements the type-II functional response model described in detail in Bolker (2008). With
the exception of P these functions are identical to those used in rogersII.

The emdII function solves the random predator equation using the LambertW equation (using the
lambertWe function from the lamW package), giving:

X - lambertWo(a*hx X*xexp(-a* (P*T-h=*X)))/(a*h)

Note that generally speaking P is determined by the experimental design and is therefore usually
provided as a ’fixed’ variable. When P = 1 the results should be identical to those provided by
rogersII.

This is exactly the function in Chapter 8 of Bolker (2008), which in turn presents examples from
Vonesh and Bolker (2005). Users are directed there for more information.

None of these functions are designed to be called directly, though they are all exported so that the
user can call them directly if desired. The intention is that they are called via frair_fit, which
calls them in the order they are specified above.

emdII_fit does the heavy lifting and also pulls double duty as the statistic function for boot-
strapping (via boot () in the boot package). The windows argument if required to prevent needless
calls to require(frair) on platforms that can manage sane parallel processing.

The core fitting is done by mle2 from the bbmle package and users are directed there for more
information. mle2 uses the emdII_nll function to optimise emdII.

Further references and recommended reading can be found on the help page for frair_fit.

Author(s)
Daniel Pritchard

References

Vonesh JR, Bolker BM (2005) Compensatory larval responses shift trade-offs associated with predator-
induced hatching plasticity. Ecology 86: 1580-1591. doi:10.1890/04-0535.

Bolker, BM (2008) Ecological Models and Data in R. Princeton University Press, Princeton, NJ.

See Also

frair_fit.

Examples

data(gammarus)

fitP1 <- frair_fit(eaten~density, data=gammarus,

response="emdII', start=list(a = 1.2, h = 0.015),
fixed=list(T=40/24, P=1))

fitP2 <- frair_fit(eaten~density, data=gammarus,
response="emdII', start=list(a = 1.2, h = 0.015),

fixed=1ist(T=40/24, P=2))
Note that the coefficients are scaled to per prey item
coef (fitP1)

22 fr_flexp

coef (fitP2)

Should give identical answers to rogersII when P=1

rogll <- frair_fit(eaten~density, data=gammarus,
response='rogersIl', start=list(a = 1.2, h = 0.015),
fixed=1ist(T=40/24))

coef (fitP1)

coef(rogll)

stopifnot(coef (fitP1)[1]==coef(rogII)[1])
stopifnot(coef (fitP1)[2]==coef(roglI)[2])

fr_flexp Scaling Exponent Response, assuming replacement

Description

Scaling exponent response (assuming replacement) based on ideas dating back to Real (1977, at
least)

Usage

flexp_fit(data, samp, start, fixed, boot=FALSE, windows=FALSE)
flexp_nll(b, g, h, T, X, Y)
flexp(X, b, g, h, T)

Arguments

data A dataframe containing X and Y.

samp A vector specifying the rows of data to use in the fit. Provided by boot () or
manually, as required.

start A named list. Starting values for items to be optimised. Usually ’a’ and "h’.

fixed A names list. "Fixed data’ (not optimised). Usually *T".

boot A logical. Is the function being called for use by boot ()?

windows A logical. Is the operating system Microsoft Windows?

b,q, h The search coefficient (b), scaling exponent (¢) and the handling time (4). Usu-
ally items to be optimised.

T T, the total time available.

X The X variable. Usually prey density.

Y The Y variable. Usually the number of prey consumed.

fr_flexp 23

Details

This implements a type-II response with a scaling exponent on the capture rate (a), based on the
use of Hill’s exponents described by Real (1977). When ¢ > 0 the response becomes progressively
more 'type-III-ish’. Integer values of ¢ have useful interpretations based in enzymatic biochemistry
but have been extended to many other fields (e.g. Flynn et al. 1997), including functional re-
sponse analysis (Vucic-Pestic et al. 2010). Importantly, this function assumes that prey are replaced
throughout the experiment (c.f. flexpnr which does not).

The capture rate (a) follows the following relationship:

a=bX"1

and then (a) is used to calculate the number of prey eaten (Ne) following the same relationship as
hollingsII:

CLNOT

Ne=———
: 1+ aNgh

where b is a search coefficient and other coefficients are as defined in hollingsII. Indeed when
q = 0, then a = b and the relationship collapses to traditional type-II Holling’s Disc Equation.
There is, therefore, a useful test on ¢ = 0 in the summary of the fit.

None of these functions are designed to be called directly, though they are all exported so that the
user can call them directly if desired. The intention is that they are called via frair_fit, which
calls them in the order they are specified above.

flexp_fit does the heavy lifting and also pulls double duty as the statistic function for boot-
strapping (via boot () in the boot package). The windows argument if required to prevent needless
calls to require(frair) on platforms that can manage sane parallel processing.

The core fitting is done by mle2 from the bbmle package and users are directed there for more
information. mle2 uses the flexp_nll function to optimise flexp.

Further references and recommended reading can be found on the help page for frair_fit.

Author(s)
Daniel Pritchard

References

Real LA (1977) The Kinetics of Functional Response. The American Naturalist 111: 289-300.

Vucic-Pestic O, Rall BC, Kalinkat G, Brose U (2010) Allometric functional response model: body
masses constrain interaction strengths. Journal of Animal Ecology 79: 249-256. doi:10.1111/j.1365-
2656.2009.01622.x.

Flynn KJ, Fasham MIJR, Hipkin CR (1997) Modelling the interactions between ammonium and ni-
trate uptake in marine phytoplankton. Philosophical Transactions of the Royal Society B: Biological
Sciences 352: 1625-1645.

See Also

frair_fit, flexpnr.

24 fr_flexpnr

Examples

data(bythotrephes)

NB: The flexp model is not correct for the experimental design of the bythotrephes data

expofit <- frair_fit(eaten~density, data=bythotrephes,
response='flexp', start=list(b = 0.5, q =1, h = 0.15),
fixed=1ist(T=12/24))

Plot

plot(expofit)

lines(expofit, col=2)

Inspect
summary (expofit$fit)

fr_flexpnr Scaling Exponent Response, not assuming replacement

Description

Scaling exponent response (not assuming replacement) based on ideas dating back to Real (1977,
at least)

Usage

flexpnr_fit(data, samp, start, fixed, boot=FALSE, windows=FALSE)
flexpnr_nll(b, q, h, T, X, Y)
flexpnr(X, b, g, h, T)

Arguments

data A dataframe containing X and Y.

samp A vector specifying the rows of data to use in the fit. Provided by boot() or
manually, as required.

start A named list. Starting values for items to be optimised. Usually ’a’ and "h’.

fixed A names list. "Fixed data’ (not optimised). Usually "T".

boot A logical. Is the function being called for use by boot ()?

windows A logical. Is the operating system Microsoft Windows?

b,q, h The search coefficient (b), scaling exponent (g) and the handling time (4). Usu-
ally items to be optimised.

T T, the total time available.

X The X variable. Usually prey density.

Y The Y variable. Usually the number of prey consumed.

fr_flexpnr 25

Details

This combines a type-II non-replacement functional response (i.e. a Roger’s random predator equa-
tion) with a scaling exponent on the capture rate (a). This function is generalised from that described
in flexp relaxing the assumption that prey are replaced throughout the experiment.

The capture rate (a) follows the following relationship:

a=0bX1

and then (a) is used to calculate the number of prey eaten (Ne) following the same relationship as
rogersII:

N, = No(1 — e(a(Neh—T)))

where b is a search coefficient and other coefficients are as defined in rogersII. Because Ne appears
on both side of the equation, the solution is found using Lambert’s transcendental equation. FRAIR
uses the lambertWo function from the lamW package and the internal function is:

Ne <- X - lambertWo(a*hx X xexp(-a* (T-h=*X)))/(a*h)

where X = NO. When ¢ = 0, then a = b and the relationship collapses to traditional type-II
Rogers’ random predator equation. There is, therefore, a useful test on ¢ = 0 in the summary of the
fit.

None of these functions are designed to be called directly, though they are all exported so that the
user can call them directly if desired. The intention is that they are called via frair_fit, which
calls them in the order they are specified above.

flexpnr_fit does the heavy lifting and also pulls double duty as the statistic function for
bootstrapping (via boot() in the boot package). The windows argument if required to prevent
needless calls to require(frair) on platforms that can manage sane parallel processing.

The core fitting is done by mle2 from the bbmle package and users are directed there for more
information. mle2 uses the flexpnr_nll function to optimise flexpnr.

Further references and recommended reading can be found on the help page for frair_fit.

Author(s)

Daniel Pritchard

References

Real LA (1977) The Kinetics of Functional Response. The American Naturalist 111: 289-300.

See Also

frair_fit, flexp.

26 fr_hassIIl

Examples

A "type-II' example
data(gammarus)

rogfit <- frair_fit(eaten~density, data=gammarus,
response="rogersIl', start=list(a = 1.2, h = 0.015),
fixed=1ist(T=40/24))

expofit <- frair_fit(eaten~density, data=gammarus,
response="'flexpnr', start=list(b = 1.2, q =0, h =0.015),
fixed=1ist(T=40/24))

Plot

plot(rogfit)

lines(rogfit)

lines(expofit, col=2)

Inspect

summary (rogfit$fit)

summary (expofit$fit) # No evidence that q is different from zero...
AIC(rogfit$fit)

AIC(expofit$fit) # The exponent model is *notx preferred

A 'type-III' example
data(bythotrephes)

rogfit <- frair_fit(eaten~density, data=bythotrephes,
response='rogersII', start=list(a = 1.2, h = 0.015),
fixed=1ist(T=12/24))

expofit <- frair_fit(eaten~density, data=bythotrephes,
response='flexpnr', start=list(b = 1.2, q =0, h = 0.015),
fixed=1ist(T=12/24))

Plot

plot(rogfit)

lines(rogfit)

lines(expofit, col=2)

Inspect

summary (rogfit$fit)

summary (expofit$fit) # Some evidence that q is different from zero...
AIC(rogfit$fit)

AIC(expofit$fit) # The exponent model is preferred

fr_hassIII Hassell’s Type III Response

Description

Hassell’s original type-III response (assuming replacement)

fr_hassIIl 27

Usage
hassIII_fit(data, samp, start, fixed, boot=FALSE, windows=FALSE)
hassIII_nll(b, c, h, T, X, Y)
hassIII(X, b, c, h, T)
Arguments
data A data frame containing X and Y (at least).
samp A vector specifying the rows of data to use in the fit. Provided by boot () or
manually, as required.
start A named list. Starting values for items to be optimised. Usually b, ¢ and A.
fixed A names list. "Fixed data’ (not optimised). Usually 7.
boot A logical. Is the function being called for use by boot()?
windows A logical. Is the operating system Microsoft Windows?
b,c, h Hassel’s b and c, plus A, the handling time. Usually items to be optimised.
T T, the total time available.
X The X variable. Usually prey density.
Y The Y variable. Usually the number of prey consumed.
Details

This implements the original Hassel’s type-III functional response, assuming prey density is kept
constant (i.e. a ‘replacement’ experimental design). In practice, constant prey density might be an
unrealistic assumption, in which case users should consider the hassIIIr function instead.

In Hassel et al.’s original formulation, the capture rate a is assumed to vary with the prey density in
the following hyperbolic relationship:

a <= (b*X)/(1+c*X)

where b and c are coefficients to be fitted and X is the initial prey density. This is the initial
formulation of Hassell et al. (1977) and uses their naming conventions. The value for a is then used
within a traditional Holling’s disc equation (see hollingsII).

None of these functions are designed to be called directly, though they are all exported so that the
user can do so if desired. The intention is that they are called via frair_fit, which calls them in
the order they are specified above.

hassIII_fit does the heavy lifting and also pulls double duty as the statistic function for
bootstrapping (via boot() in the boot package). The windows argument if required to prevent
needless calls to require(frair) on platforms that can manage sane parallel processing.

The core fitting is done by mle2 from the bbmle package and users are directed there for more
information. mle2 uses the hassIII_nll function to optimise hassIII.

Further references and recommended reading can be found on the help page for frair_fit.

Author(s)
Daniel Pritchard

28 fr_hassllInr

References

Hassell M, Lawton J, Beddington J (1977) Sigmoid functional responses by invertebrate predators
and parasitoids. Journal of Animal Ecology 46: 249-262.

See Also

frair_fit.

Examples

datx <- rep(c(1,2,3,4,6,12,24,50,100), times=10)

datyl <- round(hassIII(X=datx,
b=0.08xrnorm(length(datx), mean=1, sd=0.1),
c=0.1*rnorm(length(datx), mean=1, sd=0.1),
h=0.1xrnorm(length(datx), mean=1, sd=0.1),
T=1),0)

daty2 <- round(hassIII(X=datx,
b=0.05*xrnorm(length(datx), mean=1, sd=0.1),
c=0.1*rnorm(length(datx), mean=1, sd=0.1),
h=0.2xrnorm(length(datx), mean=1, sd=0.1),
T=1),0)

dat <- data.frame(datx,datyl,daty2)

hassIII_1 <- frair_fit(datyl~datx, data=dat, response='hassIII',
start=1ist(b=0.05, c=0.1, h=0.1), fixed=list(T=1))

hassIII_2 <- frair_fit(daty2~datx, data=dat, response='hassIII',
start=1ist(b=0.05, c=0.1, h=0.1), fixed=list(T=1))

plot(c(0,100), c(0,15), type='n', xlab='Density', ylab='No. Eaten')
points(hassIII_1)

points(hassIII_2, col=4)

lines(hassIII_1)

lines(hassIII_2, col=4)

frair_compare(hassIII_1, hassIII_2)

fr_hassIIInr Hassell’s Type Il Response, without replacement

Description

Hassell’s type-III response (not assuming replacement)

Usage

hassIIInr_fit(data, samp, start, fixed, boot=FALSE, windows=FALSE)
hassIIInr_nll(b, c, h, T, X, Y)
hassIIInr(X, b, c, h, T)

fr_hassIIInr 29

Arguments
data A data frame containing X and Y (at least).
samp A vector specifying the rows of data to use in the fit. Provided by boot() or
manually, as required.
start A named list. Starting values for items to be optimised. Usually b, ¢ and h.
fixed A names list. "Fixed data’ (not optimised). Usually 7.
boot A logical. Is the function being called for use by boot ()?
windows A logical. Is the operating system Microsoft Windows?
b,c, h Hassel’s b and c, plus #, the handling time. Usually items to be optimised.
T T, the total time available.
X The X variable. Usually prey density.
Y The Y variable. Usually the number of prey consumed.
Details

This implements Hassel’s Type-III extension to the ‘random predator’ functional response. This
does not assume prey are replaced throughout the experiment (c.f. hassIII). The number of prey
eaten (Ne) follow the same relationship defined for the Roger’s Type-II response, however the cap-
ture rate (a) is assumed to vary with prey density in the following hyperbolic relationship:

a <- (b*X)/(1+c*X)

where b and c are coefficients to be fitted and X is the initial prey density. This is the initial
formulation of Hassell et al. (1977) and uses their naming conventions. The value for a is then used
within the Roger’s Type-II 'random predator’ equation (see rogersII).

None of these functions are designed to be called directly, though they are all exported so that the
user can do so if desired. The intention is that they are called via frair_fit, which calls them in
the order they are specified above.

hassIIInr_fit does the heavy lifting and also pulls double duty as the statistic function for
bootstrapping (via boot() in the boot package). The windows argument if required to prevent
needless calls to require(frair) on platforms that can manage sane parallel processing.

The core fitting is done by mle2 from the bbmle package and users are directed there for more
information. mle2 uses the hassIIInr_nll function to optimise hassIIInr.

Further references and recommended reading can be found on the help page for frair_fit.

Author(s)
Daniel Pritchard

References

Hassell M, Lawton J, Beddington J (1977) Sigmoid functional responses by invertebrate predators
and parasitoids. Journal of Animal Ecology 46: 249-262.

See Also

frair_fit.

30 fr_hollingsIT

Examples

datx <- rep(c(1,2,3,4,6,12,24,50,100), times=10)

datyl <- round(hassIIInr(X=datx,
b=0.08*rnorm(length(datx), mean=1, sd=0.1),
c=0.1*rnorm(length(datx), mean=1, sd=0.1),
h=0.08*rnorm(length(datx), mean=1, sd=0.1),
T=1),0)

daty2 <- round(hassIIInr(X=datx,
b=0.05*xrnorm(length(datx), mean=1, sd=0.1),
c=0.08xrnorm(length(datx), mean=1, sd=0.1),
h=0.1xrnorm(length(datx), mean=1, sd=0.1),
T=1),0)

dat <- data.frame(datx,daty1,daty2)

hassIIInr_1 <- frair_fit(datyl~datx, data=dat, response='hassIIInr',
start=1ist(b=0.05, c=0.1, h=0.1), fixed=list(T=1))

hassIIInr_2 <- frair_fit(daty2~datx, data=dat, response='hassIIInr',
start=1ist(b=0.05, c=0.1, h=0.1), fixed=1list(T=1))

plot(c(0,100), c(0,15), type='n', xlab='Density', ylab='No. Eaten')
points(hassIIInr_1)

points(hassIIInr_2, col=4)

lines(hassIIInr_1)

lines(hassIIInr_2, col=4)

frair_compare(hassIIInr_1, hassIIInr_2)

fr_hollingsII Holling’s Original Type Il Response

Description

Holling’s Type II predator-prey function.

Usage
hollingsII_fit(data, samp, start, fixed, boot=FALSE, windows=FALSE)
hollingsII_nll(a, h, T, X, Y)
hollingsII(X, a, h, T)
Arguments
data A dataframe containing X and Y.
samp A vector specifying the rows of data to use in the fit. Provided by boot() or
manually, as required.
start A named list. Starting values for items to be optimised. Usually ’a’ and "h’.

fixed A names list. "Fixed data’ (not optimised). Usually "T’.

fr_hollingsIT 31

boot A logical. Is the function being called for use by boot()?

windows A logical. Is the operating system Microsoft Windows?

a, h Capture rate and handling time. Usually items to be optimised.

T T, the total time available.

X The X variable. Usually prey density.

Y The Y variable. Usually the number of prey consumed.
Details

This implements the Hollings original type-II functional response, otherwise known as the ’disc
equation’. An important assumption of this equation is that prey density remains constant (i.e. a
‘replacement’ experimental design). In practice this is often not the case and often the Roger’s
’random predator’ equation may be more appropriate (see rogersII).

In Holling’s original formulation the number of prey eaten (Ne) follows the relationship:

G,N()T

N, = 20
1+ aNgh

Where NN is the initial number of prey and a, h and T are the capture rate, handling time and the
total time available, receptively. It is implemented internally in FRAIR as:

Ne <- (axX*T)/(1+a*Xxh)
where X = Nj.

None of these functions are designed to be called directly, though they are all exported so that the
user can call them directly if desired. The intention is that they are called via frair_fit, which
calls them in the order they are specified above.

rogersII_fit does the heavy lifting and also pulls double duty as the statistic function for
bootstrapping (via boot() in the boot package). The windows argument if required to prevent
needless calls to require(frair) on platforms that can manage sane parallel processing.

The core fitting is done by mle2 from the bbmle package and users are directed there for more
information. mle2 uses the rogersII_nll function to optimise rogersII.

Further references and recommended reading can be found on the help page for frair_fit.

Author(s)

Daniel Pritchard

References

Bolker BM (2008) Ecological Models and Data in R. Princeton University Press, Princeton, NJ.

See Also

frair_fit.

32 fr_rogersIl

Examples

datx <- rep(c(1,2,3,4,6,12,24,50,100), times=10)

datyl <- round(hollingsII(X=datx,
a=0.75xrnorm(length(datx), mean=1, sd=0.1),
h=0.1xrnorm(length(datx), mean=1, sd=0.1),
T=1),0)

daty2 <- round(hollingsII(X=datx,
a=0.75xrnorm(length(datx), mean=1, sd=0.1),
h=0.01xrnorm(length(datx), mean=1, sd=0.1),
T=1),0)

dat <- data.frame(datx,daty1,daty2)

hollII_1 <- frair_fit(datyl~datx, data=dat, response='hollingsII',
start=list(a=1, h=0.1), fixed=1list(T=1))

hollII_2 <- frair_fit(daty2~datx, data=dat, response='hollingsII',
start=list(a=1, h=0.01), fixed=1list(T=1))

plot(c(@,100), c(0,40), type='n', xlab='Density', ylab='No. Eaten')
points(hollII_1)

points(hollII_2, col=4)

lines(hollII_1)

lines(hollII_2, col=4)

frair_compare(hollII_1, hollII_2)

fr_rogersII Rogers’ Type Il Response

Description

Rogers’ Type II decreasing prey function.

Usage
rogersII_fit(data, samp, start, fixed, boot=FALSE, windows=FALSE)
rogersII_nll(a, h, T, X, Y)
rogersII(X, a, h, T)
Arguments
data A dataframe containing X and Y.
samp A vector specifying the rows of data to use in the fit. Provided by boot() or
manually, as required.
start A named list. Starting values for items to be optimised. Usually ’a’ and "h’.
fixed A names list. "Fixed data’ (not optimised). Usually "T’.

boot A logical. Is the function being called for use by boot ()?

fr_rogersIl 33

windows A logical. Is the operating system Microsoft Windows?

a, h Capture rate and handling time. Usually items to be optimised.

T T, the total time available.

X The X variable. Usually prey density.

Y The Y variable. Usually the number of prey consumed.
Details

This implements the Rogers’ ‘random predator’ type-II functional response. This does not assume
prey are replaced throughout the experiment (c.f. hollingsII). The number of prey eaten (IV.)
follows the relationship:

N, = No(1 — e(a(Neh—T)))

Where N is the initial number of prey and a, h and T are the capture rate, handling time and the
total time available, respectively. The fact that N, appears on both side of the equation, poses some
problems, but can be efficiently dealt with using Lambert’s transcendental equation (Bolker, 2008).
FRAIR uses the lambertWo function from the lamW package and uses this function internally as:

Ne <- X - lambertWd(a* h*x X xexp(-ax (T-h=*X)))/(a*h)
where X = Ny. For further information users are directed to Chapter 8 (and preceding chapters, if
needed) of Bolker (2008) where this approach is discussed in depth. Note that Bolker (2008) uses

an implementation that ’partitions’ the a and / coefficients between multiple prey items. This code
is implemented in FRAIR as emdII.

None of these functions are designed to be called directly, though they are all exported so that the
user can call them directly if desired. The intention is that they are called via frair_fit, which
calls them in the order they are specified above.

hollingsII_fit does the heavy lifting and also pulls double duty as the statistic function for
bootstrapping (via boot() in the boot package). The windows argument if required to prevent
needless calls to require(frair) on platforms that can manage sane parallel processing.

The core fitting is done by mle2 from the bbmle package and users are directed there for more
information. mle2 uses the rogersII_nll function to optimise rogersII.

Further references and recommended reading can be found on the help page for frair_fit.

Note
Note that although Rogers (1972) is the most commonly cited reference for this equation, Royama
(1971) described it one year earlier than Rogers and thus should also be given credit.

Author(s)

Daniel Pritchard

References

Bolker BM (2008) Ecological Models and Data in R. Princeton University Press, Princeton, NJ.
Rogers, D. (1972). Random search and insect population models. The Journal of Animal Ecol-
ogy, 369-383. Royama, T. (1971). A comparative study of models for predation and parasitism.
Researches on Population Ecology, 13, 1-91.

34 fr_typel

See Also

frair_fit.

Examples

data(gammarus)

pulex <- gammarus[gammarus$spp=='G.pulex',]
celt <- gammarus[gammarus$spp=='G.d.celticus"',]

pulexfit <- frair_fit(eaten~density, data=pulex,

response="rogersIl', start=list(a = 1.2, h = 0.015),
fixed=1ist(T=40/24))

celtfit <- frair_fit(eaten~density, data=celt,
response="rogersIl', start=list(a = 1.2, h = 0.015),

fixed=1ist(T=40/24))

plot(c(9,30), c(0,30), type='n', xlab='Density', ylab='No. Eaten')
points(pulexfit)

points(celtfit, col=4)

lines(pulexfit)

lines(celtfit, col=4)

frair_compare(pulexfit, celtfit)

Not run:

pulexfit_b <- frair_boot(pulexfit)
celtfit_b <- frair_boot(celtfit)
confint(pulexfit_b)
confint(celtfit_b)

End(Not run)

fr_typel Type I Response

Description

A generic type-I (linear) response.

Usage

typel_fit(data, samp, start, fixed, boot=FALSE, windows=FALSE)
typeI_nll(a, T, X, Y)
typeI(X, a, T)

fr_typel

Arguments

data

samp

start
fixed
boot
windows

a
T
X
Y

Details

35

A dataframe containing X and Y.

A vector specifying the rows of data to use in the fit. Provided by boot() or
manually, as required.

A named list. Starting values for items to be optimised. Usually ’a’.
A names list. "Fixed data’ (not optimised). Usually "T".

A logical. Is the function being called for use by boot ()?

A logical. Is the operating system Microsoft Windows?

The capture rate

T: Total time available

The X variable. Usually prey density.

The Y variable. Usually the number of prey consumed.

This implements a simple type-I, or linear functional response. This is helpful when the response is
known (or suspected) to be handling time independent. It is implemented as:

N, = aNoT

where a is the capture rate, 7 is the total time available and Ny (== X) is the initial prey density.

None of these functions are designed to be called directly, though they are all exported so that the
user can call them directly if desired. The intention is that they are called via frair_fit, which
calls them in the order they are specified above.

typeI_fit does the heavy lifting and also pulls double duty as the statistic function for boot-
strapping (via boot () in the boot package). The windows argument if required to prevent needless
calls to require(frair) on platforms that can manage sane parallel processing.

The core fitting is done by mle2 from the bbmle package and users are directed there for more
information. mle2 uses the typeI_nll function to optimise typel.

Further references and recommended reading can be found on the help page for frair_fit.

Author(s)

Daniel Pritchard

See Also

frair_fit.

36 gammarus

Examples

datx <- rep(1:60, times=5)

r1 <- rnorm(60*5, mean = 0.25, sd = 0.1)
r2 <- rnorm(60x5, mean = 0.75, sd = 0.1)
rifr1>1] <=1

r2[r2>1] <- 1

daty1l <- abs(round(rixdatx, 0))

daty2 <- abs(round(r2xdatx, 0))

dat <- data.frame(datx,daty1,daty2)

TI1 <- frair_fit(datyl~datx, data=dat, response='typel',
start=1list(a=0.5), fixed=1list(T=1))

TI2 <- frair_fit(daty2~datx, data=dat, response='typel',
start=1list(a=0.5), fixed=1list(T=1))

plot(c(0,60), c(0,60), type='n', xlab='Density', ylab='No. Eaten')
points(TI1)

points(TI2, col=4)

lines(TI1)

lines(TI2, col=4)

Test with frair_compare
frair_compare(TI1, TI2)

Not run:

Test with a big stick
TI1lb <- frair_boot(TI1)
TI2b <- frair_boot(TI2)
confint(TI1b)
confint(TI2b)

plot(c(0,60), c(0,60), type='n', xlab='Density', ylab='No. Eaten')
drawpoly(TI1b, col=1)

drawpoly(TI2b, col=4)

points(TI1b, pch=20)

points(TI2b, pch=20, col=4)

End(Not run)

gammarus Gammarus Functional Response Data

Description
Functional response dataset for two species of Gammarus spp. (freshwater amphipods) eating
Simulium spp. (black fly) larvae.

Usage

data(gammarus)

gammarus

Format

37

A dataframe with the following structure:

density:
eaten:
alive:

Spp:

Details

An integer. The initial density of prey

An integer. The number of prey eaten

An integer. The number of prey left alive

A factor with levels G.d.celticus and G. pulex. The species of predator.

This dataset is a stripped-down version of that presented in Paterson et al. 2014. It contains only
Simulium spp. data with all other treatments (other than predator identity) pooled. The predators
are amphipods which are either native (Gammarus duebeni celticus) or invasive (Gammarus pulex)
to waterways in Ireland. Total experimental time was 40 hours.

Source

Paterson RA, Dick JTA, Pritchard DW, Ennis M, Hatcher MJ & Dunn AM. 2014. Predicting in-
vasive species impacts: community module functional response experiments reveal context depen-
dencies. Journal of Animal Ecology 84:453-463 doi:1111/1365-2656.12292

Examples

data(gammarus)

str(gammarus)

with(gammarus,

plot(density, eaten, type='n',
xlab="'Density', ylab='No. Prey Eaten'))
with(gammarus[gammarus$spp=='G.d.celticus',],
points(density-0.2, eaten, pch=20, col=rgh(0,0.5,0,0.2)))
with(gammarus[gammarus$spp=="'G.pulex',],
points(density+@.2, eaten, pch=20, col=rgh(0.5,0,0,0.2)))

legend(2,20, c('Native', 'Invasive'), pch=20,
col=c(rgh(0,0.5,0), rgh(0.5,0,0)))

Index

+ datasets
bythotrephes, 2
gammarus, 36

bdII (frair-deprecated), 4
bdII_diff (frair-deprecated), 4
bdII_fit (frair-deprecated), 4
bdII_nll (frair-deprecated), 4
bdII_nll_diff (frair-deprecated), 4
boot, 6

boot.ci, 9, 10

bythotrephes, 2

coefficients, 8, 17
confint.frboot (frair_boot_methods), 8

drawpoly, 3
drawpoly.frboot, 4
drawpoly.frboot (frair_boot_methods), 8

emdII, 5, 11,33

emdII (fr_emdII), 20

emdII_diff (frair_compare), 10
emdII_fit (fr_emdII), 20

emdII_nll (fr_emdII), 20
emdII_nll_diff (frair_compare), 10

flexp, 5, 11,25

flexp (fr_flexp), 22

flexp_diff (frair_compare), 10
flexp_fit (fr_flexp), 22

flexp_nll (fr_flexp), 22
flexp_nll_diff (frair_compare), 10
flexpnr, 5, 11,23

flexpnr (fr_flexpnr), 24
flexpnr_diff (frair_compare), 10
flexpnr_fit (fr_flexpnr), 24
flexpnr_nll (fr_flexpnr), 24
flexpnr_nll_diff (frair_compare), 10
for those methods, 7, 14

fr_bdII (frair-deprecated), 4

38

fr_emdII, 20

fr_flexp, 22

fr_flexpnr, 24

fr_hassIII, 26

fr_hassIIInr, 28

fr_hassIIIr (frair-deprecated), 4

fr_hollingsII, 30

fr_real77 (frair-deprecated), 4

fr_real77r (frair-deprecated), 4

fr_rogersll, 7, 14,32

fr_typel, 34

frair (frair-package), 2

frair-deprecated, 4

frair-package, 2

frair_boot, 2, 5, 10, 14, 19

frair_boot_methods, 7, 8

frair_compare, 2, 10, 19

frair_fit, 2,6, 7,11, 12,12,17-21, 23, 25,
27-29, 31, 33-35

frair_fit_methods, 16

frair_responses, 14,17

frair_test, 2, 18

gammarus, 36

hassIII, /1,29

hassIII (fr_hassIII), 26
hassIII_diff (frair_compare), 10
hassIII_fit (fr_hassIII), 26
hassIII_nll (fr_hassIII), 26
hassIII_nll_diff (frair_compare), 10
hassIIInr,5, 11

hassIIInr (fr_hassIIInr), 28
hassIIInr_diff (frair_compare), 10
hassIIInr_fit (fr_hassIIInr), 28
hassIIInr_nll (fr_hassIIInr), 28
hassIIInr_nll_diff (frair_compare), 10
hassIIIr, 27

hassIIIr (frair-deprecated), 4
hassIIIr_diff (frair-deprecated), 4

INDEX

hassIIIr_fit (frair-deprecated), 4
hassIIIr_nll (frair-deprecated), 4
hassIIIr_nll_diff (frair-deprecated), 4
Holling’s Disc Equation, 23
hollingsII, 11,23,27,33

hollingsII (fr_hollingsII), 30
hollingsII_diff (frair_compare), 10
hollingsII_fit (fr_hollingsII), 30
hollingsII_nll (fr_hollingsII), 30
hollingsII_nll_diff (frair_compare), 10

lambertWo, 21, 25, 33

lines, 10,17

lines.frboot (frair_boot_methods), 8
lines.frfit (frair_fit_methods), 16

mle2, 11,13, 14,21, 23, 25,27, 29, 31, 33, 35
optim, /13

plot.frboot (frair_boot_methods), 8
plot.frfit (frair_fit_methods), 16
polygon, 10

print.bootci, 9, 10

print.frboot (frair_boot_methods), 8
print.frconf (frair_boot_methods), 8
print.frfit (frair_fit_methods), 16
print.frtest (frair_test), 18

quantile, 8

real77 (frair-deprecated), 4
real77_diff (frair-deprecated), 4
real77_fit (frair-deprecated), 4
real77_nll (frair-deprecated), 4
real77_nll_diff (frair-deprecated), 4
real77r (frair-deprecated), 4
real77r_diff (frair-deprecated), 4
real77r_fit (frair-deprecated), 4
real77r_nll (frair-deprecated), 4
real77r_nll_diff (frair-deprecated), 4
Roger’s random predator equation, 25
rogersllI, /1,21, 25,29, 31

rogersII (fr_rogersII), 32
rogersII_diff (frair_compare), 10
rogersII_fit (fr_rogerslII), 32
rogersII_nll (fr_rogersII), 32
rogersII_nll_diff (frair_compare), 10

the Roger’s Type-II response, 29

typel, 11

typel (fr_typel), 34

typeI_diff (frair_compare), 10
typel_fit (fr_typel), 34

typel_nll (fr_typel), 34
typeI_nll_diff (frair_compare), 10

39

	frair-package
	bythotrephes
	drawpoly
	frair-deprecated
	frair_boot
	frair_boot_methods
	frair_compare
	frair_fit
	frair_fit_methods
	frair_responses
	frair_test
	fr_emdII
	fr_flexp
	fr_flexpnr
	fr_hassIII
	fr_hassIIInr
	fr_hollingsII
	fr_rogersII
	fr_typeI
	gammarus
	Index

