Package ‘fracdiff’

February 1, 2024
Version 1.5-3

VersionNote Released 1.5-0 on 2019-12-09, 1.5-1 on 2020-01-20, 1.5-2
on 2022-10-31

Date 2024-02-01
Title Fractionally Differenced ARIMA aka ARFIMA(P,d,q) Models

Description Maximum likelihood estimation of the parameters of a fractionally
differenced ARIMA(p,d,q) model (Haslett and Raftery, Appl.Statistics, 1989);
including inference and basic methods. Some alternative algorithms to estimate ~“H".

Imports stats
Suggests longmemo, forecast, urca

License GPL (>=2)
URL https://github.com/mmaechler/fracdiff

BugReports https://github.com/mmaechler/fracdiff/issues
Encoding UTF-8
NeedsCompilation yes

Author Martin Maechler [aut, cre] (<https://orcid.org/0000-0002-8685-9910>),

Chris Fraley [ctb, cph] (S original; Fortran code),

Friedrich Leisch [ctb] (R port,
<https://orcid.org/0000-0001-7278-1983>),

Valderio Reisen [ctb] (fdGPH() & fdSperio()),

Artur Lemonte [ctb] (fdGPH() & fdSperio()),

Rob Hyndman [ctb] (residuals() & fitted(),
<https://orcid.org/0000-0002-2140-5352>)

Maintainer Martin Maechler <maechler@stat.math.ethz.ch>
Repository CRAN
Date/Publication 2024-02-01 10:00:02 UTC

https://github.com/mmaechler/fracdiff
https://github.com/mmaechler/fracdiff/issues
https://orcid.org/0000-0002-8685-9910
https://orcid.org/0000-0001-7278-1983
https://orcid.org/0000-0002-2140-5352

2 confint.fracdiff

R topics documented:

confint.fracdiff 2
diffseries e e e 3
fAGPH e 4
fdSperio L 5
fracdiff e 6
fracdiff-methods 9
fracdiff.sim e 10
fracdiff.var e 12

Index 14

confint.fracdiff Confidence Intervals for Fracdiff Model Parameters
Description

Computes (Wald) confidence intervals for one or more parameters in a fitted fracdiff model, see
fracdiff.

Usage
S3 method for class 'fracdiff'
confint(object, parm, level = 0.95, ...)
Arguments
object an object of class fracdiff, typically result of fracdiff(..).
parm a specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.
level the confidence level required.

additional argument(s) for methods.

Value
A matrix (or vector) with columns giving lower and upper confidence limits for each parameter.
These will be labelled as (1-level)/2 and 1 - (1-level)/2 in % (by default 2.5% and 97.5%).
Warning

As these confidence intervals use the standard errors returned by fracdiff () (which are based on
finite difference approximations to the Hessian) they may end up being much too narrow, see the
example in fracdiff.var.

Author(s)

Spencer Graves posted the initial version to R-help.

diffseries 3

See Also
the generic confint; fracdiff model fitting, notably fracdiff.var() for re-estimating the variance-

covariance matrix on which confint () builds entirely.

Examples

set.seed(101)

ts2 <- fracdiff.sim(5000, ar = .2, ma = -.4, d = .3)
mFD <- fracdiff(ts2$series, nar = length(ts2$ar), nma = length(ts2$ma))
coef (mFD)
confint(mFD)
diffseries Fractionally Differenciate Data
Description

Differenciates the time series data using the approximated binomial expression of the long-memory
filter and an estimate of the memory parameter in the ARFIMA(p,d,q) model.

Usage
diffseries(x, d)

Arguments

X numeric vector or univariate time series.

d number specifiying the fractional difference order.
Details

Since 2018, we are using (an important correction of) the fast algorithm based on the discrete
Fourier transform (fft) by Jensen and Nielsen which is significantly faster for large n = length(x).

Value

the fractionally differenced series x.

Author(s)

Valderio A. Reisen <valderio@cce.ufes.br> and Artur J. Lemonte (first slow version), now hid-
den as diffseries.@().

Current version: Jensen and Nielsen (2014); tweaks by Martin Maechler, 2018.

4 fdGPH

References

See those in fdSperio; additionally

Reisen, V. A. and Lopes, S. (1999) Some simulations and applications of forecasting long-memory
time series models; Journal of Statistical Planning and Inference 80, 269-287.

Reisen, V. A. Cribari-Neto, F. and Jensen, M.J. (2003) Long Memory Inflationary Dynamics. The
case of Brazil. Studies in Nonlinear Dynamics and Econometrics 7(3), 1-16.

Jensen, Andreas Noack and Nielsen, Morten @rregaard (2014) A Fast Fractional Difference Algo-
rithm. Journal of Time Series Analysis 35(5), 428-436; doi:10.1111/jtsa.12074.

See Also

fracdiff.sim

Examples

memory.long <- fracdiff.sim(80, d = 0.3)
str(mGPH <- fdGPH(memory.long$series))

r <- diffseries(memory.long$series, d = mGPH$d)
#acf(r) # shouldn't show structure - ideally

fdGPH Geweke and Porter-Hudak Estimator for ARFIMA(p,d,q)

Description

Estimate the fractional (or “memory”’) parameter d in the ARFIMA(p,d,q) model by the method of
Geweke and Porter-Hudak (GPH). The GPH estimator is based on the regression equation using the
periodogram function as an estimate of the spectral density.

Usage
fdGPH(x, bandw.exp = 0.5)

Arguments

X univariate time series

bandw. exp the bandwidth used in the regression equation
Details

The function also provides the asymptotic standard deviation and the standard error deviation of the
fractional estimator.

The bandwidth is bw = trunc(n * bandw.exp), where 0 < bandw.exp < 1 and n is the sample size.
Default bandw.exp =0.5.

https://doi.org/10.1111/jtsa.12074

fdSperio 5

Value
d GPH estimate
sd.as asymptotic standard deviation
sd.reg standard error deviation
Author(s)

Valderio A. Reisen and Artur J. Lemonte

References

see those in fdSperio.

See Also
fdSperio, fracdiff

Examples

memory.long <- fracdiff.sim(1500, d = 0.3)
fdGPH(memory. long$series)

fdSperio Sperio Estimate for ’d’ in ARFIMA(p,d,q)

Description

This function makes use Reisen (1994) estimator to estimate the memory parameter d in the ARFIMA(p,d,q)
model. It is based on the regression equation using the smoothed periodogram function as an esti-
mate of the spectral density.

Usage
fdSperio(x, bandw.exp = 0.5, beta = 0.9)

Arguments
X univariate time series data.
bandw. exp numeric: exponent of the bandwidth used in the regression equation.
beta numeric: exponent of the bandwidth used in the lag Parzen window.
Details

The function also provides the asymptotic standard deviation and the standard error deviation of the
fractional estimator.

The bandwidths are bw = trunc(n * bandw.exp), where 0 < bandw.exp < 1 and n is the sample
size. Default bandw.exp=0.5;
and bw2 = trunc(n * beta), where 0 < beta < 1 and n is the sample size. Default beta = 0.9.

6 fracdiff

Value

a list with components

d Sperio estimate

sd.as asymptotic standard deviation

sd.reg standard error deviation
Author(s)

Valderio A. Reisen <valderio@cce.ufes.br> and Artur J. Lemonte

References

Geweke, J. and Porter-Hudak, S. (1983) The estimation and application of long memory time series
models. Journal of Time Series Analysis 4(4), 221-238.

Reisen, V. A. (1994) Estimation of the fractional difference parameter in the ARFIMA((p,d,q) model
using the smoothed periodogram. Journal Time Series Analysis, 15(1), 335-350.

Reisen, V. A., B. Abraham, and E. M. M. Toscano (2001) Parametric and semiparametric estima-
tions of stationary univariate ARFIMA model. Brazilian Journal of Probability and Statistics 14,
185-206.

See Also
fdGPH, fracdiff

Examples

memory.long <- fracdiff.sim(1500, d = 0.3)
spm <- fdSperio(memory.long$series)
str(spm, digits=6)

fracdiff ML Estimates for Fractionally-Differenced ARIMA (p,d,q) models

Description

Calculates the maximum likelihood estimators of the parameters of a fractionally-differenced ARIMA
(p,d,q) model, together (if possible) with their estimated covariance and correlation matrices and
standard errors, as well as the value of the maximized likelihood. The likelihood is approximated
using the fast and accurate method of Haslett and Raftery (1989).

Usage

fracdiff(x, nar = @, nma = 0,
ar = rep(NA, max(nar, 1)), ma = rep(NA, max(nma, 1)),
dtol = NULL, drange = c(@, ©0.5), h, M = 100, trace = 0)

fracdiff

Arguments
X
nar
nma
ar
ma
dtol

drange

trace

Details

time series (numeric vector) for the ARIMA model
number of autoregressive parameters p.

number of moving average parameters q.

initial autoregressive parameters.

initial moving average parameters.

interval of uncertainty for d. If dtol is negative or NULL, the fourth root of
machine precision will be used. dtol will be altered if necessary by the program.

interval over which the likelihood function is to be maximized as a function of
d.

size of finite difference interval for numerical derivatives. By default (or if neg-
ative),

h=min(@.1, eps.5* (1+ abs(cllf))), where c1ff :=1log. max.likelihood
(asreturned) and eps.5 := sqrt(.Machine$double.neg.eps) (typically 1.05e-
8).

This is used to compute a finite difference approximation to the Hessian, and
hence only influences the cov, cor, and std.error computations; use fracdiff.var()
to change this after the estimation process.

number of terms in the likelihood approximation (see Haslett and Raftery 1989).

optional integer, specifying a trace level. If positive, currently the “outer loop”
iterations produce one line of diagnostic output.

The fracdiff package has — for historical reason, namely, S-plus arima() compatibility — used
an unusual parametrization for the MA part, see also the ‘Details’ section in arima (in standard R’s
stats package). The ARMA (i.e., d = 0) model in fracdiff() and fracdiff.sim() is

Xe—ar X1 — - —apXypp =€ — bieg—1 — -+ — bqet—qa

where e; are mean zero i.i.d., for fracdiff()’s estimation, e; ~ N(0, 02). This model indeed
has the signs of the MA coefficients b; inverted, compared to other parametrizations, including
Wikipedia’s https://en.wikipedia.org/wiki/Autoregressive_moving-average_model and

the one of arima.

Note that NA’s in the initial values for ar or ma are replaced by 0’s.

Value

an object of S3 class "fracdiff"”, which is a list with components:

log.likelihood logarithm of the maximum likelihood

d
ar

ma

optimal fractional-differencing parameter
vector of optimal autoregressive parameters

vector of optimal moving average parameters

https://en.wikipedia.org/wiki/Autoregressive_moving-average_model

8 fracdiff

covariance.dpq covariance matrix of the parameter estimates (order : d, ar, ma).

stderror.dpq standard errors of the parameter estimates c(d, ar, ma).

correlation.dpq
correlation matrix of the parameter estimates (order : d, ar, ma).

h interval used for numerical derivatives, see h argument.

dtol interval of uncertainty for d; possibly altered from input dtol.

M as input.

hessian.dpq the approximate Hessian matrix H of 2nd order partial derivatives of the likeli-

hood with respect to the parameters; this is (internally) used to compute covariance. dpq,
the approximate asymptotic covariance matrix as C' = (—H) ™.

Method

The optimization is carried out in two levels:

an outer univariate unimodal optimization in d over the interval drange (typically [0,.5]), using
Brent’s fmin algorithm), and

an inner nonlinear least-squares optimization in the AR and MA parameters to minimize white noise
variance (uses the MINPACK subroutine ImDER). written by Chris Fraley (March 1991).

Warning

The variance-covariance matrix and consequently the standard errors may be quite inaccurate, see
the example in fracdiff.var.

Note

Ordinarily, nar and nma should not be too large (say < 10) to avoid degeneracy in the model. The
function fracdiff.simis available for generating test problems.

References

J. Haslett and A. E. Raftery (1989) Space-time Modelling with Long-memory Dependence: As-
sessing Ireland’s Wind Power Resource (with Discussion); Applied Statistics 38, 1-50.

R. Brent (1973) Algorithms for Minimization without Derivatives, Prentice-Hall

J. J. More, B. S. Garbow, and K. E. Hillstrom (1980) Users Guide for MINPACK-1, Technical
Report ANL-80-74, Applied Mathematics Division, Argonne National Laboratory.
See Also

coef. fracdiff and other methods for "fracdiff"” objects; fracdiff.var() for re-estimation of
variances or standard errors; fracdiff.sim

fracdiff-methods 9

Examples

ts.test <- fracdiff.sim(5000, ar = .2, ma = -.4, d = .3)
fd. <- fracdiff(ts.test$series,
nar = length(ts.test$ar), nma = length(ts.test$ma))
fd.
Confidence intervals
confint(fd.)

with iteration output
fd2 <- fracdiff(ts.test$series, nar = 1, nma = 1, trace = 1)
all.equal(fd., fd2)

fracdiff-methods Many Methods for "fracdiff”” Objects

Description

Many “accessor” methods for fracdiff objects, notably summary, coef, vcov, and logL ik; further
print() methods were needed.

Usage
S3 method for class 'fracdiff’
coef(object, ...)
S3 method for class 'fracdiff"
logLik(object, ...)
S3 method for class 'fracdiff'
print(x, digits = getOption("digits”), ...)
S3 method for class 'fracdiff"
summary(object, symbolic.cor = FALSE, ...)

S3 method for class 'summary.fracdiff'
print(x, digits = max(3, getOption("digits") - 3),
correlation = FALSE, symbolic.cor = x$symbolic.cor,

signif.stars = getOption("”show.signif.stars"), ...)
S3 method for class 'fracdiff"
fitted(object, ...)
S3 method for class 'fracdiff"
residuals(object, ...)
S3 method for class 'fracdiff’
vcov(object, ...)
Arguments
X, object object of class fracdiff.
digits the number of significant digits to use when printing.

further arguments passed from and to methods.

10 fracdiff.sim

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

symbolic.cor logical. If TRUE, print the correlations in a symbolic form (see symnum) rather
than as numbers.

signif.stars logical. If TRUE, “significance stars” are printed for each coefficient.

Author(s)

Martin Maechler; Rob Hyndman contributed the residuals() and fitted() methods.

See Also

fracdiff to get "fracdiff” objects, confint.fracdiff for the confint method; further, fracdiff.var.

Examples

set.seed(7)

ts4 <- fracdiff.sim(10000, ar = c(0.6, -.05, -0.2), ma = -0.4, d = 0.2)
modFD <- fracdiff(ts4$series, nar = length(ts4$ar), nma = length(ts4$ma))
-> warning (singular Hessian) %% FIXME 2?7

coef (modFD) # the estimated parameters

vcov (modFD)

smFD <- summary(modFD)

smFD

coef(smFD) # gives the whole table

AIC(modFD) # AIC works because of the loglLik() method

stopifnot(exprs = {

b

fracdiff.sim Simulate fractional ARIMA Time Series

Description
Generates simulated long-memory time series data from the fractional ARIMA(p,d,q) model. This
is a test problem generator for fracdiff.

Note that the MA coefficients have inverted signs compared to other parametrizations, see the details
in fracdiff.

Usage
fracdiff.sim(n, ar = NULL, ma = NULL, d,
rand.gen = rnorm, innov = rand.gen(n+q, ...),
n.start = NA, backComp = TRUE, allow.@.nstart = FALSE,
start.innov = rand.gen(n.start, ...),

., mu = Q)

fracdiff.sim

Arguments

n
ar
ma

d

rand.gen

innov

n.start

backComp

allow.0.nstart

start.innov

mu

Value

11

length of the time series.

vector of autoregressive parameters; empty by default.
vector of moving average parameters; empty by default.
fractional differencing parameter.

a function to generate the innovations; the default, rnorm generates white N(0,1)
noise.

an optional times series of innovations. If not provided, rand. gen() is used.

length of “burn-in” period. If NA, the default, the same value as in arima.simis
computed.

logical indicating if back compatibility with older versions of fracdiff.simis
desired. Otherwise, for d = @, compatibility with R’s arima.sim is achieved.

logical indicating if n. start = @ should be allowed even when p 4 ¢ > 0. This
not recommended unless for producing the same series as with older versions of
fracdiff.sim.

an optional vector of innovations to be used for the burn-in period. If supplied
there must be at least n. start values.

additional arguments for rand. gen(). Most usefully, the standard deviation of
the innovations generated by rnorm can be specified by sd.

time series mean (added at the end).

a list containing the following elements :

series

time series

ar, ma, d, mu, n.start

See Also

same as input

fracdiff, also for references; arima.sim

Examples

Pretty (too) short to "see” the long memory
fracdiff.sim(100, ar = .2, ma = .4, d = .3)

longer with "extreme” ar:
r <- fracdiff.sim(n=1500, ar=-0.9, d= 0.3)
plot(as.ts(r$series))

Show that MA coefficients meaning is inverted

compared to

AR <- 0.7

stats :: arima :

12 fracdiff.var

MA <- -0.5
n.st <- 2

AR <- ¢(0.7, -0.1)
MA <- c(-0.5, 0.4)

n <- 512 ; sd <- 0.1
n.st <- 10

set.seed(101)
Y1 <- arima.sim(list(ar = AR, ma = MA), n = n, n.start = n.st, sd = sd)
plot(Y1)

For our fracdiff, reverse the MA sign:

set.seed(101)

Y2 <- fracdiff.sim(n = n, ar = AR, ma
n.start = n.st, sd

lines(Y2, col=adjustcolor("red”, 0.5))

.. no, you don't need glasses ;-) Y2 is Y1 shifted slightly

- MA, d = o,
sd)$series

##' rotate left by k (k < @: rotate right)
rot <- function(x, k) {
stopifnot(k == round(k))
n <- length(x)
if(k <= k %% n) x[c((k+1):n, 1:k)] else x
}
k <- n.st - 2
Y2.s <- rot(Y2, k)
head.matrix(cbind(Y1, Y2.s))
plot(Y1, Y2.s); i <= (n-k+1):n
text(Y1[il, Y2.s[il, i, adj = c(0,0)-.1, col=2)

With backComp = FALSE, get *the same* as arima.sim():
set.seed(101)
Y2. <~ fracdiff.sim(n = n, ar = AR, ma = - MA, d = 0,

n.start = n.st, sd = sd, backComp = FALSE)$series
stopifnot(all.equal(c(Y1), Y2., tolerance= 1e-15))

fracdiff.var Recompute Covariance Estimate for fracdiff

Description

Allows the finite-difference interval to be altered for recomputation of the covariance estimate for
fracdiff.

Usage
fracdiff.var(x, fracdiff.out, h)

fracdiff.var 13

Arguments

X a univariate time series or a vector. Missing values (NAs) are not allowed.
fracdiff.out output from fracdiff for time series x.

h finite-difference interval for approximating partial derivatives with respect to the
d parameter.

Value

an object of S3 class "fracdiff”, i.e., basically a list with the same elements as the result from
fracdiff, but with possibly different values for the hessian, covariance, and correlation matrices
and for standard error, as well as for h.

See Also

fracdiff, also for references.

Examples

Generate a fractionally-differenced ARIMA(1,d,1) model :

ts.test <- fracdiff.sim(10000, ar = .2, ma = .4, d = .3)

estimate the parameters in an ARIMA(1,d,1) model for the simulated series
fd.out <- fracdiff(ts.test$ser, nar=1, nma = 1)

Modify the covariance estimate by changing the finite-difference interval
(fd.o2 <- fracdiff.var(ts.test$series, fd.out, h = .0001))

looks identical as print(fd.out),

however these (e.g.) differ :

vecov(fd.out)

vcov(fd.o2)

A case, were the default variance is *clearly* way too small:
set.seed(1); fdc <- fracdiff(X <- fracdiff.sim(n=100,d=0.25)$%series)

fdc

Confidence intervals just based on asymp.normal approx. and std.errors:
confint(fdc) # ridiculously too narrow

Index

+* models
confint.fracdiff, 2
fracdiff-methods, 9
* print
fracdiff-methods, 9
* ts
diffseries, 3
fdGPH, 4
fdSperio, 5
fracdiff, 6
fracdiff.sim, 10
fracdiff.var, 12

arima, 7
arima.sim, 11

class, 7,13

coef, 9

coef.fracdiff, 8

coef.fracdiff (fracdiff-methods), 9
confint, 3, 10
confint.fracdiff, 2, 10

diffseries, 3

fdGPH, 4, 6

fdSperio, 4, 5,5

fft, 3

fitted, 10

fitted.fracdiff (fracdiff-methods), 9
fracdiff, 2, 3,5, 6,6,9-11, 13
fracdiff-methods, 9
fracdiff.sim, 4,7, 8, 10
fracdiff.var, 2, 3,7, 8, 10, 12

loglik, 9
logLik.fracdiff (fracdiff-methods), 9

print, 9
print.fracdiff (fracdiff-methods), 9

14

print.summary.fracdiff
(fracdiff-methods), 9

residuals, 10
residuals.fracdiff (fracdiff-methods), 9
rnorm, /1

summary, 9
summary. fracdiff (fracdiff-methods), 9
symnum, 10

vcov, 9
vecov. fracdiff (fracdiff-methods), 9

	confint.fracdiff
	diffseries
	fdGPH
	fdSperio
	fracdiff
	fracdiff-methods
	fracdiff.sim
	fracdiff.var
	Index

