
Package ‘footBayes’
May 16, 2025

Type Package

Title Fitting Bayesian and MLE Football Models

Version 2.0.0

Date 2025-04-22

Maintainer Leonardo Egidi <legidi@units.it>

License GPL-2

Description This is the first package allowing for the estimation,
visualization and prediction of the most well-known
football models: double Poisson, bivariate Poisson,
Skellam, student_t, diagonal-inflated bivariate Poisson, and
zero-inflated Skellam. It supports both maximum likelihood estimation (MLE, for
'static' models only) and Bayesian inference.
For Bayesian methods, it incorporates several techniques:
MCMC sampling with Hamiltonian Monte Carlo, variational inference using
either the Pathfinder algorithm or Automatic Differentiation Variational
Inference (ADVI), and the Laplace approximation.
The package compiles all the 'CmdStan' models once during installation
using the 'instantiate' package.
The model construction relies on the most well-known football references, such as
Dixon and Coles (1997) <doi:10.1111/1467-9876.00065>,
Karlis and Ntzoufras (2003) <doi:10.1111/1467-9884.00366> and
Egidi, Pauli and Torelli (2018) <doi:10.1177/1471082X18798414>.

URL https://github.com/leoegidi/footbayes

BugReports https://github.com/leoegidi/footbayes/issues

Encoding UTF-8

SystemRequirements CmdStan
(https://mc-stan.org/users/interfaces/cmdstan), pandoc (>=
1.12.3), pandoc-citeproc

Depends R (>= 4.2.0)

Imports rstan (>= 2.18.1), instantiate, reshape2, ggplot2, ggridges,
matrixStats, extraDistr, metRology, dplyr, tidyr, numDeriv,
magrittr, rlang, posterior

1

https://doi.org/10.1111/1467-9876.00065
https://doi.org/10.1111/1467-9884.00366
https://doi.org/10.1177/1471082X18798414
https://github.com/leoegidi/footbayes
https://github.com/leoegidi/footbayes/issues

2 Contents

Suggests testthat (>= 3.0.0), knitr (>= 1.37), rmarkdown (>= 2.10),
loo, bayesplot, cmdstanr (>= 0.6.0)

Additional_repositories https://stan-dev.r-universe.dev/

RoxygenNote 7.3.2

VignetteBuilder knitr

LazyData true

BuildManual yes

Config/testthat/edition 3

NeedsCompilation yes

Author Leonardo Egidi [aut, cre],
Roberto Macrì Demartino [aut],
Vasilis Palaskas. [aut]

Repository CRAN

Date/Publication 2025-05-16 09:00:06 UTC

Contents

btd_foot . 3
compare_foot . 6
england . 8
foot_abilities . 9
foot_prob . 11
foot_rank . 13
foot_round_robin . 14
italy . 15
mle_foot . 16
plot_btdPosterior . 19
plot_logStrength . 21
pp_foot . 22
print.btdFoot . 24
print.compareFoot . 25
print.stanFoot . 26
priors . 26
stan_foot . 28

Index 36

https://stan-dev.r-universe.dev/

btd_foot 3

btd_foot Bayesian Bradley-Terry-Davidson Model

Description

Fits a Bayesian Bradley-Terry-Davidson model using Stan. Supports both static and dynamic rank-
ing models, allowing for the estimation of team strengths over time.

Usage

btd_foot(
data,
dynamic_rank = FALSE,
home_effect = FALSE,
prior_par = list(logStrength = normal(0, 3), logTie = normal(0, 0.3), home = normal(0,

5)),
rank_measure = "median",
method = "MCMC",
...

)

Arguments

data A data frame containing the observations with columns:

• periods: Time point of each observation (integer >= 1).
• home_team: Home team’s name (character string).
• away_team: Away team’s name (character string).
• match_outcome: Outcome (1 if home team beats away team, 2 for tie, and

3 if away team beats home team).

The data frame must not contain missing values.

dynamic_rank A logical value indicating whether a dynamic ranking model is used (default is
FALSE).

home_effect A logical value indicating the inclusion of a home effect in the model. (default
is FALSE).

prior_par A list specifying the prior distributions for the parameters of interest, using the
normal function:

• logStrength: Prior for the team log-strengths. Default is normal(0, 3).
• logTie: Prior for the tie parameter. Default is normal(0, 0.3).
• home: Prior for the home effect (home). Applicable only if home_effect =
TRUE. Default is normal(0, 5).

Only normal priors are allowed for this model.

rank_measure A character string specifying the method used to summarize the posterior distri-
butions of the team strengths. Options are:

4 btd_foot

• "median": Uses the median of the posterior samples (default).
• "mean": Uses the mean of the posterior samples.
• "map": Uses the Maximum A Posteriori estimate, calculated as the mode

of the posterior distribution.

method A character string specifying the method used to obtain the Bayesian estimates.
Options are:

• "MCMC": Markov chain Monte Carlo algorithm (default).
• "VI": Automatic differentiation variational inference algorithms.
• "pathfinder": Pathfinder variational inference algorithm.
• "laplace": Laplace algorithm.

... Additional arguments passed to cmdstanr (e.g., iter_sampling, chains, parallel_chains).

Value

An object of class "btdFoot", which is a list containing:

• fit: The fitted CmdStanFit object returned by cmdstanr.

• rank: A data frame with the rankings, including columns:

– periods: The time period.
– team: The team name.
– rank_points: The estimated strength of the team based on the chosen rank_measure.

• data: The input data.

• stan_data: The data list passed to Stan.

• stan_code: The Stan code of the underline model.

• stan_args: The optional cmdstanr parameters passed to (...).

• rank_measure: The summary statistic used to compute the rankings.

• alg_method: The inference algorithm used to obtain the Bayesian estimates.

Author(s)

Roberto Macrì Demartino <roberto.macridemartino@deams.units.it>.

Examples

Not run:
if (instantiate::stan_cmdstan_exists()) {

library(dplyr)

data("italy")

italy_2020_2021 <- italy %>%
dplyr::select(Season, home, visitor, hgoal, vgoal) %>%
dplyr::filter(Season == "2020" | Season == "2021") %>%
dplyr::mutate(match_outcome = dplyr::case_when(

hgoal > vgoal ~ 1, # Home team wins
hgoal == vgoal ~ 2, # Draw

btd_foot 5

hgoal < vgoal ~ 3 # Away team wins
)) %>%
dplyr::mutate(periods = dplyr::case_when(

dplyr::row_number() <= 190 ~ 1,
dplyr::row_number() <= 380 ~ 2,
dplyr::row_number() <= 570 ~ 3,
TRUE ~ 4

)) %>% # Assign periods based on match number
dplyr::select(periods,

home_team = home,
away_team = visitor, match_outcome

)

Dynamic Ranking Example with Median Rank Measure
fit_result_dyn <- btd_foot(

data = italy_2020_2021,
dynamic_rank = TRUE,
home_effect = TRUE,
prior_par = list(

logStrength = normal(0, 10),
logTie = normal(0, 5),
home = normal(0, 5)

),
rank_measure = "median",
iter_sampling = 1000,
parallel_chains = 2,
chains = 2

)

print(fit_result_dyn)

print(fit_result_dyn, pars = c("logStrength", "home"), teams = c("AC Milan", "AS Roma"))

Static Ranking Example with MAP Rank Measure
fit_result_stat <- btd_foot(

data = italy_2020_2021,
dynamic_rank = FALSE,
prior_par = list(

logStrength = normal(0, 10),
logTie = normal(0, 5),
home = normal(0, 5)

),
rank_measure = "map",
iter_sampling = 1000,
parallel_chains = 2,
chains = 2

)

print(fit_result_stat)
}

End(Not run)

6 compare_foot

compare_foot Compare Football Models using Various Metrics

Description

Compares multiple football models or directly provided probability matrices based on specified
metrics (accuracy, Brier score, ranked probability score, Pseudo R2, average coverage probability),
using a test dataset. Additionally, computes the confusion matrices. The function returns an object
of class compareFoot.

Usage

compare_foot(
source,
test_data,
metric = c("accuracy", "brier", "ACP", "pseudoR2", "RPS"),
conf_matrix = FALSE

)

Arguments

source A named list containing either:

• Fitted model objects (of class stanFoot, CmdStanFit, stanfit), each rep-
resenting a football model.

• Matrices where each matrix contains the estimated probabilities for "Home
Win," "Draw," and "Away Win" in its columns.

test_data A data frame containing the test dataset, with columns:

• home_team: Home team’s name (character string).
• away_team: Away team’s name (character string).
• home_goals: Goals scored by the home team (integer >= 0).
• away_goals: Goals scored by the away team (integer >= 0).

metric A character vector specifying the metrics to use for comparison. Options are:

• "accuracy": Computes the accuracy of each model.
• "brier": Computes the Brier score of each model.
• "RPS": Computes the ranked probability score (RPS) for each model.
• "ACP": Computes the average coverage probability (ACP) for each model.
• "pseudoR2": Computes the Pseudo R2, defined as the geometric mean of

the probabilities assigned to the actual results.

Default is c("accuracy", "brier", "ACP", "pseudoR2", "RPS"), computing
the specified metrics.

conf_matrix A logical value indicating whether to generate a confusion matrix comparing
predicted outcomes against actual outcomes for each model or probability ma-
trix. Default is FALSE.

compare_foot 7

Details

The function extracts predictions from each model or directly uses the provided probability matrices
and computes the chosen metrics on the test dataset. It also possible to compute confusion matrices.

Value

An object of class compare_foot_output, which is a list containing:

• metrics: A data frame containing the metric values for each model or probability matrix.

• confusion_matrix: Confusion matrices for each model or probability matrix.

Author(s)

Roberto Macrì Demartino <roberto.macridemartino@deams.units.it>

Examples

Not run:
if (instantiate::stan_cmdstan_exists()) {

library(dplyr)

data("italy")
italy_2000 <- italy %>%
dplyr::select(Season, home, visitor, hgoal, vgoal) %>%
dplyr::filter(Season == "2000")

colnames(italy_2000) <- c("periods", "home_team", "away_team", "home_goals", "away_goals")

Example with fitted models
fit_1 <- stan_foot(
data = italy_2000,
model = "double_pois", predict = 18

) # Double Poisson model
fit_2 <- stan_foot(

data = italy_2000,
model = "biv_pois", predict = 18

) # Bivariate Poisson model

italy_2000_test <- italy_2000[289:306,]

compare_results_models <- compare_foot(
source = list(

double_poisson = fit_1,
bivariate_poisson = fit_2

),
test_data = italy_2000_test,
metric = c("accuracy", "brier", "ACP", "pseudoR2", "RPS"),
conf_matrix = TRUE

)

print(compare_results_models)

8 england

Example with probability matrices

home_team <- c(
"AC Milan", "Inter", "Juventus", "AS Roma", "Napoli",
"Lazio", "Atalanta", "Fiorentina", "Torino", "Sassuolo", "Udinese"

)

away_team <- c(
"Juventus", "Napoli", "Inter", "Atalanta", "Lazio",
"AC Milan", "Sassuolo", "Torino", "Fiorentina", "Udinese", "AS Roma"

)

Home and Away goals based on given data
home_goals <- c(2, 0, 2, 2, 3, 1, 4, 2, 1, 1, 2)
away_goals <- c(1, 0, 1, 3, 2, 1, 1, 2, 1, 1, 2)

Combine into a data frame
test_data <- data.frame(home_team, away_team, home_goals, away_goals)

Define the data for each column
pW <- c(0.51, 0.45, 0.48, 0.53, 0.56, 0.39, 0.52, 0.55, 0.61, 0.37, 0.35)
pD <- c(0.27, 0.25, 0.31, 0.18, 0.23, 0.30, 0.24, 0.26, 0.18, 0.19, 0.22)
pL <- c(0.22, 0.30, 0.21, 0.29, 0.21, 0.31, 0.24, 0.19, 0.21, 0.44, 0.43)

Create the data frame table_prob
table_prob <- data.frame(pW, pD, pL)
matrix_prob <- as.matrix(table_prob)

Use compare_foot function
compare_results_matrices <- compare_foot(

source = list(matrix_1 = matrix_prob),
test_data = test_data,
metric = c("accuracy", "brier", "pseudoR2", "ACP", "RPS")

)
Print the results
print(compare_results_matrices)

}

End(Not run)

england English league results 1888-2022

Description

All results for English soccer games in the top 4 tiers from 1888/89 season to 2021/22 season.

foot_abilities 9

Usage

england

Format

A data frame with 203956 rows and 12 variables:

Date Date of match

Season Season of match - refers to starting year

home Home team

visitor Visiting team

FT Full-time result

hgoal Goals scored by home team

vgoal Goals scored by visiting team

division Division: 1,2,3,4 or 3N (Old 3-North) or 3S (Old 3-South)

tier Tier of football pyramid: 1,2,3,4

totgoal Total goals in game

goaldif Goal difference in game home goals - visitor goals

result Result: H-Home Win, A-Away Win, D-Draw

foot_abilities Plot football abilities from Stan and MLE models

Description

Depicts teams’ abilities either from the Stan models fitted via the stan_foot function or from MLE
models fitted via the mle_foot function.

Usage

foot_abilities(object, data, type = "both", teams = NULL)

Arguments

object An object either of class stanFoot, CmdStanFit, stanfit, or class list con-
taining the Maximum Likelihood Estimates (MLE) for the model parameters
fitted with mle_foot.

data A data frame containing match data with columns:

• periods: Time point of each observation (integer >= 1).
• home_team: Home team’s name (character string).
• away_team: Away team’s name (character string).
• home_goals: Goals scored by the home team (integer >= 0).
• away_goals: Goals scored by the away team (integer >= 0).

10 foot_abilities

type Type of ability in Poisson models: one among "defense", "attack" or "both".
Default is "both".

teams An optional character vector specifying team names to include. If NULL, all
teams are included.

Value

A ggplot object showing each selected team’s ability estimates:

• For static Bayesian or MLE fits, horizontal error bars (95% intervals) and point estimates.

• For dynamic Bayesian fits, ribbon and line plots over periods.

Author(s)

Leonardo Egidi <legidi@units.it> and Roberto Macrì Demartino <roberto.macridemartino@deams.units.it>.

Examples

Not run:
if (instantiate::stan_cmdstan_exists()) {

library(dplyr)

data("italy")
italy <- as_tibble(italy)

no dynamics, no prediction

italy_2000_2002 <- italy %>%
dplyr::select(Season, home, visitor, hgoal, vgoal) %>%
dplyr::filter(Season == "2000" | Season == "2001" | Season == "2002")

colnames(italy_2000_2002) <- c("periods", "home_team", "away_team", "home_goals", "away_goals")

fit1 <- stan_foot(
data = italy_2000_2002,
model = "double_pois"

) # double poisson

fit2 <- stan_foot(
data = italy_2000_2002,
model = "biv_pois"

) # bivariate poisson

fit3 <- stan_foot(
data = italy_2000_2002,
model = "skellam"

) # skellam

fit4 <- stan_foot(
data = italy_2000_2002,
model = "student_t"

) # student_t

foot_prob 11

foot_abilities(fit1, italy_2000_2002)
foot_abilities(fit2, italy_2000_2002)
foot_abilities(fit3, italy_2000_2002)
foot_abilities(fit4, italy_2000_2002)

seasonal dynamics, predict the last season

fit5 <- stan_foot(
data = italy_2000_2002,
model = "biv_pois",
predict = 180,
dynamic_type = "seasonal"

) # bivariate poisson
foot_abilities(fit5, italy_2000_2002)

}

End(Not run)

foot_prob Plot football matches probabilities for out-of-sample football matches.

Description

The function provides a table containing the home win, draw and away win probabilities for a bunch
of out-of-sample matches as specified by stan_foot or mle_foot.

Usage

foot_prob(object, data, home_team, away_team)

Arguments

object An object either of class stanFoot, CmdStanFit, stanfit, or class list con-
taining the Maximum Likelihood Estimates (MLE) for the model parameters
fitted with mle_foot.

data A data frame containing match data with columns:

• periods: Time point of each observation (integer >= 1).
• home_team: Home team’s name (character string).
• away_team: Away team’s name (character string).
• home_goals: Goals scored by the home team (integer >= 0).
• away_goals: Goals scored by the away team (integer >= 0).

home_team The home team(s) for the predicted matches.

away_team The away team(s) for the predicted matches.

12 foot_prob

Details

For Bayesian models the results probabilities are computed according to the simulation from the
posterior predictive distribution of future (out-of-sample) matches. Specifically, matches are or-
dered from those in which the favorite team has the highest posterior probability of winning to
those where the underdog is more likely to win. For MLE models fitted via the mle_foot the
probabilities are computed by simulating from the MLE estimates.

Value

A list with components:

• prob_table: A data frame containing the results probabilities of the out-of-sample matches.

• prob_plot: A ggplot object for Bayesian models only showing the posterior predictive
heatmap of exact score probabilities, with the true result highlighted.

Author(s)

Leonardo Egidi <legidi@units.it> and Roberto Macrì Demartino <roberto.macridemartino@deams.units.it>.

Examples

Not run:
if (instantiate::stan_cmdstan_exists()) {

library(dplyr)

data("italy")
italy_2000 <- italy %>%
dplyr::select(Season, home, visitor, hgoal, vgoal) %>%
dplyr::filter(Season == "2000")

colnames(italy_2000) <- c("periods", "home_team", "away_team", "home_goals", "away_goals")

fit <- stan_foot(
data = italy_2000,
model = "double_pois",
predict = 18

) # double pois

foot_prob(
fit, italy_2000, "Inter",
"Bologna FC"

)

foot_prob(fit, italy_2000) # all the out-of-sample matches
}

End(Not run)

foot_rank 13

foot_rank Rank and points predictions

Description

Posterior predictive plots and final rank table for football seasons.

Usage

foot_rank(object, data, teams = NULL, visualize = "individual")

Arguments

object An object either of class stanFoot, CmdStanFit, or stanfit.

data A data frame containing match data with columns:

• periods: Time point of each observation (integer >= 1).
• home_team: Home team’s name (character string).
• away_team: Away team’s name (character string).
• home_goals: Goals scored by the home team (integer >= 0).
• away_goals: Goals scored by the away team (integer >= 0).

teams An optional character vector specifying team names to include. If NULL, all
teams are included.

visualize Type of plots, one among "aggregated" or "individual". Default is "individual".

Details

For Bayesian models fitted via stan_foot the final rank tables are computed according to the
simulation from the posterior predictive distribution of future (out-of-sample) matches. The dataset
should refer to one or more seasons from a given national football league (Premier League, Serie
A, La Liga, etc.).

Value

If visualize = "aggregated": a list with

• rank_table: A data frame of observed and simulated final points (median, 25%/75% quan-
tiles).

• rank_plot: A ggplot comparing observed vs simulated final points for each team.

If visualize = "individual": A ggplot showing, for each selected team, the observed and sim-
ulated cumulative points over match-days.

Author(s)

Leonardo Egidi <legidi@units.it> and Roberto Macrì Demartino <roberto.macridemartino@deams.units.it>

14 foot_round_robin

Examples

Not run:
if (instantiate::stan_cmdstan_exists()) {

library(dplyr)

data("italy")
italy_1999_2000 <- italy %>%
dplyr::select(Season, home, visitor, hgoal, vgoal) %>%
dplyr::filter(Season == "1999" | Season == "2000")

colnames(italy_1999_2000) <- c("periods", "home_team", "away_team", "home_goals", "away_goals")

fit <- stan_foot(italy_1999_2000, "double_pois", iter_sampling = 200)
foot_rank(fit, italy_1999_2000)
foot_rank(fit, italy_1999_2000, visualize = "individual")

}

End(Not run)

foot_round_robin Round-robin for football leagues

Description

Posterior predictive probabilities for a football season in a round-robin format

Usage

foot_round_robin(object, data, teams = NULL, output = "both")

Arguments

object An object either of class stanFoot, CmdStanFit, stanfit.

data A data frame containing match data with columns:

• periods: Time point of each observation (integer >= 1).
• home_team: Home team’s name (character string).
• away_team: Away team’s name (character string).
• home_goals: Goals scored by the home team (integer >= 0).
• away_goals: Goals scored by the away team (integer >= 0).

teams An optional character vector specifying team names to include. If NULL, all
teams are included.

output An optional character string specifying the type of output to return. One of
"both", "table", or "plot". Default is "both".

italy 15

Details

For Bayesian models fitted via stan_foot the round-robin table is computed according to the sim-
ulation from the posterior predictive distribution of future (out-of-sample) matches. The dataset
should refer to one or more seasons from a given national football league (Premier League, Serie
A, La Liga, etc.).

Value

If output = "both" a list with:

• round_table: A data frame of matchups (Home, Away), observed scores, and Home_prob
(median posterior probability of a home win).

• round_plot: A ggplot heatmap of home-win probabilities with observed scores overlaid.

If output = "table" or "plot", returns only that component.

Author(s)

Leonardo Egidi <legidi@units.it> and Roberto Macrì Demartino <roberto.macridemartino@deams.units.it>

Examples

Not run:
if (instantiate::stan_cmdstan_exists()) {

library(dplyr)

data("italy")
italy_1999_2000 <- italy %>%
dplyr::select(Season, home, visitor, hgoal, vgoal) %>%
dplyr::filter(Season == "1999" | Season == "2000")

colnames(italy_1999_2000) <- c("periods", "home_team", "away_team", "home_goals", "away_goals")

fit <- stan_foot(italy_1999_2000, "double_pois", predict = 45, iter_sampling = 200)

foot_round_robin(fit, italy_1999_2000)
foot_round_robin(fit, italy_1999_2000, c("Parma AC", "AS Roma"))

}

End(Not run)

italy Italy league results 1934-2022

Description

All results for Italian soccer games in the top tier from 1934/35 season to 2021/22 season.

16 mle_foot

Usage

italy

Format

A data frame with 27684 rows and 8 variables:

Date Date of match

Season Season of match - refers to starting year

home Home team

visitor Visiting team

FT Full-time result

hgoal Goals scored by home team

vgoal Goals scored by visiting team

tier Tier of football pyramid: 1

mle_foot Fit football models with Maximum Likelihood

Description

Fits football goal-based models using maximum likelihood estimation. Supported models include:
double Poisson, bivariate Poisson, Skellam, and Student’s t.

Usage

mle_foot(
data,
model,
predict = 0,
maxit = 1000,
method = "BFGS",
interval = "profile",
hessian = FALSE,
sigma_y = 1

)

Arguments

data A data frame containing match data with columns:

• periods: Time point of each observation (integer >= 1).
• home_team: Home team’s name (character string).
• away_team: Away team’s name (character string).
• home_goals: Goals scored by the home team (integer >= 0).

mle_foot 17

• away_goals: Goals scored by the away team (integer >= 0).

model A character specifying the model to fit. Options are:

• "double_pois": Double Poisson model.
• "biv_pois": Bivariate Poisson model.
• "skellam": Skellam model.
• "student_t": Student’s t model.

predict An integer specifying the number of out-of-sample matches for prediction. If
missing, the function fits the model to the entire dataset without making predic-
tions.

maxit An integer specifying the maximum number of optimizer iterations default is
1000).

method A character specifying the optimization method. Options are

• "Nelder-Mead".
• "BFGS" (default).
• "CG".
• "L-BFGS-B".
• "SANN".
• "Brent".

For further details see {optim} function in stats package.

interval A character specifying the interval type for confidence intervals. Options are

• "profile" (default).
• "Wald".

hessian A logical value indicating to include the computation of the Hessian (default
FALSE).

sigma_y A positive numeric value indicating the scale parameter for Student t likelihood
(default 1).

Details

MLE can be obtained only for static models, with no time-dependence. Likelihood optimization is
performed via the BFGS method of the {optim} function in stats package.

Value

A named list containing:

• att: A matrix of attack ratings, with MLE and 95% confidence intervals (for "double_pois",
"biv_pois" and "skellam" models).

• def: A matrix of defence ratings, with MLE and 95% confidence intervals (for "double_pois",
"biv_pois" and "skellam" models).

• abilities: A matrix of combined ability, with MLE and 95% confidence intervals (for
"student_t" only).

• home_effect: A matrix with with MLE and 95% confidence intervals for the home effect
estimate.

18 mle_foot

• corr: A matrix with MLE and 95% confidence intervals for the bivariate Poisson correlation
parameter (for "biv_pois" only).

• model: The name of the fitted model (character).

• predict: The number of out-of-sample matches used for prediction (integer).

• sigma_y: The scale parameter used in the Student t likelihood (for "student_t" only).

• team1_prev: Integer indices of home teams in the out-of-sample matches (if predict > 0).

• team2_prev: Integer indices of away teams in the out-of-sample matches (if predict > 0).

• logLik: The maximized log likelihood (numeric).

• aic: Akaike Information Criterion (numeric).

• bic: Bayesian Information Criterion (numeric).

Author(s)

Leonardo Egidi <legidi@units.it> and Roberto Macrì Demartino <roberto.macridemartino@deams.units.it>

References

Baio, G. and Blangiardo, M. (2010). Bayesian hierarchical model for the prediction of football
results. Journal of Applied Statistics 37(2), 253-264.

Egidi, L., Pauli, F., and Torelli, N. (2018). Combining historical data and bookmakers’ odds in
modelling football scores. Statistical Modelling, 18(5-6), 436-459.

Gelman, A. (2014). Stan goes to the World Cup. From "Statistical Modeling, Causal Inference, and
Social Science" blog.

Karlis, D. and Ntzoufras, I. (2003). Analysis of sports data by using bivariate poisson models.
Journal of the Royal Statistical Society: Series D (The Statistician) 52(3), 381-393.

Karlis, D. and Ntzoufras,I. (2009). Bayesian modelling of football outcomes: Using the Skellam’s
distribution for the goal difference. IMA Journal of Management Mathematics 20(2), 133-145.

Owen, A. (2011). Dynamic Bayesian forecasting models of football match outcomes with estima-
tion of the evolution variance parameter. IMA Journal of Management Mathematics, 22(2), 99-113.

Examples

Not run:
library(dplyr)

data("italy")
italy <- as_tibble(italy)
italy_2000_2002 <- italy %>%

dplyr::select(Season, home, visitor, hgoal, vgoal) %>%
dplyr::filter(Season == "2000" | Season == "2001" | Season == "2002")

colnames(italy_2000_2002) <- c("periods", "home_team", "away_team", "home_goals", "away_goals")

mle_fit <- mle_foot(
data = italy_2000_2002,
model = "double_pois"

plot_btdPosterior 19

)

End(Not run)

plot_btdPosterior Plot Posterior Distributions for btdFoot Objects

Description

Plots for the posterior distributions of team log-strengths and other parameters with customizable
plot types and facets.

Usage

plot_btdPosterior(
x,
pars = "logStrength",
plot_type = "boxplot",
teams = NULL,
ncol = NULL,
scales = NULL

)

Arguments

x An object of class btdFoot.

pars A character string specifying the parameter to plot. Choices are "logStrength",
"logTie", and "home". Default is "logStrength".

plot_type A character string specifying the type of plot. Choices are "boxplot" and
"density". Default is "boxplot".

teams An optional character vector specifying team names to include in the posterior
boxplots or density plots. If NULL, all teams are included.

ncol An optional integer specifying the number of columns in the facet wrap when
using a dynamic Bayesian Bradley-Terry-Davidson model. Default is 8.

scales An optional character string specifying the scales for the facets when using a
dynamic Bayesian Bradley-Terry-Davidson model. Options include "free",
"fixed", "free_x", and "free_y". Default is "free_x".

Value

A ggplot object displaying:

• For pars="logStrength":

– Dynamic BTD: Faceted boxplots or density plots (including the 95% credible interval) of
posterior log-strengths by team and period.

20 plot_btdPosterior

– Static BTD: Boxplots or density plots (including the 95% credible interval) of posterior
log-strengths for each team.

• For pars="logTie" or pars="home": A single boxplot or density plot with 95% credible
interval.

Author(s)

Roberto Macrì Demartino <roberto.macridemartino@deams.units.it>.

Examples

Not run:
if (instantiate::stan_cmdstan_exists()) {

library(dplyr)

Load example data
data("italy")

Prepare the data
italy_2020_2021_rank <- italy %>%
select(Season, home, visitor, hgoal, vgoal) %>%
filter(Season %in% c("2020", "2021")) %>%
mutate(match_outcome = case_when(

hgoal > vgoal ~ 1, # Home team wins
hgoal == vgoal ~ 2, # Draw
hgoal < vgoal ~ 3 # Away team wins

)) %>%
mutate(periods = case_when(

row_number() <= 190 ~ 1,
row_number() <= 380 ~ 2,
row_number() <= 570 ~ 3,
TRUE ~ 4

)) %>% # Assign periods based on match number
select(periods,

home_team = home,
away_team = visitor, match_outcome

)

Fit the Bayesian Bradley-Terry-Davidson model with dynamic ranking
fit_rank_dyn <- btd_foot(

data = italy_2020_2021_rank,
dynamic_rank = TRUE,
rank_measure = "median",
iter_sampling = 1000,
parallel_chains = 2,
chains = 2

)

Plot posterior distributions with default settings
plot_btdPosterior(fit_rank_dyn)

Plot posterior distributions for specific teams with customized facets

plot_logStrength 21

plot_btdPosterior(
fit_rank_dyn,
teams = c("AC Milan", "AS Roma", "Juventus", "Inter"),
ncol = 2

)

plot_btdPosterior(
fit_rank_dyn,
plot_type = "density",
teams = c("AC Milan", "AS Roma", "Juventus", "Inter"),
ncol = 2

)
}

End(Not run)

plot_logStrength Plot Rankings for btdFoot Objects

Description

Visualizes team rankings based on whether the ranking is dynamic or static.

Usage

plot_logStrength(x, teams = NULL)

Arguments

x An object of class btdFoot.

teams An optional character vector specifying team names to include in the rankings
plot. If NULL, all teams are included.

Details

• Dynamic Ranking: Plots Rank Points over Periods for each team with lines and points.

• Static Ranking: Plots Rank Points on the x-axis against Team Names on the y-axis with hori-
zontal lines and points.

Value

A ggplot object:

• Dynamic BTD: A lineplot for the log_strengths over each period, colored by team.

• Static BTD: An horizontal barplot for each team.

Author(s)

Roberto Macrì Demartino <roberto.macridemartino@deams.units.it>.

22 pp_foot

Examples

Not run:
if (instantiate::stan_cmdstan_exists()) {

library(dplyr)

data("italy")

italy_2020_2021_rank <- italy %>%
select(Season, home, visitor, hgoal, vgoal) %>%
filter(Season == "2020" | Season == "2021") %>%
mutate(match_outcome = case_when(

hgoal > vgoal ~ 1, # Home team wins
hgoal == vgoal ~ 2, # Draw
hgoal < vgoal ~ 3 # Away team wins

)) %>%
mutate(periods = case_when(

row_number() <= 190 ~ 1,
row_number() <= 380 ~ 2,
row_number() <= 570 ~ 3,
TRUE ~ 4

)) %>% # Assign periods based on match number
select(periods,

home_team = home,
away_team = visitor, match_outcome

)

fit_rank_dyn <- btd_foot(
data = italy_2020_2021_rank,
dynamic_rank = TRUE,
rank_measure = "median",
iter_sampling = 1000,
parallel_chains = 2,
chains = 2

)

plot_logStrength(fit_rank_dyn)

plot_logStrength(fit_rank_dyn, teams = c("AC Milan", "AS Roma", "Juventus", "Inter"))
}

End(Not run)

pp_foot Posterior predictive checks for football models

Description

The function provides posterior predictive plots to check the adequacy of the Bayesian models as
returned by the stan_foot function.

pp_foot 23

Usage

pp_foot(object, data, type = "aggregated", coverage = 0.95)

Arguments

object An object either of class stanFoot, CmdStanFit, stanfit.

data A data frame containing match data with columns:

• periods: Time point of each observation (integer >= 1).
• home_team: Home team’s name (character string).
• away_team: Away team’s name (character string).
• home_goals: Goals scored by the home team (integer >= 0).
• away_goals: Goals scored by the away team (integer >= 0).

type Type of plots, one among "aggregated" or "matches". Default is "aggregated".

coverage Argument to specify the width 1 − α of posterior probability intervals. Default
is 0.95.

Details

Posterior predictive plots: when "aggregated" (default) is selected, the function returns a fre-
quency plot for some pre-selected goal-difference values, along with their correspondent Bayesian
p-values, computed as Pr(yrep ≥ y)|y), where yrep is a data replication from the posterior predic-
tive distribution (more details in Gelman et al., 2013). Bayesian p-values very close to 0 or 1 could
exhibit possible model misfits.

When "matches" is selected an ordered-frequency plot for all the goal-differences in the considered
matches is provided, along with the empirical Bayesian coverage at level 1− α.

Value

A list with elements:

• pp_plot: A ggplot object for the selected type of plot.

• pp_table: A data frame of summary statistics:

– For "aggregated": Goal differences and their Bayesian p-values.
– For "matches": Nominal 1-alpha and observed empirical Bayesian coverage.

Author(s)

Leonardo Egidi <legidi@units.it> and Roberto Macrì Demartino <roberto.macridemartino@deams.units.it>

References

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian
data analysis. CRC press.

24 print.btdFoot

Examples

Not run:
if (instantiate::stan_cmdstan_exists()) {

library(dplyr)

data("italy")
italy_2000 <- italy %>%
dplyr::select(Season, home, visitor, hgoal, vgoal) %>%
dplyr::filter(Season == "2000")

colnames(italy_2000) <- c("periods", "home_team", "away_team", "home_goals", "away_goals")

fit <- stan_foot(italy_2000, "double_pois", iter_sampling = 200)

pp_foot(fit, italy_2000)
}

End(Not run)

print.btdFoot Print Method for btdFoot Objects

Description

Provides detailed posterior summaries for the Bayesian Bradley-Terry-Davidson model parameters.

Usage

S3 method for class 'btdFoot'
print(
x,
pars = NULL,
teams = NULL,
digits = 3,
true_names = TRUE,
display = "both",
...

)

Arguments

x An object of class btdFoot.

pars Optional character vector specifying parameters to include in the summary (e.g.,
"logStrength", "logTie", "home", "log_lik", and "y_rep").

teams Optional character vector specifying team names whose logStrength parame-
ters should be displayed.

print.compareFoot 25

digits Number of digits to use when printing numeric values. Default is 3.

true_names Logical value indicating whether to display team names in parameter summaries.
Default is TRUE.

display Character string specifying which parts of the output to display. Options are
"both", "rankings", or "parameters". Default is "both".

... Additional arguments passed.

Author(s)

Roberto Macrì Demartino <roberto.macridemartino@deams.units.it>

print.compareFoot Print method for compareFoot objects

Description

Provides a formatted output when printing objects of class compareFoot, displaying the predictive
performance metrics and, if available, the confusion matrices for each model or probability matrix.

Usage

S3 method for class 'compareFoot'
print(x, digits = 3, ...)

Arguments

x An object of class compareFoot returned by compare_foot.

digits Number of digits to use when printing numeric values for the metrics. Default
is 3.

... Additional arguments passed to print.

Author(s)

Roberto Macrì Demartino <roberto.macridemartino@deams.units.it>

26 priors

print.stanFoot Print Method for stanFoot Objects

Description

Provides detailed posterior summaries for the Stan football model parameters.

Usage

S3 method for class 'stanFoot'
print(x, pars = NULL, teams = NULL, digits = 3, true_names = TRUE, ...)

Arguments

x An object of class stanFoot.

pars Optional character vector specifying parameters to include in the summary. This
can be specific parameter names (e.g., "att", "def", "att_raw", "def_raw",
"home", "sigma_att", "sigma_def", "rho", and "beta"). If NULL, all param-
eters are included.

teams Optional character vector specifying team names whose "att", "def", "att_raw",
"def_raw" parameters should be displayed.

digits Number of digits to use when printing numeric values. Default is 3.

true_names Logical value indicating whether to display team names in parameter summaries.
Default is TRUE.

... Additional arguments passed.

Author(s)

Roberto Macrì Demartino <roberto.macridemartino@deams.units.it>

priors Football priors distributions and options

Description

This prior specification is just a duplicate of some of the priors used by the rstanarm package.

These prior distributions can be passed to the stan_foot function, through the arguments prior
and prior_sd. See the vignette Prior Distributions for rstanarm Models for further details (to
view the priors used for an existing model see prior_summary). The default priors used in the
stan_foot modeling function are intended to be weakly informative in that they provide moderate
regularlization and help stabilize computation.

You can choose between: normal, cauchy, laplace, student_t.

http://mc-stan.org/rstanarm/articles/priors.html
https://mc-stan.org/rstanarm/reference/prior_summary.stanreg.html

priors 27

Usage

normal(location = 0, scale = NULL, autoscale = TRUE)

student_t(df = 1, location = 0, scale = NULL, autoscale = TRUE)

cauchy(location = 0, scale = NULL, autoscale = TRUE)

laplace(location = 0, scale = NULL, autoscale = TRUE)

Arguments

location Prior location. In most cases, this is the prior mean, but for cauchy (which is
equivalent to student_t with df=1), the mean does not exist and location is
the prior median. The default value is 0.

scale Prior scale. The default depends on the family (see Details).

autoscale A logical scalar, defaulting to TRUE.

df Prior degrees of freedom. The default is 1 for student_t, in which case it is
equivalent to cauchy.

Details

The details depend on the family of the prior being used:

Student t family: Family members:

• normal(location, scale)

• student_t(df, location, scale)

• cauchy(location, scale)

Each of these functions also takes an argument autoscale.
For the prior distribution for the intercept, location, scale, and df should be scalars. For the
prior for the other coefficients they can either be vectors of length equal to the number of coef-
ficients (not including the intercept), or they can be scalars, in which case they will be recycled
to the appropriate length. As the degrees of freedom approaches infinity, the Student t distribu-
tion approaches the normal distribution and if the degrees of freedom are one, then the Student t
distribution is the Cauchy distribution.
If scale is not specified it will default to 10 for the intercept and 2.5 for the other coefficients.
If the autoscale argument is TRUE (the default), then the scales will be further adjusted as de-
scribed above in the documentation of the autoscale argument in the Arguments section.

Laplace family: Family members:

• laplace(location, scale)

Each of these functions also takes an argument autoscale.
The Laplace distribution is also known as the double-exponential distribution. It is a symmetric
distribution with a sharp peak at its mean / median / mode and fairly long tails. This distribution
can be motivated as a scale mixture of normal distributions and the remarks above about the
normal distribution apply here as well.

28 stan_foot

Value

A named list to be used internally by the stan_foot model fitting function.

Author(s)

Leonardo Egidi <legidi@units.it>

References

Gelman, A., Jakulin, A., Pittau, M. G., and Su, Y. (2008). A weakly informative default prior
distribution for logistic and other regression models. Annals of Applied Statistics. 2(4), 1360–1383.

See Also

The various vignettes for the rstanarm package also discuss and demonstrate the use of some of
the supported prior distributions.

stan_foot Fit football models using CmdStan

Description

Fits football goal-based models using Stan via the CmdStan backend. Supported models include:
double Poisson, bivariate Poisson, Skellam, Student’s t, diagonal-inflated bivariate Poisson, zero-
inflated Skellam, and negative Binomial.

Usage

stan_foot(
data,
model,
predict = 0,
ranking,
dynamic_type,
prior_par = list(ability = normal(0, NULL), ability_sd = cauchy(0, 5), home = normal(0,

5)),
home_effect = TRUE,
norm_method = "none",
ranking_map = NULL,
method = "MCMC",
...

)

stan_foot 29

Arguments

data A data frame containing match data with columns:

• periods: Time point of each observation (integer >= 1).
• home_team: Home team’s name (character string).
• away_team: Away team’s name (character string).
• home_goals: Goals scored by the home team (integer >= 0).
• away_goals: Goals scored by the away team (integer >= 0).

model A character string specifying the Stan model to fit. Options are:

• "double_pois": Double Poisson model.
• "biv_pois": Bivariate Poisson model.
• "neg_bin": Negative Binomial model.
• "skellam": Skellam model.
• "student_t": Student’s t model.
• "diag_infl_biv_pois": Diagonal-inflated bivariate Poisson model.
• "zero_infl_skellam": Zero-inflated Skellam model.

predict An integer specifying the number of out-of-sample matches for prediction. If
missing, the function fits the model to the entire dataset without making predic-
tions.

ranking An optional "btdFoot" class element or a data frame containing ranking points
for teams with the following columns:

• periods: Time periods corresponding to the rankings (integer >= 1).
• team: Team names matching those in data (character string).
• rank_points: Ranking points for each team (numeric).

dynamic_type A character string specifying the type of dynamics in the model. Options are:

• "weekly": Weekly dynamic parameters.
• "seasonal": Seasonal dynamic parameters.

prior_par A list specifying the prior distributions for the parameters of interest:

• ability: Prior distribution for team-specific abilities. Possible distribu-
tions are normal, student_t, cauchy, laplace. Default is normal(0,
NULL).

• ability_sd: Prior distribution for the team-specific standard deviations.
See the prior argument for more details. Default is cauchy(0, 5).

• home: Prior distribution for the home effect (home). Applicable only if
home_effect = TRUE. Only normal priors are allowed. Default is normal(0,
5).

See the rstanarm package for more details on specifying priors.

home_effect A logical value indicating the inclusion of a home effect in the model. (default
is TRUE).

norm_method A character string specifying the method used to normalize team-specific rank-
ing points. Options are:

• "none": No normalization (default).

30 stan_foot

• "standard": Standardization (mean 0, standard deviation 1).
• "mad": Median Absolute Deviation normalization.
• "min_max": Min-max scaling to [0,1].

ranking_map An optional vector mapping ranking periods to data periods. If not provided
and the number of ranking periods matches the number of data periods, a direct
mapping is assumed.

method A character string specifying the method used to obtain the Bayesian estimates.
Options are:

• "MCMC": Markov chain Monte Carlo algorithm (default).
• "VI": Automatic differentiation variational inference algorithms.
• "pathfinder": Pathfinder variational inference algorithm.
• "laplace": Laplace algorithm.

... Additional arguments passed to cmdstanr (e.g., iter_sampling, chains, parallel_chains).

Details

Let (yHn , yAn) denote the observed number of goals scored by the home and the away team in the
n-th game, respectively. A general bivariate Poisson model allowing for goals’ correlation (Karlis
& Ntzoufras, 2003) is the following:

Y H
n , Y A

n |λ1n, λ2n, λ3n ∼ BivPoisson(λ1n, λ2n, λ3n)

log(λ1n) = µ+ atthn
+ defan

log(λ2n) = attan
+ defhn

log(λ3n) = β0,

where the case λ3n = 0 reduces to the double Poisson model (Baio & Blangiardo, 2010). λ1n, λ2n

represent the scoring rates for the home and the away team, respectively, where: µ is the home
effect; the parameters attT and defT represent the attack and the defence abilities, respectively,
for each team T , T = 1, . . . , NT ; the nested indexes hn, an = 1, . . . , NT denote the home and the
away team playing in the n-th game, respectively. Attack/defence parameters are imposed a sum-to-
zero constraint to achieve identifiability and assigned some weakly-informative prior distributions:

attT ∼ N(µatt, σatt)

defT ∼ N(µdef , σdef),

with hyperparameters µatt, σatt, µdef , σdef .

Instead of using the marginal number of goals, another alternative is to modelling directly the score
difference (yHn − yAn). We can use the Poisson-difference distribution (or Skellam distribution) to
model goal difference in the n-th match (Karlis & Ntzoufras, 2009):

yHn − yAn |λ1n, λ2n ∼ PD(λ1n, λ2n),

and the scoring rates λ1n, λ2n are unchanged with respect to the bivariate/double Poisson model. If
we want to use a continue distribution, we can use a student t distribution with 7 degrees of freedom
(Gelman, 2014):

stan_foot 31

yHn − yAn ∼ t(7, abhn
− aba(n), σy)

abt ∼ N(µ+ b× prior_scoret, sigmaab),

where abt is the overall ability for the t-th team, whereas prior_scoret is a prior measure of team’s
strength (for instance a ranking).

These model rely on the assumption of static parameters. However, we could assume dynamics in
the attach/defence abilities (Owen, 2011; Egidi et al., 2018, Macrì Demartino et al., 2024) in terms
of weeks or seasons through the argument dynamic_type. In such a framework, for a given number
of times 1, . . . , T , the models above would be unchanged, but the priors for the abilities parameters
at each time τ, τ = 2, . . . , T , would be:

attT,τ ∼ N(attT,τ−1, σatt)

defT,τ ∼ N(defT,τ−1, σdef),

whereas for τ = 1 we have:

attT,1 ∼ N(µatt, σatt)

defT,1 ∼ N(µdef , σdef).

Of course, the identifiability constraint must be imposed for each time τ .

The current version of the package allows for the fit of a diagonal-inflated bivariate Poisson and
a zero-inflated Skellam model in the spirit of (Karlis & Ntzoufras, 2003) to better capture draw
occurrences. See the vignette for further details.

Value

An object of class "stanFoot", which is a list containing:

• fit: The CmdStanFit object returned by cmdstanr.

• data: The input data.

• stan_data: The data list passed to Stan.

• stan_code: The Stan code of the underline model.

• stan_args: The optional cmdstanr parameters passed to (...).

• alg_method: The inference algorithm used to obtain the Bayesian estimates.

Author(s)

Leonardo Egidi <legidi@units.it>, Roberto Macrì Demartino <roberto.macridemartino@deams.units.it>,
and Vasilis Palaskas <vasilis.palaskas94@gmail.com>.

32 stan_foot

References

Baio, G. and Blangiardo, M. (2010). Bayesian hierarchical model for the prediction of football
results. Journal of Applied Statistics 37(2), 253-264.

Egidi, L., Pauli, F., and Torelli, N. (2018). Combining historical data and bookmakers’ odds in
modelling football scores. Statistical Modelling, 18(5-6), 436-459.

Gelman, A. (2014). Stan goes to the World Cup. From "Statistical Modeling, Causal Inference, and
Social Science" blog.

Macrì Demartino, R., Egidi, L. and Torelli, N. Alternative ranking measures to predict international
football results. Computational Statistics (2024), 1-19.

Karlis, D. and Ntzoufras, I. (2003). Analysis of sports data by using bivariate poisson models.
Journal of the Royal Statistical Society: Series D (The Statistician) 52(3), 381-393.

Karlis, D. and Ntzoufras,I. (2009). Bayesian modelling of football outcomes: Using the Skellam’s
distribution for the goal difference. IMA Journal of Management Mathematics 20(2), 133-145.

Owen, A. (2011). Dynamic Bayesian forecasting models of football match outcomes with estima-
tion of the evolution variance parameter. IMA Journal of Management Mathematics, 22(2), 99-113.

Examples

Not run:
if (instantiate::stan_cmdstan_exists()) {

library(dplyr)

Example usage with ranking
data("italy")
italy <- as_tibble(italy)
italy_2021 <- italy %>%
select(Season, home, visitor, hgoal, vgoal) %>%
filter(Season == "2021")

teams <- unique(italy_2021$home)
n_rows <- 20

Create fake ranking
ranking <- data.frame(

periods = rep(1, n_rows),
team = sample(teams, n_rows, replace = FALSE),
rank_points = sample(0:60, n_rows, replace = FALSE)

)

ranking <- ranking %>%
arrange(periods, desc(rank_points))

colnames(italy_2021) <- c("periods", "home_team", "away_team", "home_goals", "away_goals")

fit_with_ranking <- stan_foot(
data = italy_2021,
model = "diag_infl_biv_pois",

stan_foot 33

ranking = ranking,
home_effect = TRUE,
prior_par = list(

ability = student_t(4, 0, NULL),
ability_sd = cauchy(0, 3),
home = normal(1, 10)

),
norm_method = "mad",
iter_sampling = 1000,
chains = 2,
parallel_chains = 2,
adapt_delta = 0.95,
max_treedepth = 15

)

Print a summary of the model fit
print(fit_with_ranking, pars = c("att", "def"))

Use Italian Serie A from 2000 to 2002

data("italy")
italy <- as_tibble(italy)
italy_2000_2002 <- italy %>%

dplyr::select(Season, home, visitor, hgoal, vgoal) %>%
dplyr::filter(Season == "2000" | Season == "2001" | Season == "2002")

colnames(italy_2000_2002) <- c("periods", "home_team", "away_team", "home_goals", "away_goals")

Fit Stan models
no dynamics, no predictions

fit_1 <- stan_foot(
data = italy_2000_2002,
model = "double_pois"

) # double poisson
print(fit_1, pars = c(

"home", "sigma_att",
"sigma_def"

))

fit_2 <- stan_foot(
data = italy_2000_2002,
model = "biv_pois"

) # bivariate poisson
print(fit_2, pars = c(

"home", "rho",
"sigma_att", "sigma_def"

))

fit_3 <- stan_foot(
data = italy_2000_2002,

34 stan_foot

mode = "skellam"
) # skellam
print(fit_3, pars = c(

"home", "sigma_att",
"sigma_def"

))

fit_4 <- stan_foot(
data = italy_2000_2002,
model = "student_t"

) # student_t
print(fit_4, pars = c("beta"))

seasonal dynamics, no prediction

fit_5 <- stan_foot(
data = italy_2000_2002,
model = "double_pois",
dynamic_type = "seasonal"

) # double poisson
print(fit_5, pars = c(

"home", "sigma_att",
"sigma_def"

))

seasonal dynamics, prediction for the last season

fit_6 <- stan_foot(
data = italy_2000_2002,
model = "double_pois",
dynamic_type = "seasonal",
predict = 170

) # double poisson
print(fit_6, pars = c(

"home", "sigma_att",
"sigma_def"

))

other priors' options
double poisson with
student_t priors for teams abilities
and laplace prior for the hyper sds

fit_p <- stan_foot(
data = italy_2000_2002,
model = "double_pois",
prior_par = list(

ability = student_t(4, 0, NULL),
ability_sd = laplace(0, 1),
home = normal(1, 10)

)
)

stan_foot 35

print(fit_p, pars = c(
"home", "sigma_att",
"sigma_def"

))
}

End(Not run)

Index

∗ datasets
england, 8
italy, 15

btd_foot, 3

cauchy (priors), 26
cmdstanr, 4, 30, 31
compare_foot, 6, 25

england, 8

foot_abilities, 9
foot_prob, 11
foot_rank, 13
foot_round_robin, 14

italy, 15

laplace (priors), 26
list, 9, 11

mle_foot, 16

normal (priors), 26

plot_btdPosterior, 19
plot_logStrength, 21
pp_foot, 22
print.btdFoot, 24
print.compareFoot, 25
print.stanFoot, 26
priors, 26

stan_foot, 28
stanfit, 11
stats, 17
student_t (priors), 26

36

	btd_foot
	compare_foot
	england
	foot_abilities
	foot_prob
	foot_rank
	foot_round_robin
	italy
	mle_foot
	plot_btdPosterior
	plot_logStrength
	pp_foot
	print.btdFoot
	print.compareFoot
	print.stanFoot
	priors
	stan_foot
	Index

