
Package ‘flsa’
February 6, 2024

Type Package

Title Path Algorithm for the General Fused Lasso Signal Approximator

Version 1.5.5

Date 2024-01-14

Author Holger Hoefling

Maintainer Holger Hoefling <hhoeflin@gmail.com>

Description Implements a path algorithm for the Fused Lasso Signal Approximator.
For more details see the help files or the article by Hoefling (2009) <arXiv:0910.0526>.

License GPL-2

Depends R (>= 2.0.0)

Suggests testthat

NeedsCompilation yes

Repository CRAN

Date/Publication 2024-02-05 23:00:05 UTC

R topics documented:
flsa . 1
is.connListObj . 3

Index 5

flsa Fused Lasso Signal Approximator

Description

These functions are the main interface functions for calculating FLSA solutions

1

https://arxiv.org/abs/0910.0526

2 flsa

Usage

flsa(y, lambda1=0, lambda2=NULL, connListObj = NULL, splitCheckSize=1e+09,
verbose=FALSE, thr = 1e-09, maxGrpNum=4*length(y))

flsaTopDown(y, lambda1=0, groups=1:length(y), lambda2=NULL)
flsaGetSolution(solObj, lambda1=0, lambda2=NULL, dim=NULL)

Arguments

y response variable; numeric

lambda1 penalty parameter vector (non-negative) for the absolute values uf the coeffi-
cients; numeric

lambda2 penalty parameter vector (non-negative) for the difference of certain coefficients;
numeric

groups Return solutions for which the given number of groups is present - solutions
found exactly at the breakpoint

connListObj an object specifying which differences are to be penalized by lambda2. If
NULL, then the dimensionalty of y is being used. If y is a vector, the differ-
ences of neighbouring coefficients are penalized. If y is a matrix, differences of
neighbouring coefficients in 2 dimensions are being penalized. For more infor-
mation see connListObj

splitCheckSize a parameter specifying from which size on, groups of variables are not being
checked for breaking up; can be used to reduce computation time; may lead to
inaccurate results

solObj Solution object as returned by FLSA if lambda2=NULL

dim dimensions how the result should be formatted for a specific lambda. Used to
format the 2-dimensional FLSA as a matrix in the response. For this, just include
the dimensions of y as dim

verbose print status messages during fitting

thr the error threshold used in the algorithm

maxGrpNum if every step of the algorithm, a group with a higher number is generated; this
limits the number of steps the algorithm can take

Details

flsa is the main function for calculate a flsa fit. If lambda2=NULL, then it returns an object that
encodes the whole solution path. Solutions for specific values of lambda1 and lambda2 can then be
obtained by using flsaGetSolution.

flsaTopDown calculates the solution of the 1-dimensional FLSA, starting at large values of lambda2.
If only solutions for large values of lambda2 are needed, this is more efficient.

Author(s)

Holger Hoefling

is.connListObj 3

See Also

connListObj

Examples

library(flsa)
generate some artificial data, 1 and 2 dimensional
y <- rnorm(100)
y2Dim = matrix(rnorm(100), ncol=10)

apply function flsa and get solution directly
lambda2= 0:10/10
res <- flsa(y, lambda2=lambda2)
res2Dim <- flsa(y2Dim, lambda2=lambda2)

apply the function and get the solution later
resSolObj <- flsa(y, lambda2=NULL)
resSolObjTopDown <- flsaTopDown(y)
resSolObj2Dim <- flsa(y2Dim, lambda2=NULL)

res2 <- flsaGetSolution(resSolObj, lambda2=lambda2)
here note that the solution object does not store that the input was 2 dimensional
therefore, res2Dim does not give out the solution as a 2
dimensional matrix (unlike the direct version above)
res2Dim2 <- flsaGetSolution(resSolObj2Dim, lambda2=lambda2)

is.connListObj Connection List Objects

Description

Describes the makeup of a connection list object

Usage

is.connListObj(obj)

Arguments

obj the object to be tested

Details

A connection list object can be used to specifiy which differences in fusedlasso or flsa functions
are to be penalized. Here, it is assumed that the n coefficients in the model are numbered from
0 to n-1. The connection list object is a list of length n with each element corresponding to one
of the coefficients. The i-th element of the list here corresponds to coefficient with number i-1.
Each element of the list is a vector of integers, naming the numbers of the coefficients to which

4 is.connListObj

the coefficient corresponding to the current list element is linked (i.e. the difference of the two
coefficients is being penalized). I.e., assume that value j is a member of the list under list element
i. Then this means that coeffient $i-1$ and coefficient j are being penalized. To understand
this, consider that R-lists when viewed in C-code are being numbered starting with 0, not 1 and
note that all computation is being done in C-code.

Furthermore, the connection list object has class connListObj.

Also note that the vectors in the list are of type integer not numeric. An empty vector should be
set to NULL.

Author(s)

Holger Hoefling

See Also

connListObj

Examples

connList <- vector("list", 4)
y <- 1:4

class(connList) = "connListObj"
connList[[1]] = as.integer(c(1,2))
connList[[2]] = as.integer(c(0,3))
connList[[3]] = as.integer(c(3,0))
connList[[4]] = as.integer(c(2,1))
names(connList) <- as.character(0:3) ## not necessary, just for illustration

res <- flsa(y, connListObj=connList)
res2 <- flsa(matrix(y, nrow=2))

res$BeginLambda
res2$BeginLambda
flsaGetSolution(res, lambda2=c(0, 0.5, 1))
flsaGetSolution(res2, lambda2=c(0, 0.5, 1))

Index

∗ multivariate
flsa, 1
is.connListObj, 3

∗ regression
flsa, 1
is.connListObj, 3

ConnListObj (is.connListObj), 3
connListObj, 2–4
connListObj (is.connListObj), 3

FLSA (flsa), 1
flsa, 1
flsaGetSolution (flsa), 1
flsaTopDown (flsa), 1

is.connListObj, 3

5

	flsa
	is.connListObj
	Index

