
Package ‘flametree’
October 13, 2022

Title Generate Random Tree-Like Images

Version 0.1.3

Description A generative art system for producing tree-like
images using an L-system to create the structures. The package
includes tools for generating the data structures and visualise
them in a variety of styles.

License MIT + file LICENSE

Encoding UTF-8

URL https://github.com/djnavarro/flametree

BugReports https://github.com/djnavarro/flametree/issues

Imports tibble, dplyr, purrr, tidyr, ggplot2, ggforce, magrittr

Suggests deldir, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

RoxygenNote 7.1.1

NeedsCompilation no

Author Danielle Navarro [aut, cre] (<https://orcid.org/0000-0001-7648-6578>)

Maintainer Danielle Navarro <djnavarro@protonmail.com>

Repository CRAN

Date/Publication 2021-11-29 08:00:02 UTC

R topics documented:
flametree_grow . 2
flametree_plot . 4
flametree_save . 6
sparks . 7

Index 9

1

https://github.com/djnavarro/flametree
https://github.com/djnavarro/flametree/issues
https://orcid.org/0000-0001-7648-6578

2 flametree_grow

flametree_grow Generate the data specifying a flametree

Description

Generate the data specifying a flametree

Usage

flametree_grow(
seed = 286,
time = 6,
scale = c(0.6, 0.8, 0.9),
angle = c(-10, 10, 20),
split = 2,
trees = 1,
seg_col = spark_linear(tree = 2, time = 1),
seg_wid = spark_decay(time = 0.3, multiplier = 5, constant = 0.1),
shift_x = spark_random(multiplier = 3),
shift_y = spark_nothing()

)

Arguments

seed Integer seed for the random number generator

time Number of generations to run the iterative process

scale Vector of possible values for the "size rescaling" at each iteration

angle Vector of possible angle changes (in degrees) at each iteration

split Number of splits at each time point

trees Number of trees to generate

seg_col Spark function to control the segment colour

seg_wid Spark function to control the segment width

shift_x Spark function to control horizontal jitter

shift_y Spark function to control vertical jitter

Details

Generative art created with flametree is a visualisation of a data structure created by calling flametree_grow().
The underlying algorithm is an iterative branching process: each tree starts out as a single vertical
segment, to which multiple new segments are added at the end of the first iteration. Over multiple
iterations this creates a tree-like structure.

The user can control how this iterative process unfolds. By setting the seed argument the random
number generator is reset using set.seed(). The trees argument specifies the number of trees to
create using this process, the time argument specifies how many iterations of the branching process

flametree_grow 3

will be run (at least two), and the split argument specifies how many new segments (at least two)
will be created each time abranching occurs.

When a new segment is created, its size and orientation are controlled by the scale and angle
arguments. The scale argument takes a vector of at least two positive numbers. One of these num-
bers is selected at random whenever a new segment is created, and the length of the new segment
is equal to the length of the "parent" segment from which it was created, multiplied by this scaling
factor. The orientation of the new segment is controlled by the angle argument in an analogous way.
Every time a new segment is generated, one of these angles (interpreted in degrees, not radians)
is selected at random. The orientation of the new segment is equal to the orientation of the parent
segment plus the sampled angle. Like the scale argument, angle must contain at least two values.

The remaining arguments (seg_col, seg_wid, shift_x, and shift_y) all take functions as their
input, and are used to control how the colours (seg_col) and width (seg_wid) of the segments are
created, as well as the horizontal (shift_x) and vertical (shift_y) displacement of the trees are
generated. Functions passed to these arguments take four inputs: coord_x, coord_y, id_tree,
and id_time. Any function that takes these variables as input can be used for this purpose.
However, as a convenience, four "spark" functions are provided that can be used to create func-
tions that are suitable for this purpose: spark_linear(), spark_decay(), spark_random(), and
spark_nothing().

These functions are documented in their own help files. To give an example, the default behaviour
of flametree_grow() adds a random horizontal displacement to each tree to give the impression
of multiple trees growing side by side. To suppress this horizontal displacement, set shift_x =
spark_nothing().

Value

The output of flametree_grow()‘ is a tibble with the following columns: coord_x, coord_y,
id_tree, id_time, id_path, id_leaf, id_pathtree, id_step, seg_deg, seg_len, seg_col, and
seg_wid. Each row in the tibble specifies a single point: every curved segment is defined by three
such rows.

The two "coord" columns are numeric variables that specify the location of the point itself. The
"id" columns are used as indicators of various kinds. The id_tree column contains numbers spec-
ifying which tree each point belongs to, and similarly the id_time column is a numeric identifier
that specifies the time point at which the point was generated (i.e., the iteration of the generative
process). The id_step column contains a number (0, 1, or 2) indicating whether the point is the
first point, the midpoint, or the end point of the relevant curved segment in a tree. In addition,
there are two identifier columns used to denote the segments themselves. The id_path column
is numeric, and assigns value 1 to the "first" segment (i.e., the lowest part of the tree trunk) for
every tree, with values increasing numerically for each subsequent segment. Values for id_path
will uniquely identify a segment within a tree, but when multiple trees are generated there will be
multiple segments that have the same id_path value. If a unique identifier across trees is needed,
use the id_pathtree column, which is a character vector constructed by pasting the id_path and
id_tree values into a string, with an underscore as the separator character.

In addition to the two coordinate columns and the six identifier columns, the data generated by
flametree_grow() contains four "seg" columns that are intended to map onto different visual
characteristics of a plot. The seg_deg column specifies the orientation of the segment, whereas
seg_len denotes the length of the segment, seg_col specifies the colour (as a numeric value that
could be interpreted by a palette), and seg_wid specifies the width of the segment. Note that this

4 flametree_plot

information use used differently by the flametree_plot() function, depending on what style of
plot is generated.

Examples

flametree data structure with default parameters
flametree_grow()

setting time = 10 runs the generative process
longer resulting in a table with more rows
flametree_grow(time = 10)

default behaviour is to randomly displace trees
by random horizontal perturbation: to switch this
off use the spark_nothing() function
flametree_grow(shift_x = spark_nothing())

flametree_plot Create a plot from a flametree data frame

Description

Create a plot from a flametree data frame

Usage

flametree_plot(
data,
background = "black",
palette = c("#1E2640", "#F3EAC0", "#DC9750", "#922C40"),
style = "plain"

)

Arguments

data The data frame specifying the flametree

background The background colour of the image

palette A vector of colours

style Style of tree to draw

Details

The flametree_plot() function provides several ways to visualise the data created by the gener-
ative system implemented by flametree_grow(). The background argument sets the background
colour of the image, and should either be a string specifying an RGB hex colour (e.g., "#000000")
or the of a colour recognised by R (see the colours() function for details). Analogously, the
palette argument should be a vector of colours. However, the palette argument is interpreted

flametree_plot 5

slightly differently depending on which style of plot is created, discussed below. To set the style
of the resulting plot, pass one of the following style names: "plain" (the default), "voronoi", "wisp",
"nativeflora", "minimal", or "themegray".

Plots in the "plain" style have the following properties. Branches of the trees vary in width using the
seg_wid data column. Each branch is shown as a curved segment created using geom_bezier2(),
and the colour of the segments is mapped to the seg_col column in the data. No leaves are drawn.
In this style, the elements of the palette are used to create a continuous n-colour gradient using
scale_colour_gradientn().

Plots in the "voronoi" style draw the shape of the tree the same way as the plain style, except that the
segments do not vary in colour and are rendered using geom_bezier() instead of geom_bezier2().
Unlike the plain style, stylised "leaves" are drawn by constructing a Voronoi tesselation of the
terminal nodes in the tree. Note that computing the tesselation is computationally expensive and
this will likely produce errors if there are too many nodes (typically when the time parameter to
flametree_grow() is large). The interpretation of the palette argument is slightly different: the
first element of the palette is used to set the colour of the trees, and the rest of the palette colours
are used to create the gradient palette used to colour the tiles depicted in the Voronoi tesselation.

The style = "nativeflora" style creates a plot in which tree branches are rendered as thin seg-
ments, with a proportion of those segments removed, and small points are drawn at the end of each
terminal segment. The width of the branches does not vary (i.e., seg_wid is ignored) and the colour
of the branches is constant within tree, but does vary across trees, ignoring the continuous valued
seg_col variable and using only the id_tree variable to do so. As with the plain style, the palette
colours are used to define an n-colour gradient.

The "wisp" style is similar to nativeflora, but no segments are removed, and the wdith of the
branches is mapped to seg_wid. It only uses the first two elements of palette: the first element
specifies the colour of the branches, and the second element specifies the colour of the leaf dots.

The final two styles are simplifications of other styles. The "minimal" style is similar to the plain
style but does not use curved segments, relying on geom_path() to draw the branches. The "the-
megray" style does this too, but it ignores the palette argument entirely, rendering the trees in
black, set against the default gray background specified by the ggplot2 theme_gray() function.

Value

A ggplot object.

Examples

the default tree in the plain style
flametree_grow() %>% flametree_plot()

10 trees drawn in the nativeflora style
flametree_grow(trees = 10, shift_x = spark_nothing()) %>%

flametree_plot(style = "nativeflora")

changing the palette
shades <- c("#A06AB4", "#FFD743", "#07BB9C", "#D773A2")
flametree_grow() %>% flametree_plot(palette = shades)

6 flametree_save

flametree_save Save the plot

Description

Save the plot

Usage

flametree_save(plot, filename, ...)

Arguments

plot The ggplot object

filename The path to the file

... Other arguments to be passed to ggsave

Details

The flametree_save() function provides a very thin wrapper around the ggsave() function from
ggplot2. It reverses the order of the first two arguments: the plot argument comes before filename,
in order to be more pipe-friendly. The second thing it does is inspect the plot object to deter-
mine the background colour, and ensures that colour is also used to specify the background colour
for the graphics device (e.g., the bg argument to png()). The reason for doing this is that plots
created using flametree_plot() typically force the coordinates to be on the same scale using
coord_equal(). As a consequence, if the aspect ratio of the image differs from the aspect ratio
of the ggplot there will be sections of the image that show the background colour of the graphics
device rather than the background colour specified by the ggplot object. By overriding the de-
fault behaviour of ggsave(), the flametree_save() function ensures that the image has the same
background colour everywhere.

Value

Invisibly returns NULL.

Examples

Not run:
typical usage
flametree_grow(trees = 5, time = 8) %>%

flametree_plot(style = "voronoi") %>%
flametree_save(filename = "~/Desktop/myfile.png")

passing additional arguments to ggsave()
flametree_grow(trees = 5, time = 8) %>%

flametree_plot(style = "voronoi") %>%
flametree_save(
filename = "~/Desktop/myfile.png",

sparks 7

height = 8,
width = 8

)

End(Not run)

sparks Spark functions to control tree growth

Description

Spark functions to control tree growth

Usage

spark_linear(x = 0, y = 0, tree = 0, time = 0, constant = 0)

spark_decay(x = 0, y = 0, tree = 0, time = 0, multiplier = 2, constant = 0)

spark_random(multiplier = 3, constant = 0)

spark_nothing()

Arguments

x Weight given to the horizontal co-ordinate

y Weight given to the horizontal co-ordinate

tree Weight given to the tree number

time Weight given to the time point

constant Constant value to be added to the output

multiplier Scaling parameter that multiplies the output

Details

Some arguments to flametree_grow() take numeric input, but seg_col, seg_wid, shift_x, and
shift_y all take functions as their input, and are used to control how the colours (seg_col) and
width (seg_wid) of the segments are created, as well as the horizontal (shift_x) and vertical
(shift_y) displacement of the trees are generated. Functions passed to these arguments take four
inputs: coord_x, coord_y, id_tree, and id_time as input. Any function that takes these variables
as input and produces a numeric vector of the same length as the input can be used for this purpose.
However, as a convenience, four "spark" functions are provided that can be used to create func-
tions that are suitable for this purpose: spark_linear(), spark_decay(), spark_random(), and
spark_nothing(). Arguments passed to one of the spark functions determine the specific func-
tion is generated. For example, spark_linear() can be used to construct any linear combination
of the inputs: spark_linear(x = 3, y = 2) would return a function that computes the sum (3 *

8 sparks

coord_x) + (2 * coord_y). Different values provided as input produce different linear functions.
Analogously, spark_decay() returns functions that are exponentially decaying functions of a linear
combination of inputs. The spark_random() generator can be used to generate functions that re-
turn random values, and spark_nothing() produces a function that always returns zero regardless
of input.

Value

A function that takes coord_x, coord_y, id_tree, and id_time as input, and returns a numeric
vector as output.

Examples

returns a linear function of x and y
spark_linear(x = 3, y = 2)

returns a function of time that decays
exponentially to an asymptote
spark_decay(time = .1, constant = .1)

returns a numeric vector containing
copies of the same uniform random number
constrained to lie between -2.5 and 2.5
spark_random(multiplier = 5)

returns a function that always produces
a vector of zeros
spark_nothing()

Index

flametree_grow, 2
flametree_plot, 4
flametree_save, 6

spark_decay (sparks), 7
spark_linear (sparks), 7
spark_nothing (sparks), 7
spark_random (sparks), 7
sparks, 7

9

	flametree_grow
	flametree_plot
	flametree_save
	sparks
	Index

