Getting started with the fitode package

Sang Woo Park
October 26, 2022

Contents

[L__Introduction|

12 Basic fitting - estimating epidemic growth rates|

2.2 Exponential growth model| 0000
[2.3 Logistic growth model
2.4 STR modell

13 Advanced fitting - multivariate time series|

1 Introduction

fitode is an R package for fitting ordinary differential equations (ODE) using
Maximum Likelihood or Bayesian Markov Chain Monte Carlo (MCMC). It relies
on symbolic differentiation features of the Deriv package to solve the sensitivity
equations so that gradient-based optimization algorithms can be used.

e response distributions: Gamma, Gaussian, Poisson, and negative binomial
(NB1 and NB2 parameterization)

link functions on model parameters: log, logit, and identity

fitting multiple states to multivariate time series

prior/penalization: Beta, Gamma, and Gaussian distributions

confidence intervals on parameters and their transformations via delta
method, profiling, and importance sampling

In order to construct a model in fitode you need to:

e specify the gradients using formula notation (e.g., dX/dt = f(X) is ex-
pressed as X ~ £(X))

e specify the observation process using formula notation (e.g., Xobs ~ dnorm(mean=X, sd=sigma)
e specify the initial conditions using formula notation

e specify the parameters of the model

e specify the link functions (log-link is the default)

To fit a model, you need to:

specify the data (as well as the time column)

specify the starting values for optimization or MCMC

optionally specify fixed parameters

optionally specify prior distributions (or penalizations); not specifying
prior distribution in MCMC will result in improper priors on link scales

This document was generated using R version 4.1.2 (2021-11-01) and package
versions:

Deriv bbmle deSolve fitode ggplot2
4.1.3 1.0.24 1.30 0.1.1 3.3.6

2 Basic fitting - estimating epidemic growth rates

2.1 Data

Here, we study a time series of confirmed cases of Ebola during the 2014 outbreak
in Sierra Leone to characterize epidemic growth patterns. Once you load fitode,
the data set (Sierraleone2014) will be automatically loaded into the global
environment.

library(ggplot2); theme_set(theme_bw())
library(fitode)
plot(Sierraleone2014)

0
§ - @
® % 4
32 Lo Cpoo
E 8
s 8 °
g - e
o Qo
a7 P %C;P%o
el
o 4 & e0R0PRI00Haa000

I I I I I I I
20144 20146 2014.8 2015.0 2015.2 20154 2015.6

times

2.2 Exponential growth model

Exponential growth is one of the simplest models we can use to characterize the

initial spread of a disease:
dX
— =rX. 1
ik (1)

This model is parameterized by the initial growth rate r and the initial value
X(0). Variable X describes the dynamics of mean confirmed cases; we will
assume that the observed number of confirmed cases at time ¢ follows a Poisson

error distribution with mean X (¢). This model can be constructed in fitode
as follows:

exp_model <- odemodel(
name="exponential",
model=1ist(
X 7 r x X
Do

observation=1list(
confirmed ~ dpois(lambda=X)

),
initial=list(
X ~ X0

),

par:c(nrn s "XO")

Note that the name(s) of the observed variable(s) (here, confirmed) must
be different from the name(s) of the state variable(s) (here, X).

In order to fit this model to the data, we have to specify starting parameters
for the optimization. To do so, we can simulate the model for various parameters
and try to find a reasonable parameter set by eye. For example, here is a
parameter set found by trial and error:

start <- c(r=7, X0=30)

ss <- simulate(exp_model, parms=start, times=Sierraleone2014$times)
plot(Sierraleone2014)

lines(X ~ times, data=ss)

abline(v=2014.8, col="red", 1lty=2)

confirmed
300 500
| |

0 100
|

I I I I
20144 20146 2014.8 2015.0 2015.2 2015.4 2015.6

times

Here, we used the simulate function to simulate the model. It requires a
parameter set (parms argument) and a time vector (times argument) to run. It
returns a deterministic ODE solution for each state variable as well as stochastic
simulated observations based on the ODE solution; we will ignore the simulated
observations for now.

The data does not exhibit exponential growth forever. In order to fit the
exponential model, we have to determine a fitting window. Here we will fit the
model from the beginning of the epidemic to time 2014.8 (red dashed line in the
previous figure).

exp_fit <- fitode(
model=exp_model,
data=subset (Sierraleone2014, times <= 2014.8),
start=start

)

Fitting ode ...
Computing wcov on the original scale ...

The estimated parameters are very close to our initial guess:
exp_fit

Model: exponential

#it

Observations:

confirmed ~ dpois(lambda = X)

##

Coefficients:

#it r X0

6.993036 30.249604

##

Log-Likelihood:-140.07
##

link: r = log; X0 = log

Since the exponential ODE has a simple closed-form analytical solution, we
could also have used MLE directly in this case:

mlefit <- bbmle::mle2(confirmed ~ dpois(XO*exp(r*(times-times[1]))),
data=subset (Sierraleone2014, times <= 2014.8),
start=as.list(start))

coef (mlefit)

#it r X0
6.993011 30.249836

We can quantify the uncertainty in the parameters by using confint:
confint (exp_fit)

#it estimate 2.5 % 97.5 %
r 6.993036 6.652687 7.350797
X0 30.249604 27.308713 33.507203

By default, confint will calculate the confidence intervals using the delta
method. bmb: are these ’delta method’ or Wald Cls?? We diagnose the fit by
using the plot function (the level=0.95 argument specifies that 95% confidence
intervals should be drawn):

plot(exp_fit, level=0.95)

o
o —]
0
3 3 -
E ™
€ _
@]
(&)
o
O —]
—
O —
T
2014.4 2014.5 2014.6 2014.7 2014.8
times

The confidence intervals on our predictions are suspiciously narrow, probably
because of our choice of the error function. The Poisson distribution assumes
that variance of the residuals is equal to the mean (i.e., the fitted value). Instead,
we can use a negative binomial distribution, which assumes that variance is a
quadratic function of the mean. Then, we have to estimate an extra parameter
(size argument of the dnbinom) to account for overdispersion. We use the
update function to adjust only these particular aspects of the model, leaving
the gradient specification the same:

exp_fit_nbinom <- update(
exp_fit,
observation=1list(
confirmed ~ dnbinom(mu=X, size=phi)
)g
par=c("r", "X0", "phi"),
start=c(start, phi=10)
)

Fitting ode ...
Computing vcov on the original scale ...

Note that we need to specify a starting value for the overdispersion parameter
as well.
Alternatively, we can update the odemodel object and refit the model:

exp_model_nbinom <-
update (exp_model,
name="exponential (nbinom)",
observation=list(
confirmed ~ dnbinom(mu=X, size=phi)

)g
par=c("r", "X0", "phi")
)

exp_fit_nbinom2 <- fitode(
model=exp_model_nbinom,
data=Sierraleone2014[Sierraleone2014$times <+ 2014.8,],
start=c(start, phi=10)

)

Fitting ode ...
Computing vcov on the original scale ...

Both approaches give the same results.
We can plot this fit:

plot(exp_fit_nbinom, level=0.95)

o
o — .
© ,,’
o] o
2 h
l‘g —]
o E; |
N
O —
T
2014.4 2014.5 2014.6 2014.7 2014.8
times

Our uncertainty is now more reasonable. This change widens the confidence
intervals on parameters as well:

confint (exp_fit_nbinom)

estimate 2.5 % 97.5 %
r 7.589514 6.500229 8.861336
X0 26.326482 20.089257 34.500213
phi 12.903678 5.266959 31.613098

2.3 Logistic growth model

Exponential growth model accounts for only the initial portion of the observed
data. Instead, we might want to try to model the entire time series. Note that
the cumulative number of cases saturates over time:

plot (cumsum(confirmed) ~ times, data=Sierraleone2014)

10000
|

6000
|
o]

cumsum(confirmed)
o

0 2000
| |

I I I I I I I
20144 2014.6 2014.8 2015.0 2015.2 20154 2015.6

times

We can use a logistic model to describe this saturating pattern:

ﬁ:m(wﬁ). @)

While we can fit X directly to cumulative number of cases, it can lead to overly
confident results due to accumulation of observation error (King et all 2015]).
Instead, we can use interval counts to model the true number of cases: X (t) —
X (t — At), where At is the reporting time step. This is done by using the
diffnames argument

logistic_model <- update(
exp_model_nbinom,
name="logistic (nbinom)",
model=1ist(

X “r*X=x*x (1 - X/K)

Dy
diffnames="X",
par=c("r", "XO0", "K", "phi")

In this case, we need to modify the data set by adding an extra NA observation
before the first observation; this allows fitode to take the interval difference
and still end up with the same number of observations as the time series.

SierralLeone2014b <- rbind(
c(times=SierralLeone2014$times[1] -
diff (Sierraleone2014$times) [1], confirmed=NA),
Sierraleone2014

Again, we can try to find a reasonable parameter set by trial and error:

start_logistic <-

c(coef (exp_fit_nbinom), K=sum(SierralLeone2014$confirmed))
need to use a different wvalue for X0
start_logistic[["X0"]] <- 300
ss_logistic <- simulate(

logistic_model,

parms=start_logistic,

times=Sierraleone2014b$times

plot(Sierraleone2014)
lines(X"times, data=ss_logistic)

confirmed
300 500
| |

0 100
|

2014.4 2014.6 2014.8 2015.0 2015.2 20154 2015.6
times
and fit the model:
logistic_fit <- fitode(

logistic_model,
data=Sierraleone2014b,

10

start=start_logistic

)

Fitting ode ...
Computing vcov on the original scale ...

In this case, we get a much higher growth rate estimate:
confint (logistic_£fit)

estimate 2.5 % 97.5 %
T 9.404301 8.879291 9.960355
X0 123.985064 93.098091 165.119348
K 9574 .456216 8526.119846 10751.691682
phi 7.814186 4.669271 13.077309

Plot:

plot(logistic_fit, level=0.95)

500
|

confirmed
300
|

0 100
|

20144 20146 2014.8 2015.0 2015.2 20154 2015.6

times

There is a clear bias in our fit; the estimated trajectory underestimates the peak
of the epidemic. This is likely to affect our parameter estimates.

We can be smarter about our choices of fitting window. Instead of using
the entire time series, we can fit the logistic model from the beginning of the

epidemic to the next observation after the peak (Ma et all [2014]).

11

ma_begin <- 1
ma_end <- which.max(Sierraleone2014b$confirmed) + 1

logistic_fit_ma <- update(
logistic_fit,
data=Sierraleone2014b[ma_begin:ma_end,]

)

Fitting ode ...
Computing vcov on the original scale ...

We get a much better fit:

plot(logistic_fit, level=0.95)
plot(logistic_fit_ma, level=0.95, add=TRUE, col.traj="red", col.conf="red")

confirmed
300 500
| |

0 100
|

20144 2014.6 2014.8 2015.0 2015.2 20154 2015.6

times

We get slightly wider confidence intervals on the parameters because we're
using less data:

confint(logistic_fit_ma)

estimate 2.5 % 97.5 %
r 9.29878 8.324641 10.38691
XO 119.49151 86.681357 164.72078
K 10943.72524 9183.475211 13041.37263
phi 29.19584 12.515092 68.10952

12

2.4 SIR model

The Susceptible-Infected-Recovered (SIR) model describes how disease spreads
in a homogeneous population:

ds I

@~ N

dI I

T —BS— —~T 3
7 = PSy — (3)
dR

il Y

a

We can assume that confirmed cases are put into control and are no longer
infectious, thus effectively recovering from infection 2009)); in other
words, we model cumulative number of confirmed cases with cumulative number
of recovered cases (state variable R).

Again, we use interval counts by using diffnames="R":

SIR_model <- odemodel(
name="SIR (nbinom)",
model=1ist(
S ~ - beta * S * I/N,
I ~ beta * S *x I/N - gamma * I,
R 7 gamma * I
),
observation=1list(
confirmed ~ dnbinom(mu=R, size=phi)
),
initial=1ist(
SN =* (1-1i0),
I~ N * i0,
R~O0
),
diffnames="R",
par=c("beta", "gamma", "N", "iO", "phi"),
link=c(i0="logit")

For simplicity, we assumed that there are no recovered individuals at the
beginning of the epidemicﬂ The initial conditions are given by

5(0) = N(1 —io)
1(0) = Nig (4)
R(0) =0

ISince these individuals would be completely uninvolved in the epidemic, and we are esti-
mating the population size, we can make this assumption without any loss of generality

13

where 7 is the initial proportion of infected individuals. Setting 1ink=c(i0="1logit")
tells fitode that the parameter i0 needs to be between 0 and 1. El
Searching for starting values:

SIR_start <- c(beta=70, gamma=60, N=40000, i10=0.0004, phi=6)

ss_SIR <- simulate(SIR_model,
parms=SIR_start, times=Sierraleone2014b$times)

plot(Sierraleone2014)
lines(ss_SIR$times, ss_SIR$R)

confirmed
300 500
| |

0 100
|

20144 2014.6 2014.8 2015.0 2015.2 20154 2015.6

times
Fit:

SIR_fit <- fitode(
SIR_model,
data=Sierraleone2014b,
start=SIR_start

)

Fitting ode ...
Computing vcov on the original scale ...

Plot:

2The logit, or log-odds, function (qlogis() in R), is the inverse of a logistic curve; it is a
natural way to transform a value from the range [0,1] to [—o0, o).

14

plot(SIR_fit, level=0.95)

500
|

confirmed
300
|

0 100
|

20144 2014.6 2014.8 2015.0 2015.2 20154 2015.6

times

Again, the SIR model underestimates the peak.
This could be a problem with fitting window. When we get rid of the long
tail in the time series, we get a much better fit:

SIR_fit_b <- update(

SIR_fit,

data=Sierraleone2014b[Sierraleone2014b$times < 2015.4,]
)

Fitting ode ...
Computing wvcov on the original scale ...

plot(SIR_fit_b, level=0.95)

15

confirmed
300 500
| |

0 100
|

2014.4 2014.6 2014.8 2015.0 2015.2 2015.4

times

There are several ways we can get the confidence intervals on the growth
rate (r = 8 — 7). By default, the package uses the delta method.

confint (SIR_fit_b, parm=list(r~beta-gamma))

#it estimate 2.5 % 97.5 %
r 10.49462 9.919463 11.06978

We discuss other methods later.
Figure [I| compares the results of all of the methods we have tried.

3 Advanced fitting - multivariate time series

Data:

hare <- read.csv("https://raw.githubusercontent.com/stan-dev/example-models/master/knitr/lo
plot(Hare“Year, data=hare, type="1")
lines(Lynx~Year, data=hare, type="1", col=2)

16

fits

SIR _
(window)

SIR
(full)

logistic
(window)

logistic |
(full)

exponential |
(nbinom)

exponential |
(poisson)

Hare
50 70

30

10

———
L 2
L 2
.
.
8 10 12

Initial epidemic growth rate

Figure 1: Comparison of growth rate estimates

1900

I
1905

17

I
1910

Year

1915

1920

Lotka-Volterra model:

%E::<1u——ﬁuv

! (5)
QE = duv — yv

dt 7

lotka_model <- odemodel (
name="Lotka Volterra model",
model=1ist(
u ~ alpha * u - beta * u * v,
v 7 delta * u * v - gamma * Vv
Do
observation=1list(
Hare ~ dnbinom(mu=u, size=sizel),

Lynx ~ dnbinom(mu=v, size=size2)
Dy
initial=list(
u ~ uo,
v 7 v0
s
par=c("alpha", "beta", "delta", "gamma", "uO", "vO", "sizel", "size2")

Fit with good starting values (estimated by someone else):

harestart <- c(alpha=0.55, beta=0.028, delta=0.026, gamma=0.84, u0=30, v0=10,
sizel=1, size2=1)
harefit <- fitode(lotka_model, data=hare,
start=harestart,
tcol="Year")

Fitting ode ...
Computing vcov on the original scale ...

plot(harefit, level=0.95)

18

Lynx

Hare
10 20 30 40 50 60

1900 1910 1920 1900 1910 1920

times times

Esimates of size parameters are extremely large:
coef (harefit)

#H# alpha beta delta gamma u0 v0
5.047130e-01 2.479401e-02 2.518393e-02 8.582659e-01 3.560082e+01 5.174676e+00
sizel size2
1.831226e+05 5.365556e+07

This suggests that Poisson is actually good enough:

FIXME: we need this (fancy stuff with filling in all
of the links as log) now because I'm checking links more carefully
1s there a way around this?

poisson_pars <- setdiff (lotka_model@par, c("sizel", "size2"))
harefit_poisson <- update(
harefit,

observation=1list(
Hare ~ dpois(lambda=u),
Lynx ~ dpois(lambda=v)
),
link=setNames (rep("log",length(poisson_pars)),poisson_pars),
par=poisson_pars

)

Fitting ode ...

19

Computing vcov on the original scale ...

plot(harefit_poisson, level=0.95)

Lynx

Hare
10 20 30 40 50 60

1900 1910 1920

times times

Using confint () on the two models (with the default method, Wald approx-
imation) shows that the confidence intervals on the parameters are nearly iden-
tical — except for the two negative binomial parameters which have extremely
(ridiculously) wide confidence intervals, e.g. the 95% CI for the dispersion pa-
rameter on hares is {2.220446 x 10716, 3.5505246 x 1038}. This problem occurs
because the standard Wald approximation fails badly for these parameters.

We can get lower bounds on the confidence intervals for the dispersion pa-
rameters by using likelihood profiling. We have to work a little harder; we (1)
manually set the parameter standard error to provide an initial scale for the
profile (since the Wald estimate of the standard errors fails badly in this case)
and (2) allow the profiling to proceed even if it discovers a fit that is slightly
better (by up to 0.1 log-likelihood units) than the original fit.

confint (harefit,

parm=c("sizel","size2"),
method="profile",
std.err=1,

tol.newmin=0.1)

#it estimate 2.5 % 97.5 %

20

sizel 183122.6 60.74175 NA
size2 53655559.5 44.55821 NA

The results tell us that the upper 95% Cls are undefined (as would be ex-
pected if the model is not significantly better than Poisson), and the lower 95%
CIs are =~ 50.

References

He, D., E. L. Ionides, and A. A. King (2009). Plug-and-play inference for disease
dynamics: measles in large and small populations as a case study. Journal of
the Royal Society Interface 7(43), 271-283.

King, A. A., M. Domenech de Celles, F. M. Magpantay, and P. Rohani (2015).
Avoidable errors in the modelling of outbreaks of emerging pathogens, with
special reference to Ebola. Proceedings of the Royal Society B: Biological
Sciences 282(1806), 20150347.

Ma, J., J. Dushoff, B. M. Bolker, and D. J. Earn (2014). Estimating initial
epidemic growth rates. Bulletin of Mathematical Biology 76 (1), 245-260.

21

	Introduction
	Basic fitting - estimating epidemic growth rates
	Data
	Exponential growth model
	Logistic growth model
	SIR model

	Advanced fitting - multivariate time series

