
Package ‘filehash’
June 25, 2024

Version 2.4-6

Depends R (>= 3.0.0)

Imports digest, methods

Collate filehash.R filehash-DB1.R filehash-RDS.R coerce.R dump.R
hash.R queue.R stack.R zzz.R

Title Simple Key-Value Database

Author Roger D. Peng <roger.peng@austin.utexas.edu>

Maintainer Roger D. Peng <roger.peng@austin.utexas.edu>

Description Implements a simple key-value style database where character string keys
are associated with data values that are stored on the disk. A simple interface is provided for in-
serting,
retrieving, and deleting data from the database. Utilities are provided that allow 'file-
hash' databases to be
treated much like environments and lists are already used in R. These utilities are provided to en-
courage
interactive and exploratory analysis on large datasets. Three different file formats for represent-
ing the
database are currently available and new formats can easily be incorporated by third par-
ties for use in the
'filehash' framework.

License GPL (>= 2)

URL https://github.com/rdpeng/filehash

RoxygenNote 7.3.1

Encoding UTF-8

NeedsCompilation yes

Repository CRAN

Date/Publication 2024-06-25 21:20:10 UTC

Contents
coerceDB1list . 2

1

https://github.com/rdpeng/filehash

2 coercelist

coerceDB1RDS . 2
coercelist . 2
dbLoad . 3
dumpEnv . 4
filehash-class . 6
filehashDB1-class . 9
filehashFormats . 10
filehashOption . 11
filehashRDS-class . 11
queue-class . 13
registerFormatDB . 14
stack-class . 15

Index 17

coerceDB1list Coerce a filehash database

Description

Coerce a filehashDB1 database to a list object

Arguments

from a filehashDB1 database object

coerceDB1RDS Coerce a filehash database

Description

Coerce a filehashDB1 database to filehashRDS format

Arguments

from a filehashDB1 database object

coercelist Coerce a filehash database

Description

Coerce a filehash database to a list object

Arguments

from a filehash database object

dbLoad 3

dbLoad Load a Database

Description

Load entire database into an environment

Usage

dbLoad(db, ...)

S4 method for signature 'filehash'
dbLoad(db, env = parent.frame(2), keys = NULL, ...)

dbLazyLoad(db, ...)

S4 method for signature 'filehash'
dbLazyLoad(db, env = parent.frame(2), keys = NULL, ...)

db2env(db)

Arguments

db filehash database object

... arguments passed to other methods

env environment into which objects should be loaded

keys specific keys to be loaded (if NULL then all keys are loaded)

Details

dbLoad loads objects in the database directly into the environment specified, like load does except
with active bindings. dbLoad takes a second argument env, which is an environment, and the default
for env is parent.frame().

The use of makeActiveBinding in db2env and dbLoad allows for potentially large databases to, at
least conceptually, be used in R, as long as you don’t need simultaneous access to all of the elements
in the database.

dbLazyLoad loads objects in the database directly into the environment specified, like load does
except with promises. dbLazyLoad takes a second argument env, which is an environment, and the
default for env is parent.frame().

With dbLazyLoad database objects are "lazy-loaded" into the environment. Promises to load the
objects are created in the environment specified by env. Upon first access, those objects are copied
into the environment and will from then on reside in memory. Changes to the database will not
be reflected in the object residing in the environment after first access. Conversely, changes to the
object in the environment will not be reflected in the database. This type of loading is useful for
read-only databases.

4 dumpEnv

db2env loads the entire database db into an environment via calls to makeActiveBinding. There-
fore, the data themselves are not stored in the environment, but a function pointing to the data in
the database is stored. When an element of the environment is accessed, the function is called to
retrieve the data from the database. If the data in the database is changed, the changes will be
reflected in the environment.

Value

dbLoad, dbLazyLoad: a character vector is returned (invisibly) containing the keys associated with
the values loaded into the environment.

db2env: environment containing database keys

Methods (by class)

• dbLoad(filehash): Method for filehash databases

• dbLazyLoad(filehash): Method for filehash databases

Functions

• dbLazyLoad(): Lazy load a filehash database

• db2env(): Load active bindings into an environment and return the environment

See Also

dbLoad, dbLazyLoad

dumpEnv Dump Environment

Description

Dump an enviroment to a filehash database

Usage

dumpEnv(env, dbName)

dumpImage(dbName = "Rworkspace", type = NULL)

dumpObjects(
...,
list = character(0),
dbName,
type = NULL,
envir = parent.frame()

)

dumpEnv 5

dumpDF(data, dbName = NULL, type = NULL)

dumpList(data, dbName = NULL, type = NULL)

Arguments

env an environment

dbName character, name of the filehash database

type type of filehash database to create

... R objects to be dumped to a filehash database

list character vector of object names to be dumped

envir environment from which objects are dumped

data a data frame

Details

The dumpEnv function takes an environment and stores each element of the environment in a
filehash database. Objects dumped to a database can later be loaded via dbLoad or can be ac-
cessed with dbFetch, dbList, etc. Alternatively, the with method can be used to evaluate code in
the context of a database. If a database with name dbName already exists, objects will be inserted
into the existing database (and values for already-existing keys will be overwritten).

dumpDF is different in that each variable in the data frame is stored as a separate object in the
database. So each variable can be read from the database separately rather than having to load the
entire data frame into memory. dumpList works in a simlar way.

Value

An object of class "filehash" is returned and a database is created.

Functions

• dumpImage(): Dump the Global Environment (analogous to save.image)

• dumpObjects(): Dump named objects to a filehash database (analogous to save)

• dumpDF(): Dump data frame columns to a filehash database

• dumpList(): Dump elements of a list to a filehash database

6 filehash-class

filehash-class Filehash Class

Description

These functions form the interface for a simple file-based key-value database (i.e. hash table).

Usage

S4 method for signature 'filehash'
show(object)

S4 method for signature 'ANY'
dbCreate(db, type = NULL, ...)

S4 method for signature 'ANY'
dbInit(db, type = NULL, ...)

S4 method for signature 'filehash'
names(x)

S4 method for signature 'filehash'
length(x)

S4 method for signature 'filehash'
with(data, expr, ...)

S4 method for signature 'filehash'
lapply(X, FUN, ..., keep.names = TRUE)

dbMultiFetch(db, key, ...)

dbInsert(db, key, value, ...)

dbFetch(db, key, ...)

dbExists(db, key, ...)

dbList(db, ...)

dbDelete(db, key, ...)

dbReorganize(db, ...)

dbUnlink(db, ...)

S4 method for signature 'filehash,character,missing'

filehash-class 7

x[[i, j]]

S4 method for signature 'filehash'
x$name

S4 replacement method for signature 'filehash,character,missing'
x[[i, j]] <- value

S4 replacement method for signature 'filehash'
x$name <- value

S4 method for signature 'filehash,character,missing,missing'
x[i, j, drop]

Arguments

object a filehash object

db a filehash object

type filehash database type

... arguments passed to other methods

x a filehash object

data a filehash object

expr an R expression to be evaluated

X a filehash object

FUN a function to be applied

keep.names Should the key names be returned in the resulting list?

key a character vector indicating a key (or keys) to retreive

value an R object

i a character index

j not used

name the name of the element in the filehash database

drop should dimensions be dropped? (not used)

Details

Objects can be created by calls of the form new("filehash", ...).

Methods (by generic)

• show(filehash): Print a filehash object

• dbCreate(ANY): Create a filehash database

• dbInit(ANY): Initialize an existing filehash database

• names(filehash): Return the keys stored in a filehash database

8 filehash-class

• length(filehash): Return the number of objects in a filehash database

• with(filehash): Use a filehash database as an evaluation environment

• lapply(filehash): Apply a function over the elements of a filehash database

• x[[i: Extract elements of a filehash database using character names

• $: Extract elements of a filehash database using character names

• `[[`(x = filehash, i = character, j = missing) <- value: Replace elements of a file-
hash database

• `$`(filehash) <- value: Replace elements of a filehash database

• x[i: Retrieve multiple elements of a filehash database

Functions

• dbMultiFetch(): Retrieve values associated with multiple keys (a list of those values is
returned).

• dbInsert(): Insert a key-value pair into the database. If that key already exists, its associated
value is overwritten. For "RDS" type databases, there is a safe option (defaults to TRUE) which
allows the user to insert objects somewhat more safely (objects should not be lost in the event
of an interrupt).

• dbFetch(): Retrieve the value associated with a given key.

• dbExists(): Check to see if a key exists.

• dbList(): List all keys in the database.

• dbDelete(): The dbDelete function is for deleting elements, but for the "DB1" format all it
does is remove the key from the lookup table. The actual data are still in the database (but
inaccessible). If you reinsert data for the same key, the new data are simply appended on to
the end of the file. Therefore, it’s possible to have multiple copies of data lying around after a
while, potentially making the database file big. The "RDS" format does not have this problem.

• dbReorganize(): The dbReorganize function is there for the purpose of rewriting the database
to remove all of the stale entries. Basically, this function creates a new copy of the database
and then overwrites the old copy. This function has not been tested extensively and so should
be considered experimental. dbReorganize is not needed when using the "RDS" format.

• dbUnlink(): Delete an entire database from the disk.

Slots

name Object of class "character", name of the database.

filehashDB1-class 9

filehashDB1-class Filehash DB1 Class

Description

An implementation of filehash databases using a single large file

Usage

S4 method for signature 'filehashDB1,character'
dbInsert(db, key, value, ...)

S4 method for signature 'filehashDB1,character'
dbFetch(db, key, ...)

S4 method for signature 'filehashDB1,character'
dbMultiFetch(db, key, ...)

S4 method for signature 'filehashDB1,character'
dbExists(db, key, ...)

S4 method for signature 'filehashDB1'
dbList(db, ...)

S4 method for signature 'filehashDB1,character'
dbDelete(db, key, ...)

S4 method for signature 'filehashDB1'
dbUnlink(db, ...)

S4 method for signature 'filehashDB1'
dbReorganize(db, ...)

Arguments

db a filehashDB1 object

key character, the name of an R object in the database

value an R object

... arguments passed to other methods

Details

For dbMultiFetch, key is a character vector of keys.

10 filehashFormats

Methods (by generic)

• dbInsert(db = filehashDB1, key = character): Insert an R object into a filehashDB1 database

• dbFetch(db = filehashDB1, key = character): Retrieve an object from a filehash DB1
database

• dbMultiFetch(db = filehashDB1, key = character): Retrieve multiple objects from a file-
hash DB1 database

• dbExists(db = filehashDB1, key = character): Determine if a key exists in a filehash
DB1 database

• dbList(filehashDB1): Return a character vector containing all keys in a database

• dbDelete(db = filehashDB1, key = character): Delete a key and it’s corresponding object
from a filehashDB1 database

• dbUnlink(filehashDB1): Delete an entire filehashDB1 database

• dbReorganize(filehashDB1): Reorganize and compactify a filehahsDB1 database

Slots

datafile full path to the database file (filehashDB1 only)

meta list containing an environment for database metadata (filehashDB1 only)

filehashFormats List and register filehash formats

Description

List and register filehash backend database formats.

Usage

filehashFormats(...)

Arguments

... list of functions for registering a new database format

Details

filehashFormats can be used to register new filehash backend database formats. filehashFormats
called with no arguments lists information on available formats

Value

A list containing information on the available filehash formats

filehashOption 11

filehashOption Set Filehash Options

Description

Set global filehash options

Usage

filehashOption(...)

Arguments

... name-value pairs for options

Details

Currently, the only option that can be set is the default database type (defaultType) which can be
"DB1", "RDS" or "DB".

Value

filehashOptions returns a list of current settings for all options.

filehashRDS-class Filehash RDS Class

Description

An implementation of filehash databases using diretories and separate files

Usage

S4 method for signature 'filehashRDS,character'
dbInsert(db, key, value, safe = TRUE, ...)

S4 method for signature 'filehashRDS,character'
dbFetch(db, key, ...)

S4 method for signature 'filehashRDS,character'
dbMultiFetch(db, key, ...)

S4 method for signature 'filehashRDS,character'
dbExists(db, key, ...)

S4 method for signature 'filehashRDS'

12 filehashRDS-class

dbList(db, ...)

S4 method for signature 'filehashRDS,character'
dbDelete(db, key, ...)

S4 method for signature 'filehashRDS'
dbUnlink(db, ...)

Arguments

db a filehashRDS object

key character, the name of an R object

value an R object

safe Should the operation be done safely?

... arguments passed to other methods

Details

When safe = TRUE in dbInsert, objects are written to a temp file before replacing any existing
objects. This way, if the operation is interrupted, the original data are not corrupted.

For dbMultiFetch, key is a character vector of keys.

Methods (by generic)

• dbInsert(db = filehashRDS, key = character): Insert an R object into a filehashRDS database

• dbFetch(db = filehashRDS, key = character): Retrieve a value from a filehashRDS database

• dbMultiFetch(db = filehashRDS, key = character): Retrieve multiple objects from a file-
hashRDS database

• dbExists(db = filehashRDS, key = character): Determine if a key exists in a filehashRDS
database

• dbList(filehashRDS): Return a character vector of all key stored in a database

• dbDelete(db = filehashRDS, key = character): Delete a key and its corresponding object
from a filehashRDS database

• dbUnlink(filehashRDS): Delete an entire filehashRDS database

Slots

dir Directory where files are stored (filehashRDS only)

queue-class 13

queue-class A Queue Class

Description

A queue implementation using a filehash database

Usage

createQ(filename)

initQ(filename)

pop(db, ...)

push(db, val, ...)

isEmpty(db, ...)

top(db, ...)

S4 method for signature 'queue'
show(object)

S4 method for signature 'queue'
push(db, val, ...)

S4 method for signature 'queue'
isEmpty(db)

S4 method for signature 'queue'
top(db, ...)

S4 method for signature 'queue'
pop(db, ...)

Arguments

filename name of queue file

db a queue object

... arguments passed to other methods

val an R object to be added to the tail queue

object a queue object

14 registerFormatDB

Details

Objects can be created by calls of the form new("queue", ...) or by calling createQ. Existing
queues can be initialized with initQ.

Value

createQ and initQ return a queue object

Methods (by generic)

• show(queue): Print a queue object

• push(queue): adds an element to the tail ("bottom") of the queue

• isEmpty(queue): returns TRUE/FALSE depending on whether there are elements in the queue.

• top(queue): returns the value of the "top" (i.e. head) of the queue; an error is signaled if the
queue is empty

• pop(queue): returns the value of the "top" (i.e. head) of the queue and subsequently removes
that element from the queue; an error is signaled if the queue is empty

Functions

• createQ(): Create a file-based queue object

• initQ(): Intialize an existing queue object

• pop(): Return (and remove) the top element of a queue

• push(): Push an R object on to the tail of a queue

• isEmpty(): Check if a queue is empty or not

• top(): Return the top of the queue

Slots

queue Object of class "filehashDB1"

name Object of class "character": the name of the queue (default is the file name in which the
queue data are stored)

registerFormatDB Register Database Format

Description

Register Database Format

Usage

registerFormatDB(name, funlist)

stack-class 15

Arguments

name character, name of database format

funlist list of functions for creating and initializing a database format

stack-class Stack Class

Description

A stack implementation using a filehash database

Usage

S4 method for signature 'stack'
show(object)

createS(filename)

initS(filename)

S4 method for signature 'stack'
push(db, val, ...)

mpush(db, vals, ...)

S4 method for signature 'stack'
mpush(db, vals, ...)

S4 method for signature 'stack'
isEmpty(db, ...)

S4 method for signature 'stack'
top(db, ...)

S4 method for signature 'stack'
pop(db, ...)

Arguments

object a stack object

filename name of file where stack is stored

db a stack object

val an R object to be added to the stack

... arguments passed to other methods

vals a list of R objects

16 stack-class

Details

Objects can be created by calls of the form new("stack", ...) or by calling createS. Existing
queues can be initialized with initS.

Value

a stack object

Methods (by generic)

• show(stack): Print a stack object.

• push(stack): Push an object on to the stack

• mpush(stack): Push a list of R objects on to the stack

• isEmpty(stack): Indicate whether the stack is empty or not

• top(stack): Return the top element of the stack

• pop(stack): Return the top element of the stack and remove that element from the stack

Functions

• createS(): Create a filehash Stack

• initS(): Initialize and existing filehash stack

• mpush(): Push multiple R objects on to a stack

Slots

stack Object of class "filehashDB1"

name Object of class "character": the name of the stack (default is the file name in which the
stack data are stored)

Index

[,filehash,character,missing,missing-method
(filehash-class), 6

[[,filehash,character,missing-method
(filehash-class), 6

[[<-,filehash,character,missing-method
(filehash-class), 6

$,filehash-method (filehash-class), 6
$<-,filehash-method (filehash-class), 6
‘[[,filehash,character,missing-method‘

(filehash-class), 6

coerce,filehash,list-method
(coercelist), 2

coerce,filehashDB1,filehashRDS-method
(coerceDB1RDS), 2

coerce,filehashDB1,list-method
(coerceDB1list), 2

coerceDB1list, 2
coerceDB1RDS, 2
coercelist, 2
createQ (queue-class), 13
createS (stack-class), 15

db2env (dbLoad), 3
dbCreate (filehash-class), 6
dbCreate,ANY-method (filehash-class), 6
dbDelete (filehash-class), 6
dbDelete,filehashDB1,character-method

(filehashDB1-class), 9
dbDelete,filehashRDS,character-method

(filehashRDS-class), 11
dbExists (filehash-class), 6
dbExists,filehashDB1,character-method

(filehashDB1-class), 9
dbExists,filehashRDS,character-method

(filehashRDS-class), 11
dbFetch (filehash-class), 6
dbFetch,filehashDB1,character-method

(filehashDB1-class), 9

dbFetch,filehashRDS,character-method
(filehashRDS-class), 11

dbInit (filehash-class), 6
dbInit,ANY-method (filehash-class), 6
dbInsert (filehash-class), 6
dbInsert,filehashDB1,character-method

(filehashDB1-class), 9
dbInsert,filehashRDS,character-method

(filehashRDS-class), 11
dbLazyLoad, 4
dbLazyLoad (dbLoad), 3
dbLazyLoad,filehash-method (dbLoad), 3
dbList (filehash-class), 6
dbList,filehashDB1-method

(filehashDB1-class), 9
dbList,filehashRDS-method

(filehashRDS-class), 11
dbLoad, 3, 4
dbLoad,filehash-method (dbLoad), 3
dbMultiFetch (filehash-class), 6
dbMultiFetch,filehashDB1,character-method

(filehashDB1-class), 9
dbMultiFetch,filehashRDS,character-method

(filehashRDS-class), 11
dbReorganize (filehash-class), 6
dbReorganize,filehashDB1-method

(filehashDB1-class), 9
dbUnlink (filehash-class), 6
dbUnlink,filehashDB1-method

(filehashDB1-class), 9
dbUnlink,filehashRDS-method

(filehashRDS-class), 11
dumpDF (dumpEnv), 4
dumpEnv, 4
dumpImage (dumpEnv), 4
dumpList (dumpEnv), 4
dumpObjects (dumpEnv), 4

filehash-class, 6
filehashDB1-class, 9

17

18 INDEX

filehashFormats, 10
filehashOption, 11
filehashRDS-class, 11

initQ (queue-class), 13
initS (stack-class), 15
isEmpty (queue-class), 13
isEmpty,queue-method (queue-class), 13
isEmpty,stack-method (stack-class), 15

lapply,filehash-method
(filehash-class), 6

length,filehash-method
(filehash-class), 6

mpush (stack-class), 15
mpush,stack-method (stack-class), 15

names,filehash-method (filehash-class),
6

pop (queue-class), 13
pop,queue-method (queue-class), 13
pop,stack-method (stack-class), 15
push (queue-class), 13
push,queue-method (queue-class), 13
push,stack-method (stack-class), 15

queue-class, 13

registerFormatDB, 14

show,filehash-method (filehash-class), 6
show,queue-method (queue-class), 13
show,stack-method (stack-class), 15
stack-class, 15

top (queue-class), 13
top,queue-method (queue-class), 13
top,stack-method (stack-class), 15

with,filehash-method (filehash-class), 6

	coerceDB1list
	coerceDB1RDS
	coercelist
	dbLoad
	dumpEnv
	filehash-class
	filehashDB1-class
	filehashFormats
	filehashOption
	filehashRDS-class
	queue-class
	registerFormatDB
	stack-class
	Index

