
Package ‘fdesigns’
June 18, 2025

Type Package

Title Optimal Experimental Designs for Dynamic/Functional Models

Version 1.1

Date 2025-06-17

Maintainer Damianos Michaelides <dm3g15@soton.ac.uk>

Description Optimal experimental designs for functional linear and functional generalised linear mod-
els, for scalar responses and profile/dynamic factors. The designs are optimised using the coordi-
nate exchange algorithm. The methods are discussed by Michaelides (2023) <https:
//eprints.soton.ac.uk/474982/1/Thesis_DamianosMichaelides_Final_pdfa_1_.pdf>.

License GPL-2

Imports Rcpp, Matrix, parallel, mvQuad, mvtnorm, stats, graphics

LinkingTo Rcpp, RcppArmadillo

NeedsCompilation yes

Author Damianos Michaelides [aut, cre],
Antony Overstall [aut],
Dave Woods [aut]

Repository CRAN

Date/Publication 2025-06-17 23:10:11 UTC

Contents
fdesigns-package . 2
fglmobjects . 4
flmobjects . 5
P . 5
pfglm . 7
pflm . 11
plot.fglm . 15
plot.flm . 16

Index 17

1

https://eprints.soton.ac.uk/474982/1/Thesis_DamianosMichaelides_Final_pdfa_1_.pdf
https://eprints.soton.ac.uk/474982/1/Thesis_DamianosMichaelides_Final_pdfa_1_.pdf

2 fdesigns-package

fdesigns-package Optimal Experimental Designs for Dynamic/Functional Models

Description

Optimal experimental designs for functional linear and functional generalised linear models, for
scalar responses and profile/dynamic factors. The designs are optimised using the coordinate ex-
change algorithm. The methods are discussed by Michaelides (2023) <https://eprints.soton.ac.uk/474982/1/Thesis_DamianosMichaelides_Final_pdfa_1_.pdf>.

Details

The DESCRIPTION file:

Package: fdesigns
Type: Package
Title: Optimal Experimental Designs for Dynamic/Functional Models
Version: 1.1
Date: 2025-06-17
Authors@R: c(person(given = "Damianos", family = "Michaelides", role = c("aut", "cre"), email = "dm3g15@soton.ac.uk"), person(given = "Antony", family = "Overstall", role = "aut"), person(given = "Dave", family = "Woods", role = "aut"))
Maintainer: Damianos Michaelides <dm3g15@soton.ac.uk>
Description: Optimal experimental designs for functional linear and functional generalised linear models, for scalar responses and profile/dynamic factors. The designs are optimised using the coordinate exchange algorithm. The methods are discussed by Michaelides (2023) <https://eprints.soton.ac.uk/474982/1/Thesis_DamianosMichaelides_Final_pdfa_1_.pdf>.
License: GPL-2
Imports: Rcpp, Matrix, parallel, mvQuad, mvtnorm, stats, graphics
LinkingTo: Rcpp, RcppArmadillo
Author: Damianos Michaelides [aut, cre], Antony Overstall [aut], Dave Woods [aut]

The most important functions are pflm and pfglm which can be used to identify optimal designs
for functional linear and generalised linear models, respectively, using the coordinate exchange
algorithm.

Author(s)

Damianos Michaelides [aut, cre], Antony Overstall [aut], Dave Woods [aut]

Maintainer: Damianos Michaelides <dm3g15@soton.ac.uk>

References

Michaelides, D. (2023). Design of experiments for models involving profile factors (Doctoral dis-
sertation, University of Southampton).

Examples

Example 1:
This example involves finding an A-optimal design for a functional linear model of 4 runs
depending on one profile factor. The settings of the profile factor are represented by a
B-spline basis of degree zero and a single knot at (0.5). The single functional parameter

fdesigns-package 3

is represented with a linear power series basis. Five random starts are chosen.

example1 <- pflm(formula = ~ x1, nsd = 5, mc.cores = 1, npf = 1,
tbounds = c(0, 1), nruns = 4, startd = NULL, dx = c(0),
knotsx = list(c(0.5)), pars = c("power"), db = c(1),
knotsb = list(c()), criterion = "A", lambda = 0,
dlbound = -1, dubound = 1, tol = 0.0001, progress = FALSE)

print(example1) ## prints the output of example1.
##
The number of profile factors is: 1
##
The number of runs is: 4
##
The objective criterion is: A-optimality
##
The objective value is: 8.75
##
The number of iterations is: 6
##
The computing elapsed time is: 00:00:00

Example 2:
This example involves finding an A-optimal design for a functional logistic
model of 12 runs depending on one profile factor. The settings of the profile
factor are represented by a B-spline basis of degree zero and a three interior knots
at (0.25, 0.50, 0.75). The single functional parameter is represented with a linear
power series basis. The method of approximation is Monte Carlo with the prior
specified by the function prmc. Three random starts are chosen.

set.seed(100) ## Set seed to achieve reproducibility.

prmc <- function(B,Q) {
matrix(rnorm(B*Q, mean=0, sd=sqrt(2)), nrow=B, ncol=Q)

}
A function which specifies the prior. This function returns a
B by Q matrix of randomly generated values from the prior
distribution for the model parameters.

example2 <- pfglm(formula = ~ 1 + x1, nsd = 3, mc.cores = 1, npf = 1,
tbounds = c(0,1), nruns = 12, startd = NULL,
dx = c(0), knotsx = list(c(0.25,0.50,0.75)),
pars = c("power"), db = c(1), knotsb = list(c()),
lambda = 0, criterion = "A", family = binomial,
method=c("MC"), level = 6, B = 10000, prior = prmc,
dlbound = -1, dubound = 1, tol = 0.0001, progress = TRUE)

print(example2) ## prints the output of example1.
##
The number of profile factors is: 1
##

4 fglmobjects

The number of runs is: 12
##
The objective criterion is: A-optimality
##
The objective value is: 20.23283
##
The number of iterations is: 5
##
The method of approximation is: MC
##
The family distribution and the link function are: binomial and logit
##
The computing elapsed time is: 00:00:12

fglmobjects Print and Summary of fglm Objects

Description

Print and Summary of objects of class "fglm".

Usage

S3 method for class 'fglm'
print(x, ...)
S3 method for class 'fglm'
summary(object, ...)

Arguments

x An object of class "fglm".
object An object of class "fglm".
... Additional arguments to be passed to other methods.

Value

The functions return the number of profile factors in the functional generalised linear model, the
number of runs, the criterion, the objective value of the final design, the number of iterations of the
coordinate exchange algorithm to get to the final design, the method of approximation of the ex-
pectation of the objective function, the family distribution and link function, and the computational
elapsed time in hours:minutes:seconds.

Note

For examples see pfglm.

Author(s)

Damianos Michaelides <<dm3g15@soton.ac.uk>>, Antony Overstall, Dave Woods

flmobjects 5

flmobjects Print and Summary of flm Objects

Description

Print and Summary of objects of class "flm".

Usage

S3 method for class 'flm'
print(x, ...)
S3 method for class 'flm'
summary(object, ...)

Arguments

x An object of class "flm".

object An object of class "flm".

... Additional arguments to be passed to other methods.

Value

The functions return the number of profile factors in the functional linear model, the number of
runs, the criterion, the objective value of the final design, the number of iterations of the co-
ordinate exchange algorithm to get to the final design, and the computational elapsed time in
hours:minutes:seconds.

Note

For examples see pflm.

Author(s)

Damianos Michaelides <<dm3g15@soton.ac.uk>>, Antony Overstall, Dave Woods

P Compute Profile Factor Polynomials

Description

A function to be used in the formula argument in pflm and pfglm. It computes polynomials of the
basis functions of profile factors to be passed in functional models and find optimal designs.

Usage

P(x, deg)

6 P

Arguments

x A coefficient matrix from the basis expansion of a profile factor. The name
passed needs to match the name of the profile factor in startd in pflm and pfglm.

deg The degree of the polynomial effect for the profile factor.

Details

The function P is intented to be used in the formula argument in the function pflm and pfglm.

In the traditional linear models, polynomial effects of factors are handled using the function I.
However, profile factors are expanded using basis functions and the coefficients are a matrix instead
of a vector.

In other words, the function P is an extension to the function I, but for functional models with profile
factors.

Value

The function returns an attributes list. The list contains the polynomial coefficient matrix, the
argument x, and the argument deg.

Author(s)

Damianos Michaelides <<dm3g15@soton.ac.uk>>, Antony Overstall, Dave Woods

Examples

Example 1:

d <- list(x1=matrix(runif(48), nrow=12))
within(d, example1 <- P(x = x1, deg = 2))

Example 2: Use the function in a formula
This example involves finding a D-optimal design for a functional linear model of n=20 runs
depending on two profile factors. In addition to the main effects, the model includes the
interaction of the profile factors and the quadratic effect of the second profile factor.
The quadratic effect is identified in the formula argument using the \link[fdesigns]{P} function.

example2 <- pflm(formula = ~ x1 + x2 + x1:x2 + P(x2, 2), nsd = 1, mc.cores = 1,
npf = 2, tbounds = c(0, 1), nruns = 20, startd=NULL, dx = c(2, 2),
knotsx = list(c(0.33, 0.66), c(0.25, 0.50, 0.75)),
pars = c("power", "power", "bspline", "bspline"), db = c(1, 1, 2, 2),
knotsb = list(c(), c(), c(0.25, 0.50, 0.75), c(0.25, 0.50, 0.75)),
criterion = "D", lambda = 1, tol = 0.0001, dlbound = -1, dubound = 1,
progress = FALSE)

pfglm 7

pfglm Optimal designs for functional generalised linear models using the
coordinate exchange algorithm

Description

Optimal designs for functional generalised linear models for which the functional factors are rep-
resented as B-spline basis functions and the functional parameters are represented as power series
basis functions or as B-spline basis functions.

Usage

pfglm(formula, nsd = 1, mc.cores = 1, npf, tbounds, nruns, startd = NULL,
dx, knotsx, pars, db, knotsb = NULL, lambda = 0, criterion = c("A","D"),
family, method = c("quadrature", "MC"), level = NULL, B = NULL, prior,
dlbound = -1, dubound = 1, tol = 0.0001, progress = FALSE)

Arguments

formula Object of type formula, to create the model equation. Elements need to match
the list names for startd. Main effects are called using the names of the profile
factors in startd, interactions are called using the names of the profile factors in
startd seperated with :, and polynomial effects are called using the function P.
Scalar factors are called using the same way and degree and knots through the
arguments dx and knotsx are used to specify the scalar factors. A scalar factor
is equivalent to a profile factor with degree 0 and no interior knots.

nsd The number of starting designs. The default entry is 1.

mc.cores The number of cores to use. The option is initialized from environment variable
MC_CORES if set. Must be at least one, and for parallel computing at least two
cores are required. The default entry is 1.

npf The total number of (functional) factors in the model.

tbounds A time vector of length 2, representing the boundaries of time, i.e., 0 and T.

nruns The number of runs of the experiment.

startd Representing the starting design but if NULL then random designs are automat-
ically generated. It should be a list of length nsd, and each component should be
a list of length npf.

dx A vector of length npf, representing the degree of B-spline basis functions for
the functions of the functional factors. A scalar factor must have a zero degree
entry.

knotsx A list of length npf, with every object in the list representing the knot vectors
of each functional factor. A Scalar factor must have no interior knots, i.e., an
empty knot vector.

pars A vector of length equal to the total terms in formula, representing the basis
choice for the (functional) parameters. Entries should be "power" or "bspline".
A scalar parameter is represented through a "power" basis.

8 pfglm

db A vector of length equal to the total terms in formula, representing the degree of
the basis for the (functional) parameters. For power series basis the degree is: 1
for linear, 2 for quadratic, etc. A scalar parameter must have degree 0.

knotsb A list of length equal to the total terms in formula, representing the knot vector
of each (functional) parameter. For parameters represented by a power series
basis, the knot vector should be empty or NULL.

lambda Smoothing parameter to penalise the complexity of the functions of the profile
factors. The default value is 0, i.e., no penalty.

criterion The choice of objective function. Currently there are two available choices: 1.
A-optimality (criterion = "A"); 2. D-optimality (criterion = "D").

family Specifies the error distribution and the link function of the functional generalised
linear model. It can be the name of a family in the form of a character string
or an R family function; see family for details. Currently, the methodology
is implemented only for the binomial family with the logit link, i.e., family =
binomial(link = "logit"), and the Poisson family with the log link, i.e., family =
poisson(link = "log").

method A character argument specifying the method of approximation of the expectation
of the objective function with respect to a prior distribution of the parameters.
Currently there are two available choices: 1. Deterministic quadrature approx-
imation (method = "quadrature"); 2. Stochastic Monte Carlo approximation
(method = "MC").

level An optional argument that specifies the accuracy level in the quadrature approx-
imation. It is the number of points in each dimension. If NULL and method =
"quadrature", then it defaults to 5. A high value of level may increase the com-
putation time; especially for complicated models. If the model is complicated,
i.e., several profile factors or interactions and polynomials, prefer to use method
= "MC".

B An optional argument that specifies the size of the Monte Carlo samples. If
NULL and method = "MC", then it defaults to 10000. For method = "quadra-
ture", B is computer automatically according to the dimensionality of the func-
tional model and the level argument.

prior An argument to specify the prior distribution. For method = "MC", it should
be a function of two arguments B and Q. Both arguments are integers. The
value of B corresponds to the argument B, and the value of Q represents the
total number of basis functions of the functional parameters. The function must
generate a matrix of dimensions B by Q, that contains a random sample from
the prior distribution of the parameters. For method = "quadrature", normal and
uniform prior distribution for the parameters are allowed. For a normal prior
distribution, the argument prior needs to be a list of length 2, with the entries
named "mu" for the prior mean and "sigma2" for the prior variance-covariance
matrix. The prior mean can be a scalar value that means all parameters have the
same prior mean, or a vector of prior means with length equal to the number
of parameters in the functional model. The prior variance-covariance can be a
scalar value that means all parameters have a common variance, or a vector of
prior variances with length equal to the number of parameters in the functional
model, or a square matrix with the number of rows and columns equal to he

pfglm 9

number of parameters in the functional model. For a uniform prior distribution,
the argument prior needs to be a list of a single entry named "unifbound" for the
lower and upper bounds of the prior distribution. The bounds can be a vector of
length 2 that means all parameters have the same bounds, or a matrix with the
number of rows equal to 2 and the number of columns equal to the number of
parameters in the functional model.

dlbound The design’s lower bound. The default lower bound is -1.

dubound The design’s upper bound. The default upper bound is 1.

tol The tolerance value in the optimisation algorithm. Default value is 0.0001.

progress If TRUE, it returns the progress of iterations from the optimisation process. The
default entry is FALSE.

Value

The function returns an object of class "pfglm" which is a list with the following components:

objective.value

The objective value of the final design found from pfglm.

design The final design found from pfglm. The final design is a list of length equal to
the number of profile factors, exactly as the starting design startd.

n.iterations The total number of iterations needed to identify the final design.

time The computational elapsed time in finding the final design.

startd If starting designs were passed as an argument in pfglm, then this is the argument
startd. If no starting designs were passed to pfglm, this is the starting design
generated randomly by pfglm.

tbounds The argument tbounds.

npf The argument npf.

criterion The argument criterion.

nruns The argument nruns.

formula The argument formula.

family A vector of length equal to 2, containing the family and the link function.

method The argument method.

B The argument B.

prior The argument prior.

dx The argument dx.

knotsx The argument knotsx.

lambda The argument lambda.

dbounds A vector of length 2, containing the arguments dlbound and dubound.

bestrep A scalar value indicating the repetition that led to the final design.

allobjvals A vector of length equal to nsd, representing the objective value from all of the
repetitions.

10 pfglm

alldesigns A list of length equal to nsd of all the final designs. Each component of the list
is a list of length equal to npf representing the final design in each repetition of
the coordinate exchange algorithm.

allstartd If starting designs were passed as an argument in pfglm, then this is the argu-
ment. If no starting designs were passed to pfglm, this is the starting designs
generated randomly by pfglm.

Author(s)

Damianos Michaelides <<dm3g15@soton.ac.uk>>, Antony Overstall, Dave Woods

Examples

Example 1:
This example involves finding an A-optimal design for a functional logistic
model of 12 runs depending on one profile factor. The settings of the profile
factor are represented by a B-spline basis of degree zero and a three interior knots
at (0.25, 0.50, 0.75). The single functional parameter is represented with a linear
power series basis. The method of approximation is Monte Carlo with the prior
specified by the function prmc. Three random starts are chosen.

set.seed(100) ## Set seed to achieve reproducibility.

prmc <- function(B,Q) {
matrix(rnorm(B*Q, mean=0, sd=sqrt(2)), nrow=B, ncol=Q)

}
A function which specifies the prior. This function returns a
B by Q matrix of randomly generated values from the prior
distribution for the model parameters.

example1 <- pfglm(formula = ~ 1 + x1, nsd = 3, mc.cores = 1, npf = 1,
tbounds = c(0,1), nruns = 12, startd = NULL,
dx = c(0), knotsx = list(c(0.25,0.50,0.75)),
pars = c("power"), db = c(1), knotsb = list(c()),
lambda = 0, criterion = "A", family = binomial,
method=c("MC"), level = 6, B = 10000, prior = prmc,
dlbound = -1, dubound = 1, tol = 0.0001, progress = FALSE)

print(example1) ## prints the output of example1.
##
The number of profile factors is: 1
##
The number of runs is: 12
##
The objective criterion is: A-optimality
##
The objective value is: 20.23283
##
The number of iterations is: 5
##
The method of approximation is: MC
##

pflm 11

The family distribution and the link function are: binomial and logit
##
The computing elapsed time is: 00:00:12
##
plot(example1)
then give the number of profile factor to plot

Example 2:
This example involves finding a A-optimal design for a functional logistic
model of 8 runs depending on one profile factor. The settings of the profile
factor are represented by a B-spline basis of degree zero and a single interior knot
at 0.50. The single functional parameter is represented with a linear
power series basis. The method of approximation is Quadrature with Normal prior
distribution, with all parameters having mean 0 and variance 2.
Five random starts are chosen.

example2 <- pfglm(formula = ~ 1 + x1, nsd = 5, mc.cores = 1, npf = 1,
tbounds = c(0,1), nruns = 8, startd = NULL,
dx = c(0), knotsx = list(c(0.25,0.50,0.75)),
pars = c("power"), db = c(1), knotsb = list(c()),
lambda = 0, criterion = "A", family = binomial,
method = c("quadrature"), level = NULL, B = NULL,
prior = list(mu = c(0), sigma2 = c(2)),
dlbound = -1, dubound = 1, tol = 0.0001,
progress = FALSE)

The number of profile factors is: 1
##
The number of runs is: 8
##
The objective criterion is: A-optimality
##
The objective value is: 31.32342
##
The number of iterations is: 9
##
The method of approximation is: quadrature
##
The family distribution and the link function are: binomial and logit
##
The computing elapsed time is: 00:00:00

pflm Optimal designs for functional linear models using the coordinate ex-
change algorithm

Description

Optimal designs for functional linear models for which the functional factors are represented as B-
spline basis functions and the functional parameters are represented as power series basis functions

12 pflm

or as B-spline basis functions.

Usage

pflm(formula, nsd = 1, mc.cores = 1, npf, tbounds,
nruns, startd = NULL, dx, knotsx, pars, db,
knotsb = NULL, criterion = c("A", "D"), lambda = 0,
dlbound = -1, dubound = 1, tol = 1e-04, progress = FALSE)

Arguments

formula Object of type formula, to create the model equation. Elements need to match
the list names for startd. Main effects are called using the names of the profile
factors in startd, interactions are called using the names of the profile factors in
startd seperated with :, and polynomial effects are called using the function P.
Scalar factors are called using the same way and degree and knots through the
arguments dx and knotsx are used to specify the scalar factors. A scalar factor
is equivalent to a profile factor with degree 0 and no interior knots.

nsd The number of starting designs. The default entry is 1.

mc.cores The number of cores to use. The option is initialized from environment variable
MC_CORES if set. Must be at least one, and for parallel computing at least two
cores are required. The default entry is 1.

npf The total number of (profile) factors in the model.

tbounds A time vector of length 2, representing the boundaries of time, i.e., 0 and T.

nruns The number of runs of the experiment.

startd Representing the starting design but if NULL then random designs are automat-
ically generated. It should be a list of length nsd, and each component should be
a list of length npf.

dx A vector of length npf, representing the degree of B-spline basis functions for
the functions of the functional factors. A scalar factor must have a zero degree
entry.

knotsx A list of length npf, with every object in the list representing the knot vectors
of each functional factor. A Scalar factor must have no interior knots, i.e., an
empty knot vector.

pars A vector of length equal to the total terms in formula, representing the basis
choice for the (functional) parameters. Entries should be "power" or "bspline".
A scalar parameter is represented through a "power" basis.

db A vector of length equal to the total terms in formula, representing the degree of
the basis for the (functional) parameters. For power series basis the degree is: 1
for linear, 2 for quadratic, etc. A scalar parameter must have degree 0.

knotsb A list of length equal to the total terms in formula, representing the knot vector
of each (functional) parameter. For parameters represented by a power series
basis, the knot vector should be empty or NULL.

lambda Smoothing parameter to penalise the complexity of the functions of the profile
factors. The default value is 0, i.e., no penalty.

pflm 13

criterion The choice of objective function. Currently there are two available choices: 1.
A-optimality (criterion = "A"); 2. D-optimality (criterion = "D").

tol The tolerance value in the optimisation algorithm. Default value is 0.0001.

dlbound The design’s lower bound. The default lower bound is -1.

dubound The design’s upper bound. The default upper bound is 1.

progress If TRUE, it returns the progress of iterations from the optimisation process. The
default entry is FALSE.

Value

The function returns an object of class "pflm" which is a list with the following components:

objval The objective value of the final design found from pflm.

design The final design found from pflm. The final design is a list of length equal to the
number of profile factors, exactly as the starting design startd.

nits The total number of iterations needed to identify the final design.

time The computational elapsed time in finding the final design.

startd If starting designs were passed as an argument in pflm, then this is the starting
design from the argument startd that led to the final design. If no starting designs
were passed to pflm, this is the starting design generated randomly by pflm that
led to the final design.

tbounds The argument tbounds.

npf The argument npf.

criterion The argument criterion.

nruns The argument nruns.

formula The argument formula.

dx The argument dx.

knotsx The argument knotsx.

lambda The argument lambda.

dbounds A vector of length 2, containing the arguments dlbound and dubound.

bestrep A scalar value indicating the repetition that led to the final design.

allobjvals A vector of length equal to nsd, representing the objective value from all of the
repetitions.

alldesigns A list of length equal to nsd of all the final designs. Each component of the list
is a list of length equal to npf representing the final design in each repetition of
the coordinate exchange algorithm.

allstartd If starting designs were passed as an argument in pflm, then this is the argument.
If no starting designs were passed to pflm, this is the starting designs generated
randomly by pflm.

Author(s)

Damianos Michaelides <<dm3g15@soton.ac.uk>>, Antony Overstall, Dave Woods

14 pflm

Examples

Example 1:
This example involves finding an A-optimal design for a functional linear model of 4 runs
depending on one profile factor. The settings of the profile factor are represented by a
B-spline basis of degree zero and a single knot at (0.5). The single functional parameter
is represented with a linear power series basis. Five random starts are chosen.

example1 <- pflm(formula = ~ x1, nsd = 5, mc.cores = 1, npf = 1,
tbounds = c(0, 1), nruns = 4, startd = NULL, dx = c(0),
knotsx = list(c(0.5)), pars = c("power"), db = c(1),
knotsb = list(c()), criterion = "A", lambda = 0,
dlbound = -1, dubound = 1, tol = 0.0001, progress = FALSE)

print(example1) ## prints the output of example1.
##
The number of profile factors is: 1
##
The number of runs is: 4
##
The objective criterion is: A-optimality
##
The objective value is: 8.75
##
The number of iterations is: 6
##
The computing elapsed time is: 00:00:00

plot(example1)
then give the number of profile factor to plot

Example 2:
This example involves finding a D-optimal design for a functional linear model of n=20 runs
depending on two profile factors. In addition to the main effects, the model includes the
interaction of the profile factors and the quadratic effect of the second profile factor.
The settings of the profile factors are represented by B-spline basis of quadratic degrees
and knots at (0.33, 0.66) and (0.25, 0.50, 0.75). The functional parameters are represented
with linear power basis and quadratic B-spline basis with knots at (0.25, 0.50, 0.75).
The complexity of the designs is penalised with the smoothing value equal to 1.

example2 <- pflm(formula = ~ x1 + x2 + x1:x2 + P(x2, 2), nsd = 1, mc.cores = 1,
npf = 2, tbounds = c(0, 1), nruns = 20, startd = NULL, dx = c(2, 2),
knotsx = list(c(0.33, 0.66), c(0.25, 0.50, 0.75)),
pars = c("power", "power", "bspline", "bspline"), db = c(1, 1, 2, 2),
knotsb = list(c(), c(), c(0.25, 0.50, 0.75), c(0.25, 0.50, 0.75)),
criterion = "D", lambda = 1, tol = 0.0001, dlbound = -1, dubound = 1,
progress = FALSE)

print(example2) ## prints the output of example2.
##
The number of profile factors is: 2
##

plot.fglm 15

The number of runs is: 20
##
The objective criterion is: D-optimality
##
The objective value is: 0.05706758
##
The number of iterations is: 6
##
The computing elapsed time is: 00:00:17

plot.fglm Plot of fglm Objects

Description

Plot of "fglm" objects. For the choice of a profile factor, the optimal functions are plotted.

Usage

S3 method for class 'fglm'
plot(x, ...)

Arguments

x An object of class "fglm".

... Additional arguments to be passed to other methods.

Value

The function returns the question: "Which profile factor to plot?". The answer needs to be an integer
to specify the profile factor for which to plot the optimal functions in every run. The value needs to
be between 1 and the argument npf from the function pfglm.

After that, the function returns n.runs (see pfglm) plots of the optimal functions, of the profile
factor indicated. The x-axis represents the time, the y-axis represents the values of the function of
the profile factor, and the title indicated the number of run of each plot.

Note

For examples see pflm.

Author(s)

Damianos Michaelides <<dm3g15@soton.ac.uk>>, Antony Overstall, Dave Woods

16 plot.flm

plot.flm Plot of flm Objects

Description

Plot of "flm" objects. For the choice of a profile factor, the optimal functions are plotted.

Usage

S3 method for class 'flm'
plot(x, ...)

Arguments

x An object of class "flm".

... Additional arguments to be passed to other methods.

Value

The function returns the question: "Which profile factor to plot?". The answer needs to be an integer
to specify the profile factor for which to plot the optimal functions in every run. The value needs to
be between 1 and the argument npf from the function pflm.

After that, the function returns n.runs (see pflm) plots of the optimal functions of the profile factor
indicated. The x-axis represents the time, the y-axis represents the values of the function of the
profile factor, and the title indicated the number of run of each plot.

Note

For examples see pflm.

Author(s)

Damianos Michaelides <<dm3g15@soton.ac.uk>>, Antony Overstall, Dave Woods

Index

family, 8
fdesigns (fdesigns-package), 2
fdesigns-package, 2
fglmobjects, 4
flmobjects, 5

I, 6

P, 5, 6, 7, 12
pfglm, 2, 4–6, 7, 15
pflm, 2, 5, 6, 11, 15, 16
plot.fglm, 15
plot.flm, 16
print.fglm (fglmobjects), 4
print.flm (flmobjects), 5

summary.fglm (fglmobjects), 4
summary.flm (flmobjects), 5

17

	fdesigns-package
	fglmobjects
	flmobjects
	P
	pfglm
	pflm
	plot.fglm
	plot.flm
	Index

