fdaoutlier: Outlier Detection Tools for Functional Data Analysis
A collection of functions for outlier detection in functional data analysis.
Methods implemented include directional outlyingness by
Dai and Genton (2019) <doi:10.1016/j.csda.2018.03.017>,
MS-plot by Dai and Genton (2018) <doi:10.1080/10618600.2018.1473781>,
total variation depth and modified shape similarity index by
Huang and Sun (2019) <doi:10.1080/00401706.2019.1574241>, and sequential transformations by
Dai et al. (2020) <doi:10.1016/j.csda.2020.106960 among others. Additional outlier detection
tools and depths for functional data like functional boxplot, (modified) band depth etc.,
are also available.
Version: |
0.2.1 |
Depends: |
R (≥ 2.10) |
Imports: |
MASS |
Suggests: |
testthat (≥ 2.1.0), covr, spelling, knitr, rmarkdown |
Published: |
2023-09-30 |
DOI: |
10.32614/CRAN.package.fdaoutlier |
Author: |
Oluwasegun Taiwo Ojo
[aut, cre,
cph],
Rosa Elvira Lillo [aut],
Antonio Fernandez Anta [aut, fnd] |
Maintainer: |
Oluwasegun Taiwo Ojo <seguntaiwoojo at gmail.com> |
BugReports: |
https://github.com/otsegun/fdaoutlier/issues |
License: |
GPL-3 |
URL: |
https://github.com/otsegun/fdaoutlier |
NeedsCompilation: |
yes |
Language: |
en-US |
Materials: |
README, NEWS |
In views: |
FunctionalData |
CRAN checks: |
fdaoutlier results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=fdaoutlier
to link to this page.