Package 'fca'

October 13, 2022

Title Floating Catchment Area (FCA) Methods to Calculate Spatial Accessibility

Version 0.1.0

Description Perform various floating catchment area methods to calculate a spatial accessibility index (SPAI) for demand point data. The distance matrix used for weighting is normalized in a preprocessing step using common functions (gaussian, gravity, exponential or logistic).

License GPL (>= 3)

URL https://egrueebler.github.io/fca/,

https://github.com/egrueebler/fca/

BugReports https://github.com/egrueebler/fca/issues/ Encoding UTF-8 RoxygenNote 7.1.2 Suggests covr, knitr, rmarkdown, testthat Config/testthat/edition 3 VignetteBuilder knitr NeedsCompilation no Author Etienne Grueebler [aut, cre], Merlin Unterfinger [aut] (<https://orcid.org/0000-0003-2020-2366>), Reto Joerg [ctb] Maintainer Etienne Grueebler <package@etienne.app> Repository CRAN Date/Publication 2021-12-06 08:30:02 UTC

R topics documented:

	dist_normalize	
	spai_3sfca	
C		5

Index

dist_normalize

Description

Distance weight methods

Usage

```
dist_normalize(D, d_max, imp_function, function_d_max = 0.01)
```

Arguments

D	numeric matrix, distance or time values
d_max	numeric, threshold for max distance
<pre>imp_function</pre>	character, type of distance weights method
function_d_max	numeric, condition for the result of the function(d_max) used to calculate beta (default = 0.01, is considered optimal for the Gaussian function)

Value

matrix, normalized distance or time values

Examples

dist_normalize(matrix(10), 10, "gaussian")

spai_2sfca

Two-Step Floating Catchment Area method

Description

Two-Step Floating Catchment Area method

Usage

spai_2sfca(p, s, W, step = 2)

Arguments

р	numeric vector, number of population at origin locations
S	numeric vector, capacity of services at supply locations
W	numeric matrix, distance or time matrix
step	numeric, number of the steps of the method to perform

spai_3sfca

Value

data.frame, depending on selected step

Examples

p <- 1:4
s <- 1:6
W <- matrix(1:24, ncol = 4, nrow = 6)
spai <- spai_2sfca(p, s, W, step = 2)</pre>

spai_3sfca

Three-Step Floating Catchment Area method

Description

Three-Step Floating Catchment Area method

Usage

spai_3sfca(p, s, W, step = 3)

Arguments

р	numeric vector, number of population at origin locations
S	numeric vector, capacity of services at supply locations
W	numeric matrix, distance or time matrix
step	numeric, number of the steps of the method to perform

Value

data.frame, depending on selected step

Examples

```
p <- 1:4
s <- 1:6
W <- matrix(1:24, ncol = 4, nrow = 6)
spai <- spai_3sfca(p, s, W, step = 3)</pre>
```

spai_mh3sfca

Description

Modified-Huff-Three-Step Floating Catchment Area method

Usage

spai_mh3sfca(p, s, W, step = 3)

Arguments

р	numeric vector, number of population at origin locations
S	numeric vector, capacity of services at supply locations
W	numeric matrix, distance or time matrix
step	numeric, number of the steps of the method to perform

Value

data.frame, depending on selected step

Examples

p <- 1:4
s <- 1:6
W <- matrix(1:24, ncol = 4, nrow = 6)
spai <- spai_mh3sfca(p, s, W, step = 3)</pre>

Index

dist_normalize, 2

spai_2sfca, 2
spai_3sfca, 3
spai_mh3sfca, 4