Package ‘fansi’

December 8, 2023

Title ANSI Control Sequence Aware String Functions

Description Counterparts to R string manipulation functions that account for
the effects of ANSI text formatting control sequences.

Version 1.0.6
Depends R (>=3.1.0)
License GPL-2 | GPL-3

URL https://github.com/brodieG/fansi

BugReports https://github.com/brodieG/fansi/issues
VignetteBuilder knitr

Suggests unitizer, knitr, rmarkdown

Imports grDevices, utils

RoxygenNote 7.2.3

Encoding UTF-8

Collate 'constants.R' 'fansi-package.R' 'internal.R' load.R' 'misc.R’
'nchar.R' 'strwrap.R' 'strtrim.R' 'strsplit.R' 'substr2.R’
'trimws.R' 'tohtml.R' 'unhandled.R' 'normalize.R' 'sgr.R’'

NeedsCompilation yes

Author Brodie Gaslam [aut, cre],
Elliott Sales De Andrade [ctb],
R Core Team [cph] (UTF8 byte length calcs from src/util.c)

Maintainer Brodie Gaslam <brodie.gaslam@yahoo.com>
Repository CRAN
Date/Publication 2023-12-08 03:30:02 UTC

R topics documented:

dfit_term_cap
fansi e e e
fansi_lines e

https://github.com/brodieG/fansi
https://github.com/brodieG/fansi/issues

2 dfit_term_cap
has_ctl e e 7
html_code_block e 9
html_esc e e e 9
in_html e e e 10
make_styles L 11
nchar_ctl L e e 13
normalize_state 16
set_knit hoOKS e, 18
SEI_2560 . .. 20
state_at_end L e e 21
strip_ctl . .. 23
strsplit_ctl e e e 25
stririm_Ctl . . . L e e e 28
strwrap_Ctl . . . oL e e e e 30
substr_ctl e e e e 35
tabsS_as_SPACES i e e e e e e e e e e e e e e e 42
ermM_Cap_test e e e e e e e e 44
to_ html e 45
trimws_Ctl L 48
unhandled_ctl 51

Index 54

dflt_term_cap Default Arg Helper Funs

Description

Terminal capabilities are assumed to include bright and 256 color SGR codes. 24 bit color support
is detected based on the COLORTERM environment variable.
Usage
dflt_term_cap()
dflt_css()

Details
Default CSS may exceed or fail to cover the interline distance when two lines have background
colors. To ensure lines are exactly touching use inline-block, although that has its own issues.
Otherwise specify your own CSS.

Value

character to use as default value for fansi parameter.

fansi 3

See Also

term_cap_test.

fansi Details About Manipulation of Strings Containing Control Sequences

Description

Counterparts to R string manipulation functions that account for the effects of some ANSI X3.64
(a.k.a. ECMA-48, ISO-6429) control sequences.

Control Characters and Sequences

Control characters and sequences are non-printing inline characters or sequences initiated by them
that can be used to modify terminal display and behavior, for example by changing text color or
cursor position.

We will refer to X3.64/ECMA-48/ISO-6429 control characters and sequences as "Control Se-
quences" hereafter.

There are four types of Control Sequences that fansi can treat specially:

* "C0" control characters, such as tabs and carriage returns (we include delete in this set, even
though technically it is not part of it).

* Sequences starting in "ESC[", also known as Control Sequence Introducer (CSI) sequences,
of which the Select Graphic Rendition (SGR) sequences used to format terminal output are a
subset.

» Sequences starting in "ESC]", also known as Operating System Commands (OSC), of which
the subset beginning with "8" is used to encode URI based hyperlinks.

* Sequences starting in "ESC" and followed by something other than "[" or "]".

Control Sequences starting with ESC are assumed to be two characters long (including the ESC)
unless they are of the CSI or OSC variety, in which case their length is computed as per the ECMA-
48 specification, with the exception that OSC hyperlinks may be terminated with BEL ("\a") in
addition to ST ("ESC\"). fansi handles most common Control Sequences in its parsing algorithms,
but it is not a conforming implementation of ECMA-48. For example, there are non-CSI/OSC
escape sequences that may be longer than two characters, but fansi will (incorrectly) treat them as
if they were two characters long. There are many more unimplemented ECMA-48 specifications.

In theory it is possible to encode CSI sequences with a single byte introducing character in the
0x40-0x5F range instead of the traditional "ESC[". Since this is rare and it conflicts with UTF-8
encoding, fansi does not support it.

Within Control Sequences, fansi further distinguishes CSI SGR and OSC hyperlinks by recording
format specification and URIs into string state, and applying the same to any output strings accord-
ing to the semantics of the functions in use. CSI SGR and OSC hyperlinks are known together as
Special Sequences. See the following sections for details.

Additionally, all Control Sequences, whether special or not, do not count as characters, graphemes,
or display width. You can cause fansi to treat particular Control Sequences as regular characters
with the ctl parameter.

https://ecma-international.org/publications-and-standards/standards/ecma-48/
https://ecma-international.org/publications-and-standards/standards/ecma-48/

4 fansi

CSI SGR Control Sequences

NOTE: not all displays support CSI SGR sequences; run term_cap_test to see whether your
display supports them.

CSI SGR Control Sequences are the subset of CSI sequences that can be used to change text ap-
pearance (e.g. color). These sequences begin with "ESC[" and end in "m". fansi interprets these
sequences and writes new ones to the output strings in such a way that the original formatting is
preserved. In most cases this should be transparent to the user.

Occasionally there may be mismatches between how fansi and a display interpret the CSI SGR
sequences, which may produce display artifacts. The most likely source of artifacts are Control
Sequences that move the cursor or change the display, or that fansi otherwise fails to interpret,
such as:

* Unknown SGR substrings.
* "CO0" control characters like tabs and carriage returns.

* Other escape sequences.

Another possible source of problems is that different displays parse and interpret control sequences
differently. The common CSI SGR sequences that you are likely to encounter in formatted text
tend to be treated consistently, but less common ones are not. fansi tries to hew by the ECMA-48
specification for CSI SGR control sequences, but not all terminals do.

The most likely source of problems will be 24-bit CSI SGR sequences. For example, a 24-bit color
sequence such as "ESC[38;2;31;42;4" is a single foreground color to a terminal that supports it, or
separate foreground, background, faint, and underline specifications for one that does not. fansi
will always interpret the sequences according to ECMA-48, but it will warn you if encountered
sequences exceed those specified by the term. cap parameter or the "fansi.term.cap" global option.

fansi will will also warn if it encounters Control Sequences that it cannot interpret. You can turn
off warnings via the warn parameter, which can be set globally via the "fansi.warn" option. You can
work around "C0" tabs characters by turning them into spaces first with tabs_as_spaces or with
the tabs.as. spaces parameter available in some of the fansi functions

fansi interprets CSI SGR sequences in cumulative "Graphic Rendition Combination Mode". This
means new SGR sequences add to rather than replace previous ones, although in some cases the
effect is the same as replacement (e.g. if you have a color active and pick another one).

OSC Hyperlinks

Operating System Commands are interpreted by terminal emulators typically to engage actions
external to the display of text proper, such as setting a window title or changing the active color
palette.

Some terminals have added support for associating URIs to text with OSCs in a similar way to
anchors in HTML, so fansi interprets them and outputs or terminates them as needed. For example:

"\03318; ;xy.z\@33\\LINK\@33]8; ;\033\\"

Might be interpreted as link to the URI "x.z". To make the encoding pattern clearer, we replace
"\033]" with "<OSC>" and "\033\" with "<ST>" below:

<0SC>8; ; URIKST>LINK TEXT<OSC>8; ;<ST>

https://iterm2.com/documentation-escape-codes.html

fansi 5

State Interactions

The cumulative nature of state as specified by SGR or OSC hyperlinks means that unterminated
strings that are spliced will interact with each other. By extension, a substring does not inherently
contain all the information required to recreate its state as it appeared in the source document. The
default fansi configuration terminates extracted substrings and prepends original state to them so
they present on a stand-alone basis as they did as part of the original string.

To allow state in substrings to affect subsequent strings set terminate = FALSE, but you will need
to manually terminate them or deal with the consequences of not doing so (see "Terminal Quirks").

By default, fansi assumes that each element in an input character vector is independent, but this is
incorrect if the input is a single document with each element a line in it. In that situation state from
each line should bleed into subsequent ones. Setting carry = TRUE enables the "single document"
interpretation.

To most closely approximate what writelines(x) produces on your terminal, where x is a stateful
string, use writeLines(fansi_fun(x, carry=TRUE, terminate=FALSE)). fansi_fun is a stand-
in for any of the fansi string manipulation functions. Note that even with a seeming "null-op"
such as substr_ctl(x, 1, nchar_ctl(x), carry=TRUE, terminate=FALSE) the output control
sequences may not match the input ones, but the output should look the same if displayed to the
terminal.

fansi strings will be affected by any active state in strings they are appended to. There are no
parameters to control what happens in this case, but fansi provides functions that can help the user
get the desired behavior. state_at_end computes the active state the end of a string, which can
then be prepended onto the input of fansi functions so that they are aware of the active style at the
beginning of the string. Alternatively, one could use close_state(state_at_end(...)) and pre-
pend that to the output of fansi functions so they are unaffected by preceding SGR. One could also
just prepend "ESC[Om", but in some cases as described in ?normalize_state that is sub-optimal.

If you intend to combine stateful fansi manipulated strings with your own, it may be best to set
normalize = TRUE for improved compatibility (see ?normalize_state.)

Terminal Quirks

Some terminals (e.g. OS X terminal, ITerm2) will pre-paint the entirety of a new line with the
currently active background before writing the contents of the line. If there is a non-default active
background color, any unwritten columns in the new line will keep the prior background color even
if the new line changes the background color. To avoid this be sure to use terminate = TRUE or to
manually terminate each line with e.g. "ESC[0Om". The problem manifests as:

" " = default background

"#" = new background

">" = start new background

"1" = restore default background

| abc\n |
| >###\n |
| Yabc\n#####| <- trailing "#" after newline are from pre-paint
| abc |

6 fansi

The simplest way to avoid this problem is to split input strings by any newlines they contain, and
use terminate = TRUE (the default). A more complex solution is to pad with spaces to the terminal
window width before emitting the newline to ensure the pre-paint is overpainted with the current
line’s prevailing background color.

Encodings / UTF-8

fansi will convert any non-ASCII strings to UTF-8 before processing them, and fansi functions
that return strings will return them encoded in UTF-8. In some cases this will be different to what
base R does. For example, substr re-encodes substrings to their original encoding.

Interpretation of UTF-8 strings is intended to be consistent with base R. There are three ways things
may not work out exactly as desired:

1. fansi, despite its best intentions, handles a UTF-8 sequence differently to the way R does.
2. Rincorrectly handles a UTF-8 sequence.
3. Your display incorrectly handles a UTF-8 sequence.

These issues are most likely to occur with invalid UTF-8 sequences, combining character sequences,
and emoji. For example, whether special characters such as emoji are considered one or two wide
evolves as software implements newer versions the Unicode databases.

Internally, fansi computes the width of most UTF-8 character sequences outside of the ASCII
range using the native R_nchar function. This will cause such characters to be processed slower
than ASCII characters. Unlike R (at least as of version 4.1), fansi can account for graphemes.

Because fansi implements its own internal UTF-8 parsing it is possible that you will see results
different from those that R produces even on strings without Control Sequences.

Overflow

The maximum length of input character vector elements allowed by fansi is the 32 bit INT_MAX,
excluding the terminating NULL. As of R4.1 this is the limit for R character vector elements gen-
erally, but is enforced at the C level by fansi nonetheless.

It is possible that during processing strings that are shorter than INT_MAX would become longer
than that. fansi checks for that overflow and will stop with an error if that happens. A work-around
for this situation is to break up large strings into smaller ones. The limit is on each element of a
character vector, not on the vector as a whole. fansi will also error on your system if R_len_t, the
R type used to measure string lengths, is less than the processed length of the string.

R < 3.2.2 support

Nominally you can build and run this package in R versions between 3.1.0 and 3.2.1. Things should
mostly work, but please be aware we do not run the test suite under versions of R less than 3.2.2.
One key degraded capability is width computation of wide-display characters. Under R < 3.2.2
fansi will assume every character is 1 display width. Additionally, fansi may not always report
malformed UTF-8 sequences as it usually does. One exception to this is nchar_ct1 as that is just a
thin wrapper around base: :nchar.

fansi_lines 7

fansi_lines Colorize Character Vectors

Description

Color each element in input with one of the "256 color" ANSI CSI SGR codes. This is intended for
testing and demo purposes.

Usage

fansi_lines(txt, step = 1)

Arguments
txt character vector or object that can be coerced to character vector
step integer(1L) how quickly to step through the color palette

Value

character vector with each element colored

Examples

NEWS <- readLines(file.path(R.home('doc'), 'NEWS'))
writeLines(fansi_lines(NEWS[1:201))
writeLines(fansi_lines(NEWS[1:20], step=8))

has_ctl Check for Presence of Control Sequences

Description

has_ctl checks for any Control Sequence. You can check for different types of sequences with the
ctl parameter. Warnings are only emitted for malformed CSI or OSC sequences.

Usage

has_ctl(x, ctl = "all", warn = getOption("fansi.warn”, TRUE), which)

Arguments

X

ctl

warn

which

Value

has_ctl

a character vector or object that can be coerced to such.

character, which Control Sequences should be treated specially. Special treat-
ment is context dependent, and may include detecting them and/or computing
their display/character width as zero. For the SGR subset of the ANSI CSI se-
quences, and OSC hyperlinks, fansi will also parse, interpret, and reapply the
sequences as needed. You can modify whether a Control Sequence is treated
specially with the ctl parameter.

e "nl": newlines.

e "c0": all other "CO" control characters (i.e. 0x01-0x1f, 0x7F), except for
newlines and the actual ESC (0x1B) character.

* "sgr": ANSI CSI SGR sequences.

* "csi": all non-SGR ANSI CSI sequences.

e "url": OSC hyperlinks

e "osc": all non-OSC-hyperlink OSC sequences.

* "esc": all other escape sequences.

» "all": all of the above, except when used in combination with any of the
above, in which case it means "all but".

TRUE (default) or FALSE, whether to warn when potentially problematic Con-
trol Sequences are encountered. These could cause the assumptions fansi
makes about how strings are rendered on your display to be incorrect, for exam-
ple by moving the cursor (see ?fansi). At most one warning will be issued per
element in each input vector. Will also warn about some badly encoded UTF-8
strings, but a lack of UTF-8 warnings is not a guarantee of correct encoding (use
validUTF8 for that).

character, deprecated in favor of ctl.

logical of same length as x; NA values in x result in NA values in return

See Also

?fansi for details on how Control Sequences are interpreted, particularly if you are getting unex-
pected results, unhandled_ctl for detecting bad control sequences.

Examples

has_ctl("hello world")
has_ctl("hello\nworld")
has_ctl(”"hello\nworld”, "sgr")
has_ctl("hello\@33[3Tmworld\@33[m", "sgr")

html_code_block 9

html_code_block Format Character Vector for Display as Code in HTML

Description

This simulates what rmarkdown / knitr do to the output of an R markdown chunk, at least as of
rmarkdown 1.10. It is useful when we override the knitr output hooks so that we can have a result
that still looks as if it was run by knitr.

Usage

html_code_block(x, class = "fansi-output")

Arguments
X character vector
class character vectors of classes to apply to the PRE HTML tags. It is the users
responsibility to ensure the classes are valid CSS class names.
Value

character(1L) x, with <PRE> and <CODE> HTML tags applied and collapsed into one line with
newlines as the line separator.

Examples

html_code_block(c("hello world"))
html_code_block(c("hello world"), class="pretty")

html_esc Escape Characters With Special HTML Meaning

Description

Arbitrary text may contain characters with special meaning in HTML, which may cause HTML
display to be corrupted if they are included unescaped in a web page. This function escapes those
special characters so they do not interfere with the HTML markup generated by e.g. to_html.

Usage

html_esc(x, what = getOption(”"fansi.html.esc”, "<>&'\""))

10 in_html

Arguments
X character vector
what character(1) containing any combination of ASCII characters "<", ">", "&", """,
or "\"". These characters are special in HTML contexts and will be substituted
by their HTML entity code. By default, all special characters are escaped, but
in many cases "<>&" or even "<>" might be sufficient. @return x, but with the
what characters replaced by their HTML entity codes.
Note

Non-ASCII strings are converted to and returned in UTF-8 encoding.

See Also

Other HTML functions: in_html (), make_styles(), to_html()

Examples

html_esc("day > night")
html_esc("hello world")

in_html Frame HTML in a Web Page And Display

Description

Helper function that assembles user provided HTML and CSS into a temporary text file, and by
default displays it in the browser. Intended for use in examples.

Usage

in_html(x, css = character(), pre = TRUE, display = TRUE, clean = display)

Arguments

X character vector of html encoded strings.

css character vector of css styles.

pre TRUE (default) or FALSE, whether to wrap x in PRE tags.

display TRUE or FALSE, whether to display the resulting page in a browser window. If
TRUE, will sleep for one second before returning, and will delete the temporary
file used to store the HTML.

clean TRUE or FALSE, if TRUE and display == TRUE, will delete the temporary file

used for the web page, otherwise will leave it.

make_styles 11

Value

character(1L) the file location of the page, invisibly, but keep in mind it will have been deleted if
clean=TRUE.

See Also

make_styles().
Other HTML functions: html_esc(), make_styles(), to_html()

Examples

txt <- "\@33[31;42mHello \@33[7mWorld\@33[m"
writeLines(txt)

html <- to_html(txt)

Not run:

in_html(html) # spawns a browser window

End(Not run)

writeLines(readLines(in_html(html, display=FALSE)))

css <- "SPAN {text-decoration: underline;}"
writeLines(readLines(in_html(html, css=css, display=FALSE)))
Not run:

in_html(html, css)

End(Not run)

make_styles Generate CSS Mapping Classes to Colors

Description

Given a set of class names, produce the CSS that maps them to the default 8-bit colors. This is a
helper function to generate style sheets for use in examples with either default or remixed fansi
colors. In practice users will create their own style sheets mapping their classes to their preferred
styles.

Usage

make_styles(classes, rgb.mix = diag(3))

Arguments
classes a character vector of either 16, 32, or 512 class names. The character vectors are
described in to_html.
rgb.mix 3 x 3 numeric matrix to remix color channels. Given a N x 3 matrix of numeric

RGB colors rgb, the colors used in the style sheet will be rgb %*% rgb.mix. Out
of range values are clipped to the nearest bound of the range.

12

Value

A character vector that can be used as the contents of a style sheet.

See Also

Other HTML functions: html_esc(), in_htm1(), to_html()

Examples

Generate some class strings; order matters
classes <- do.call(paste, c(expand.grid(c("fg", "bg"), 0:7), sep="-"))
writeLines(classes[1:4])

Some Default CSS
css@ <- "span {font-size: 60pt; padding: 10px; display: inline-block}"

Associated class strings to styles
css1 <- make_styles(classes)
writeLines(css1[1:4])

Generate SGR-derived HTML, mapping to classes

string <- "\0@33[43mYellow\@33[m\n\0@33[45mMagenta\@33[m\n\0@33[46mCyan\033[m"
html <- to_html(string, classes=classes)

writeLines(html)

Combine in a page with styles and display in browser
Not run:
in_html(html, css=c(css@, cssl))

End(Not run)

Change CSS by remixing colors, and apply to exact same HTML
mix <- matrix(
c(
1, @, # red output is green input
0, 0, 1, # green output is blue input
0, @ # blue output is red input
),
nrow=3, byrow=TRUE
)
css2 <- make_styles(classes, rgb.mix=mix)
Display in browser: same HTML but colors changed by CSS
Not run:
in_html(html, css=c(css@, css2))

End(Not run)

make_styles

nchar ctl 13

nchar_ctl Control Sequence Aware Version of nchar

Description

nchar_ctl counts all non Control Sequence characters. nzchar_ctl returns TRUE for each input
vector element that has non Control Sequence sequence characters. By default newlines and other
CO0 control characters are not counted.

Usage

nchar_ctl(
X?
type = "chars”,
allowNA = FALSE,

keepNA = NA,
ctl = "all”,
warn = getOption(”fansi.warn”, TRUE),
strip
)
nzchar_ctl(
X,
keepNA = FALSE,
ctl = "all”,
warn = getOption("fansi.warn”, TRUE)
)
Arguments
X a character vector or object that can be coerced to such.
type character(1L) partial matching c("chars”, "width"”, "graphemes"), although
types other than "chars" only work correctly with R >=3.2.2. See ?nchar.
allowNA logical: should NA be returned for invalid multibyte strings or "bytes"-encoded
strings (rather than throwing an error)?
keepNA logical: should NA be returned when x is NA? If false, nchar () returns 2, as that
is the number of printing characters used when strings are written to output, and
nzchar() is TRUE. The default for nchar (), NA, means to use keepNA = TRUE
unless type is "width”.
ctl character, which Control Sequences should be treated specially. Special treat-

ment is context dependent, and may include detecting them and/or computing
their display/character width as zero. For the SGR subset of the ANSI CSI se-
quences, and OSC hyperlinks, fansi will also parse, interpret, and reapply the
sequences as needed. You can modify whether a Control Sequence is treated
specially with the ctl parameter.

14 nchar ctl

e "nl": newlines.

e "c0": all other "CO" control characters (i.e. 0x01-0Ox1f, Ox7F), except for
newlines and the actual ESC (0x1B) character.

e "sgr": ANSI CSI SGR sequences.

* "csi": all non-SGR ANSI CSI sequences.

e "url": OSC hyperlinks

* "osc": all non-OSC-hyperlink OSC sequences.

e "esc": all other escape sequences.

e "all": all of the above, except when used in combination with any of the
above, in which case it means "all but".

warn TRUE (default) or FALSE, whether to warn when potentially problematic Con-
trol Sequences are encountered. These could cause the assumptions fansi
makes about how strings are rendered on your display to be incorrect, for exam-
ple by moving the cursor (see ?fansi). At most one warning will be issued per
element in each input vector. Will also warn about some badly encoded UTF-8
strings, but a lack of UTF-8 warnings is not a guarantee of correct encoding (use
validUTF8 for that).

strip character, deprecated in favor of ctl.

Details

nchar_ctl and nzchar_ctl are implemented in statically compiled code, so in particular nzchar_ctl
will be much faster than the otherwise equivalent nzchar(strip_ctl(...)).

These functions will warn if either malformed or escape or UTF-8 sequences are encountered as
they may be incorrectly interpreted.

Value

Like base: :nchar, with Control Sequences excluded.

Control and Special Sequences

Control Sequences are non-printing characters or sequences of characters. Special Sequences are
a subset of the Control Sequences, and include CSI SGR sequences which can be used to change
rendered appearance of text, and OSC hyperlinks. See fansi for details.

Output Stability

Several factors could affect the exact output produced by fansi functions across versions of fansi,
R, and/or across systems. In general it is best not to rely on exact fansi output, e.g. by embed-
ding it in tests.

Width and grapheme calculations depend on locale, Unicode database version, and grapheme pro-
cessing logic (which is still in development), among other things. For the most part fansi (cur-
rently) uses the internals of base: :nchar(type="'width'), but there are exceptions and this may
change in the future.

nchar ctl 15

How a particular display format is encoded in Control Sequences is not guaranteed to be stable
across fansi versions. Additionally, which Special Sequences are re-encoded vs transcribed un-
touched may change. In general we will strive to keep the rendered appearance stable.

To maximize the odds of getting stable output set normalize_state to TRUE and type to "chars”
in functions that allow it, and set term. cap to a specific set of capabilities.

Graphemes

fansi approximates grapheme widths and counts by using heuristics for grapheme breaks that work
for most common graphemes, including emoji combining sequences. The heuristic is known to
work incorrectly with invalid combining sequences, prepending marks, and sequence interruptors.
fansi does not provide a full implementation of grapheme break detection to avoid carrying a copy
of the Unicode grapheme breaks table, and also because the hope is that R will add the feature
eventually itself.

The utf8 package provides a conforming grapheme parsing implementation.

Note

The keepNA parameter is ignored for R < 3.2.2.

See Also

?fansi for details on how Control Sequences are interpreted, particularly if you are getting unex-
pected results, unhandled_ctl for detecting bad control sequences.

Examples

nchar_ct1("\@33[31m123\a\r")

with some wide characters

cn.string <- sprintf(”\@33[31m%s\a\r", "\u4EQ0\u4EQ1\u4EQ@3")
nchar_ctl(cn.string)

nchar_ctl(cn.string, type='width')

Remember newlines are not counted by default
nchar_ctl("\t\n\r")

The 'c@' value for the ‘ctl‘ argument does not include
newlines.

nchar_ctl("\t\n\r"”, ctl="c@")

nchar_ctl("\t\n\r"”, ctl=c("c0@", "nl"))

The _sgr flavor only treats SGR sequences as zero width
nchar_sgr(”\033[31m123")
nchar_sgr(”"\t\n\n123")

ALl of the following are Control Sequences or C@ controls
nzchar_ct1("\n\033[42;31m\@33[123P\a")

https://cran.r-project.org/package=utf8

16

normalize_state

normalize_state

Normalize CSI and OSC Sequences

Description

Re-encodes SGR and OSC encoded URL sequences into a unique decomposed form. Strings con-
taining semantically identical SGR and OSC sequences that are encoded differently should compare
equal after normalization.

Usage

normalize_state(

X,

warn = getOption(”"fansi.warn”, TRUE),
term.cap = getOption(”fansi.term.cap”, dflt_term_cap()),
carry = getOption("fansi.carry”, FALSE)

)

Arguments

X

warn

term.cap

carry

a character vector or object that can be coerced to such.

TRUE (default) or FALSE, whether to warn when potentially problematic Con-
trol Sequences are encountered. These could cause the assumptions fansi
makes about how strings are rendered on your display to be incorrect, for exam-
ple by moving the cursor (see ?fansi). At most one warning will be issued per
element in each input vector. Will also warn about some badly encoded UTF-8
strings, but a lack of UTF-8 warnings is not a guarantee of correct encoding (use
validUTF8 for that).

character a vector of the capabilities of the terminal, can be any combination of
"bright" (SGR codes 90-97, 100-107), "256" (SGR codes starting with "38;5" or
"48;5"), "truecolor" (SGR codes starting with "38;2" or "48;2"), and "all". "all"
behaves as it does for the ctl parameter: "all" combined with any other value
means all terminal capabilities except that one. fansi will warn if it encounters
SGR codes that exceed the terminal capabilities specified (see term_cap_test
for details). In versions prior to 1.0, fansi would also skip exceeding SGRs
entirely instead of interpreting them. You may add the string "old" to any other-
wise valid term. cap spec to restore the pre 1.0 behavior. "old" will not interact
with "all" the way other valid values for this parameter do.

TRUE, FALSE (default), or a scalar string, controls whether to interpret the
character vector as a "single document" (TRUE or string) or as independent el-
ements (FALSE). In "single document" mode, active state at the end of an input
element is considered active at the beginning of the next vector element, sim-
ulating what happens with a document with active state at the end of a line. If
FALSE each vector element is interpreted as if there were no active state when it
begins. If character, then the active state at the end of the carry string is carried
into the first element of x (see "Replacement Functions" for differences there).

normalize_state 17

The carried state is injected in the interstice between an imaginary zeroeth char-
acter and the first character of a vector element. See the "Position Semantics"
section of substr_ctl and the "State Interactions" section of ?fansi for de-
tails. Except for strwrap_ctl where NA is treated as the string "NA", carry will
cause NAs in inputs to propagate through the remaining vector elements.

Details

Each compound SGR sequence is broken up into individual tokens, superfluous tokens are removed,
and the SGR reset sequence "ESC[Om" (or "ESC[m") is replaced by the closing codes for whatever
SGR styles are active at the point in the string in which it appears.

Unrecognized SGR codes will be dropped from the output with a warning. The specific order of
SGR codes associated with any given SGR sequence is not guaranteed to remain the same across
different versions of fansi, but should remain unchanged except for the addition of previously
uninterpreted codes to the list of interpretable codes. There is no special significance to the order
the SGR codes are emitted in other than it should be consistent for any given SGR state. URLSs
adjacent to SGR codes are always emitted after the SGR codes irrespective of what side they were
on originally.

OSC encoded URL sequences are always terminated by "ESC]\", and those between abutting URLs
are omitted. Identical abutting URLs are merged. In order for URLS to be considered identical both
the URL and the "id" parameter must be specified and be the same. OSC URL parameters other
than "id" are dropped with a warning.

The underlying assumption is that each element in the vector is unaffected by SGR or OSC URLs
in any other element or elsewhere. This may lead to surprising outcomes if these assumptions are
untrue (see examples). You may adjust this assumption with the carry parameter.

Normalization was implemented primarily for better compatibility with crayon which emits SGR
codes individually and assumes that each opening code is paired up with its specific closing code,
but it can also be used to reduce the probability that strings processed with future versions of fansi
will produce different results than the current version.

Value

x, with all SGRs normalized.

See Also

?fansi for details on how Control Sequences are interpreted, particularly if you are getting unex-
pected results, unhandled_ctl for detecting bad control sequences.

Examples

normalize_state("hello\@33[42;33m world")
normalize_state("hello\@33[42;33m world\@33[m")
normalize_state("”\033[4mhello\@33[42;33m world\@33[m")

Superflous codes removed

normalize_state("”\033[31;32mhello\@33[m") # only last color prevails
normalize_state("”\033[31\033[32mhello\@33[m") # only last color prevails
normalize_state("”\033[31mhe\033[49m110\@33[m") # unused closing

https://cran.r-project.org/package=crayon

18 set_knit_hooks

Equivalent normalized sequences compare identical
identical(
normalize_state(”\033[31;32mhello\@33[m"),
normalize_state("”\033[31mhe\033[49m110\0@33[m")
)
External SGR will defeat normalization, unless we ‘carry" it
red <- "\@33[41m"
writelLines(
c(
paste(red, "he\@33[@mllo", "\@33[om"),
paste(red, normalize_state("he\@33[@mllo"), "\@33[@m"),
paste(red, normalize_state("he\@33[@mllo"”, carry=red), "\@33[om")

))
set_knit_hooks Set an Output Hook Convert Control Sequences to HTML in Rmark-
down
Description

This is a convenience function designed for use within an rmarkdown document. It overrides the
knitr output hooks by using knitr::knit_hooks$set. It replaces the hooks with ones that con-
vert Control Sequences into HTML. In addition to replacing the hook functions, this will output a
<STYLE> HTML block to stdout. These two actions are side effects as a result of which R chunks
in the rmarkdown document that contain CSI SGR are shown in their HTML equivalent form.

Usage

set_knit_hooks(
hooks,
which = "output”,
proc.fun = function(x, class) html_code_block(to_html(html_esc(x)), class = class),
class = sprintf("fansi fansi-%s", which),
style = getOption("fansi.css"”, dflt_css()),
split.nl = FALSE,

.test = FALSE
)
Arguments

hooks list, this should the be knitr::knit_hooks object; we require you pass this to
avoid a run-time dependency on knitr.

which character vector with the names of the hooks that should be replaced, defaults to
“output’, but can also contain values ‘message’, *warning’, and ’error’.

proc.fun function that will be applied to output that contains CSI SGR sequences. Should

accept parameters x and class, where x is the output, and class is the CSS class
that should be applied to the <PRE><CODE> blocks the output will be placed
in.

set_knit_hooks 19

class character the CSS class to give the output chunks. Each type of output chunk
specified in which will be matched position-wise to the classes specified here.
This vector should be the same length as which.

style character a vector of CSS styles; these will be output inside HTML >STYLE<
tags as a side effect. The default value is designed to ensure that there is no
visible gap in background color with lines with height 1.5 (as is the default
setting in rmarkdown documents v1.1).

split.nl TRUE or FALSE (default), set to TRUE to split input strings by any newlines
they may contain to avoid any newlines inside SPAN tags created by to_html ().
Some markdown->html renders can be configured to convert embedded new-
lines into line breaks, which may lead to a doubling of line breaks. With the
default proc. fun the split strings are recombined by html_code_block(), but
if you provide your own proc. fun you’ll need to account for the possibility that
the character vector it receives will have a different number of elements than the
chunk output. This argument only has an effect if chunk output contains CSI
SGR sequences.

.test TRUE or FALSE, for internal testing use only.

Details

The replacement hook function tests for the presence of CSI SGR sequences in chunk output with
has_ctl, and if it is detected then processes it with the user provided proc. fun. Chunks that do
not contain CSI SGR are passed off to the previously set hook function. The default proc. fun will
run the output through html_esc, to_html, and finally html_code_block.

If you require more control than this function provides you can set the knitr hooks manually with
knitr::knit_hooks$set. If you are seeing your output gaining extra line breaks, look at the
split.nl option.

Value

named list with the prior output hooks for each of which.

Note

Since we do not formally import the knitr functions we do not guarantee that this function will
always work properly with knitr / rmarkdown.

See Also

has_ctl, to_html, html_esc, html_code_block, knitr output hooks, embedding CSS in Rmd,
and the vignette vignette(package="'fansi', 'sgr-in-rmd").

Examples

Not run:

The following should be done within an ‘rmarkdown‘ document chunk with
chunk option ‘results‘ set to 'asis' and the chunk option ‘comment‘ set
to ''.

https://yihui.org/knitr/hooks/#output-hooks
https://bookdown.org/yihui/rmarkdown/language-engines.html#javascript-and-css

20

ANENEN

{r comment="", results='asis', echo=FALSE}
Change the "output” hook to handle ANSI CSI SGR

old.hooks <- set_knit_hooks(knitr::knit_hooks)

Do the same with the warning, error, and message, and add styles for
them (alternatively we could have done output as part of this call too)

styles <- c¢(
getOption('fansi.style', dflt_css()), # default style
"PRE.fansi CODE {background-color: transparent;}",
"PRE.fansi-error {background-color: #DD5555;}",
"PRE.fansi-warning {background-color: #DDDD55;}",
"PRE.fansi-message {background-color: #EEEEEE;}"
)
old.hooks <- c(
old. hooks,
fansi::set_knit_hooks(
knitr::knit_hooks,
which=c('warning', 'error', 'message'),
style=styles
))

[NENEN

You may restore old hooks with the following chunk

Restore Hooks

Sy
do.call(knitr::knit_hooks$set, old.hooks)

[NENEN

End(Not run)

sgr_256

sgr_256 Show 8 Bit CSI SGR Colors

Description

Generates text with each 8 bit SGR code (e.g. the "###" in "38;5;###") with the background colored
by itself, and the foreground in a contrasting color and interesting color (we sacrifice some contrast

for interest as this is intended for demo rather than reference purposes).

Usage

sgr_256()

Value

character vector with SGR codes with background color set as themselves.

state_at_end 21

See Also

make_styles().

Examples

writeLines(sgr_256())

state_at_end Utilities for Managing CSI and OSC State In Strings

Description

state_at_end reads through strings computing the accumulated SGR and OSC hyperlinks, and
outputs the active state at the end of them. close_state produces the sequence that closes any
SGR active and OSC hyperlinks at the end of each input string. If normalize = FALSE (default), it
will emit the reset code "ESC[Om" if any SGR is present. It is more interesting for closing SGRs
if normalize = TRUE. Unlike state_at_end and other functions close_state has no concept of
carry: it will only emit closing sequences for states explicitly active at the end of a string.

Usage

state_at_end(
X,
warn = getOption(”fansi.warn”, TRUE),
term.cap = getOption(”fansi.term.cap”, dflt_term_cap()),
normalize = getOption("fansi.normalize"”, FALSE),
carry = getOption("fansi.carry”, FALSE)
)

close_state(
X,
warn = getOption(”fansi.warn”, TRUE),
normalize = getOption("fansi.normalize"”, FALSE)

)
Arguments
X a character vector or object that can be coerced to such.
warn TRUE (default) or FALSE, whether to warn when potentially problematic Con-

trol Sequences are encountered. These could cause the assumptions fansi
makes about how strings are rendered on your display to be incorrect, for exam-
ple by moving the cursor (see ?fansi). At most one warning will be issued per
element in each input vector. Will also warn about some badly encoded UTF-8
strings, but a lack of UTF-8 warnings is not a guarantee of correct encoding (use
validUTF8 for that).

22

term.cap

normalize

carry

Value

state_at_end

character a vector of the capabilities of the terminal, can be any combination of
"bright" (SGR codes 90-97, 100-107), "256" (SGR codes starting with "38;5" or
"48;5"), "truecolor" (SGR codes starting with "38;2" or "48;2"), and "all". "all"
behaves as it does for the ctl parameter: "all" combined with any other value
means all terminal capabilities except that one. fansi will warn if it encounters
SGR codes that exceed the terminal capabilities specified (see term_cap_test
for details). In versions prior to 1.0, fansi would also skip exceeding SGRs
entirely instead of interpreting them. You may add the string "old" to any other-
wise valid term. cap spec to restore the pre 1.0 behavior. "old" will not interact
with "all" the way other valid values for this parameter do.

TRUE or FALSE (default) whether SGR sequence should be normalized out
such that there is one distinct sequence for each SGR code. normalized strings
will occupy more space (e.g. "\033[31;42m" becomes "\033[31m\033[42m"),
but will work better with code that assumes each SGR code will be in its own
escape as crayon does.

TRUE, FALSE (default), or a scalar string, controls whether to interpret the
character vector as a "single document" (TRUE or string) or as independent el-
ements (FALSE). In "single document" mode, active state at the end of an input
element is considered active at the beginning of the next vector element, sim-
ulating what happens with a document with active state at the end of a line. If
FALSE each vector element is interpreted as if there were no active state when it
begins. If character, then the active state at the end of the carry string is carried
into the first element of x (see "Replacement Functions" for differences there).
The carried state is injected in the interstice between an imaginary zeroeth char-
acter and the first character of a vector element. See the "Position Semantics"
section of substr_ctl and the "State Interactions" section of ?fansi for de-
tails. Except for strwrap_ctl where NA is treated as the string "NA", carry will
cause NAs in inputs to propagate through the remaining vector elements.

character vector same length as x.

Control and Special Sequences

Control Sequences are non-printing characters or sequences of characters. Special Sequences are
a subset of the Control Sequences, and include CSI SGR sequences which can be used to change
rendered appearance of text, and OSC hyperlinks. See fansi for details.

Output Stability

Several factors could affect the exact output produced by fansi functions across versions of fansi,
R, and/or across systems. In general it is best not to rely on exact fansi output, e.g. by embed-

ding it in tests.

Width and grapheme calculations depend on locale, Unicode database version, and grapheme pro-
cessing logic (which is still in development), among other things. For the most part fansi (cur-
rently) uses the internals of base: :nchar(type="'width'), but there are exceptions and this may
change in the future.

strip_ctl 23

How a particular display format is encoded in Control Sequences is not guaranteed to be stable
across fansi versions. Additionally, which Special Sequences are re-encoded vs transcribed un-
touched may change. In general we will strive to keep the rendered appearance stable.

To maximize the odds of getting stable output set normalize_state to TRUE and type to "chars”
in functions that allow it, and set term. cap to a specific set of capabilities.

See Also

?fansi for details on how Control Sequences are interpreted, particularly if you are getting unex-
pected results, unhandled_ctl for detecting bad control sequences.

Examples

x <= c("\0@33[44mhello”, "\033[33mworld")

state_at_end(x)

state_at_end(x, carry=TRUE)

(close <- close_state(state_at_end(x, carry=TRUE), normalize=TRUE))
writeLines(paste@(x, close, " no style”))

strip_ctl Strip Control Sequences

Description

Removes Control Sequences from strings. By default it will strip all known Control Sequences,
including CSI/OSC sequences, two character sequences starting with ESC, and all CO control char-
acters, including newlines. You can fine tune this behavior with the ctl parameter.

Usage

strip_ctl(x, ctl = "all”, warn = getOption(”"fansi.warn”, TRUE), strip)

Arguments
X a character vector or object that can be coerced to such.
ctl character, any combination of the following values (see details):

e "nl": strip newlines.
e "c0": strip all other "CO" control characters (i.e. x01-x1f, x7F), except for
newlines and the actual ESC character.

* "sgr": strip ANSI CSI SGR sequences.
 "csi": strip all non-SGR csi sequences.

* "esc": strip all other escape sequences.

"all": all of the above, except when used in combination with any of the
above, in which case it means "all but" (see details).

24 strip_ctl

warn TRUE (default) or FALSE, whether to warn when potentially problematic Con-
trol Sequences are encountered. These could cause the assumptions fansi
makes about how strings are rendered on your display to be incorrect, for exam-
ple by moving the cursor (see ?fansi). At most one warning will be issued per
element in each input vector. Will also warn about some badly encoded UTF-8
strings, but a lack of UTF-8 warnings is not a guarantee of correct encoding (use
validUTF8 for that).

strip character, deprecated in favor of ctl.

Details

The ctl value contains the names of non-overlapping subsets of the known Control Sequences
(e.g. "csi" does not contain "sgr", and "c0" does not contain newlines). The one exception is
"all" which means strip every known sequence. If you combine "all" with any other options then
everything but those options will be stripped.

Value

character vector of same length as x with ANSI escape sequences stripped

Note

Non-ASCII strings are converted to and returned in UTF-8 encoding.

See Also

?fansi for details on how Control Sequences are interpreted, particularly if you are getting unex-
pected results, unhandled_ctl for detecting bad control sequences.

Examples

string <- "hello\@33k\@33[45p world\n\@33[31mgoodbye\a moon”
strip_ctl(string)

strip_ctl(string, c("nl"”, "c@", "sgr", "csi
strip_ctl(string, "sgr")

strip_ctl(string, c("c@", "esc"))

n

, "esc")) # equivalently

everything but C@ controls, we need to specify "nl”
in addition to "c@" since "nl" is not part of "c@"
as far as the ‘strip‘ argument is concerned
strip_ctl(string, c("all”, "nl", "c@"))

strsplit_ctl

25

strsplit_ctl

Control Sequence Aware Version of strsplit

Description

A drop-in replacement for base: :strsplit.

Usage
strsplit_ctl(
X}
split,
fixed = FALSE,
perl = FALSE,

useBytes = FALSE,

warn = getOption(”fansi.warn”, TRUE),

term.cap = getOption(”fansi.term.cap”, dflt_term_cap()),
ctl = "all",

normalize = getOption("fansi.normalize"”, FALSE),

carry = getOption("fansi.carry”, FALSE),
terminate = getOption("fansi.terminate”, TRUE)

)
Arguments

X a character vector, or, unlike base: :strsplit an object that can be coerced to
character.

split character vector (or object which can be coerced to such) containing regular
expression(s) (unless fixed = TRUE) to use for splitting. If empty matches occur,
in particular if split has length O, x is split into single characters. If split has
length greater than 1, it is re-cycled along x.

fixed logical. If TRUE match split exactly, otherwise use regular expressions. Has
priority over perl.

perl logical. Should Perl-compatible regexps be used?

useBytes logical. If TRUE the matching is done byte-by-byte rather than character-by-
character, and inputs with marked encodings are not converted. This is forced
(with a warning) if any input is found which is marked as "bytes"” (see Encoding).

warn TRUE (default) or FALSE, whether to warn when potentially problematic Con-

trol Sequences are encountered. These could cause the assumptions fansi
makes about how strings are rendered on your display to be incorrect, for exam-
ple by moving the cursor (see ?fansi). At most one warning will be issued per
element in each input vector. Will also warn about some badly encoded UTF-8
strings, but a lack of UTF-8 warnings is not a guarantee of correct encoding (use
validUTF8 for that).

26

term.cap

ctl

normalize

carry

terminate

strsplit_ctl

character a vector of the capabilities of the terminal, can be any combination of
"bright" (SGR codes 90-97, 100-107), "256" (SGR codes starting with "38;5" or
"48;5"), "truecolor" (SGR codes starting with "38;2" or "48;2"), and "all". "all"
behaves as it does for the ctl parameter: "all" combined with any other value
means all terminal capabilities except that one. fansi will warn if it encounters
SGR codes that exceed the terminal capabilities specified (see term_cap_test
for details). In versions prior to 1.0, fansi would also skip exceeding SGRs
entirely instead of interpreting them. You may add the string "old" to any other-
wise valid term. cap spec to restore the pre 1.0 behavior. "old" will not interact
with "all" the way other valid values for this parameter do.

character, which Control Sequences should be treated specially. Special treat-
ment is context dependent, and may include detecting them and/or computing
their display/character width as zero. For the SGR subset of the ANSI CSI se-
quences, and OSC hyperlinks, fansi will also parse, interpret, and reapply the
sequences as needed. You can modify whether a Control Sequence is treated
specially with the ctl parameter.

e "nl": newlines.

e "c0": all other "CO" control characters (i.e. 0x01-0x1f, 0x7F), except for
newlines and the actual ESC (0x1B) character.

e "sgr": ANSI CSI SGR sequences.

* "csi": all non-SGR ANSI CSI sequences.

e "url": OSC hyperlinks

e "osc": all non-OSC-hyperlink OSC sequences.
e "esc": all other escape sequences.

e "all": all of the above, except when used in combination with any of the
above, in which case it means "all but".

TRUE or FALSE (default) whether SGR sequence should be normalized out
such that there is one distinct sequence for each SGR code. normalized strings
will occupy more space (e.g. "\033[31;42m" becomes "\033[31m\033[42m"),
but will work better with code that assumes each SGR code will be in its own
escape as crayon does.

TRUE, FALSE (default), or a scalar string, controls whether to interpret the
character vector as a "single document" (TRUE or string) or as independent el-
ements (FALSE). In "single document" mode, active state at the end of an input
element is considered active at the beginning of the next vector element, sim-
ulating what happens with a document with active state at the end of a line. If
FALSE each vector element is interpreted as if there were no active state when it
begins. If character, then the active state at the end of the carry string is carried
into the first element of x (see "Replacement Functions" for differences there).
The carried state is injected in the interstice between an imaginary zeroeth char-
acter and the first character of a vector element. See the "Position Semantics"
section of substr_ctl and the "State Interactions" section of ?fansi for de-
tails. Except for strwrap_ctl where NA is treated as the string "NA", carry will
cause NAs in inputs to propagate through the remaining vector elements.

TRUE (default) or FALSE whether substrings should have active state closed to
avoid it bleeding into other strings they may be prepended onto. This does not

strsplit_ctl 27

stop state from carrying if carry = TRUE. See the "State Interactions" section of
?fansi for details.

Details

This function works by computing the position of the split points after removing Control Sequences,
and uses those positions in conjunction with substr_ctl to extract the pieces. This concept is
borrowed from crayon::col_strsplit. An important implication of this is that you cannot split
by Control Sequences that are being treated as Control Sequences. You can however limit which
control sequences are treated specially via the ctl parameters (see examples).

Value

Like base: :strsplit, with Control Sequences excluded.

Control and Special Sequences

Control Sequences are non-printing characters or sequences of characters. Special Sequences are
a subset of the Control Sequences, and include CSI SGR sequences which can be used to change
rendered appearance of text, and OSC hyperlinks. See fansi for details.

Output Stability

Several factors could affect the exact output produced by fansi functions across versions of fansi,
R, and/or across systems. In general it is best not to rely on exact fansi output, e.g. by embed-
ding it in tests.

Width and grapheme calculations depend on locale, Unicode database version, and grapheme pro-
cessing logic (which is still in development), among other things. For the most part fansi (cur-
rently) uses the internals of base: :nchar(type="'width'), but there are exceptions and this may
change in the future.

How a particular display format is encoded in Control Sequences is not guaranteed to be stable
across fansi versions. Additionally, which Special Sequences are re-encoded vs transcribed un-
touched may change. In general we will strive to keep the rendered appearance stable.

To maximize the odds of getting stable output set normalize_state to TRUE and type to "chars”
in functions that allow it, and set term. cap to a specific set of capabilities.

Bidirectional Text

fansi is unaware of text directionality and operates as if all strings are left to right (LTR). Using
fansi function with strings that contain mixed direction scripts (i.e. both LTR and RTL) may
produce undesirable results.

Note

The split positions are computed after both x and split are converted to UTF-8.

Non-ASCII strings are converted to and returned in UTF-8 encoding. Width calculations will not
work properly in R < 3.2.2.

28 strtrim_ctl

See Also

?fansi for details on how Control Sequences are interpreted, particularly if you are getting unex-
pected results, normalize_state for more details on what the normalize parameter does, state_at_end
to compute active state at the end of strings, close_state to compute the sequence required to close
active state.

Examples

strsplit_ctl(”\@33[31mhello\@33[42m world!"”, " ")

Splitting by newlines does not work as they are _Control

Sequences_, but we can use ‘ctl‘ to treat them as ordinary
strsplit_ctl(”\@33[31mhello\@33[42m\nworld!"”, "\n")
strsplit_ct1(”\033[31mhello\@33[42m\nworld!"”, "\n", ctl=c("all”, "nl"))

strtrim_ctl Control Sequence Aware Version of strtrim

Description

A drop in replacement for base: : strtrim, with the difference that all CO control characters such
as newlines, carriage returns, etc., are always treated as zero width, whereas in base it may vary
with platform / R version.

Usage
strtrim_ctl(
X’
width,
warn = getOption(”"fansi.warn”, TRUE),
ctl = "all"”,

normalize = getOption("fansi.normalize"”, FALSE),
carry = getOption("fansi.carry”, FALSE),
terminate = getOption("fansi.terminate”, TRUE)

strtrim2_ctl(
X,
width,
warn = getOption(”fansi.warn”, TRUE),
tabs.as.spaces = getOption(”fansi.tabs.as.spaces”, FALSE),
tab.stops = getOption("fansi.tab.stops”, 8L),
ctl = "all"”,
normalize = getOption("fansi.normalize"”, FALSE),
carry = getOption("”fansi.carry”, FALSE),
terminate = getOption("fansi.terminate”, TRUE)

strtrim_ctl

Arguments

X

width

warn

ctl

normalize

carry

29

a character vector, or an object which can be coerced to a character vector by
as.character.

Positive integer values: recycled to the length of x.

TRUE (default) or FALSE, whether to warn when potentially problematic Con-
trol Sequences are encountered. These could cause the assumptions fansi
makes about how strings are rendered on your display to be incorrect, for exam-
ple by moving the cursor (see ?fansi). At most one warning will be issued per
element in each input vector. Will also warn about some badly encoded UTF-8
strings, but a lack of UTF-8 warnings is not a guarantee of correct encoding (use
validUTF8 for that).

character, which Control Sequences should be treated specially. Special treat-
ment is context dependent, and may include detecting them and/or computing
their display/character width as zero. For the SGR subset of the ANSI CSI se-
quences, and OSC hyperlinks, fansi will also parse, interpret, and reapply the
sequences as needed. You can modify whether a Control Sequence is treated
specially with the ctl parameter.

e "nl": newlines.

e "c0": all other "CO" control characters (i.e. 0x01-0x1f, 0x7F), except for
newlines and the actual ESC (0x1B) character.

» "sgr": ANSI CSI SGR sequences.

¢ "csi": all non-SGR ANSI CSI sequences.

e "url": OSC hyperlinks

* "osc": all non-OSC-hyperlink OSC sequences.
* "esc": all other escape sequences.

e "all": all of the above, except when used in combination with any of the
above, in which case it means "all but".

TRUE or FALSE (default) whether SGR sequence should be normalized out
such that there is one distinct sequence for each SGR code. normalized strings
will occupy more space (e.g. "\033[31;42m" becomes "\033[31m\033[42m"),
but will work better with code that assumes each SGR code will be in its own
escape as crayon does.

TRUE, FALSE (default), or a scalar string, controls whether to interpret the
character vector as a "single document" (TRUE or string) or as independent el-
ements (FALSE). In "single document" mode, active state at the end of an input
element is considered active at the beginning of the next vector element, sim-
ulating what happens with a document with active state at the end of a line. If
FALSE each vector element is interpreted as if there were no active state when it
begins. If character, then the active state at the end of the carry string is carried
into the first element of x (see "Replacement Functions" for differences there).
The carried state is injected in the interstice between an imaginary zeroeth char-
acter and the first character of a vector element. See the "Position Semantics"
section of substr_ctl and the "State Interactions" section of ?fansi for de-
tails. Except for strwrap_ctl where NA is treated as the string "NA", carry will
cause NAs in inputs to propagate through the remaining vector elements.

30 strwrap_ctl

terminate TRUE (default) or FALSE whether substrings should have active state closed to
avoid it bleeding into other strings they may be prepended onto. This does not
stop state from carrying if carry = TRUE. See the "State Interactions" section of
?fansi for details.

tabs.as.spaces FALSE (default) or TRUE, whether to convert tabs to spaces. This can only be
set to TRUE if strip.spaces is FALSE.

tab.stops integer(1:n) indicating position of tab stops to use when converting tabs to spaces.
If there are more tabs in a line than defined tab stops the last tab stop is re-used.
For the purposes of applying tab stops, each input line is considered a line and
the character count begins from the beginning of the input line.

Details

strtrim2_ctl adds the option of converting tabs to spaces before trimming. This is the only
difference between strtrim_ctl and strtrim2_ctl.

Value

Like base: :strtrim, except that Control Sequences are treated as zero width.

Note

Non-ASCII strings are converted to and returned in UTF-8 encoding. Width calculations will not
work properly in R < 3.2.2.

See Also

?fansi for details on how Control Sequences are interpreted, particularly if you are getting unex-
pected results, normalize_state for more details on what the normalize parameter does, state_at_end
to compute active state at the end of strings, close_state to compute the sequence required to close
active state.

Examples

strtrim_ctl("\@33[42mHello world\@33[m", 6)

strwrap_ctl Control Sequence Aware Version of strwrap

Description

Wraps strings to a specified width accounting for Control Sequences. strwrap_ctl is intended
to emulate strwrap closely except with respect to the Control Sequences (see details for other
minor differences), while strwrap2_ctl adds features and changes the processing of whitespace.
strwrap_ctl is faster than strwrap.

strwrap_ctl

31

Usage
strwrap_ctl(
X,
width = 0.9 * getOption("width"),
indent = 0,
exdent = 0,
prefix = "",
simplify = TRUE,
initial = prefix,
warn = getOption(”fansi.warn”, TRUE),
term.cap = getOption(”fansi.term.cap”, dflt_term_cap()),
ctl = "all"”,
normalize = getOption("fansi.normalize"”, FALSE),
carry = getOption("fansi.carry”, FALSE),
terminate = getOption("fansi.terminate”, TRUE)
)
strwrap2_ctl(
X7
width = 0.9 * getOption("width"),
indent = 0,
exdent = 0,
prefix = "",
simplify = TRUE,
initial = prefix,
wrap.always = FALSE,
pad.end = "",
strip.spaces = !tabs.as.spaces,

tabs.as.spaces = getOption(”fansi.tabs.as.spaces”, FALSE),

tab.stops

= getOption("fansi.tab.stops"”, 8L),

warn = getOption(”fansi.warn”, TRUE),

term.cap = getOption(”fansi.term.cap”, dflt_term_cap()),
ctl = "all”,
normalize = getOption("fansi.normalize"”, FALSE),
carry = getOption("fansi.carry”, FALSE),
terminate = getOption("fansi.terminate”, TRUE)
)
Arguments
X a character vector, or an object which can be converted to a character vector by
as.character.
width a positive integer giving the target column for wrapping lines in the output.
indent a non-negative integer giving the indentation of the first line in a paragraph.
exdent a non-negative integer specifying the indentation of subsequent lines in para-

graphs.

32

prefix, initial

simplify

warn

term.cap

ctl

normalize

strwrap_ctl

a character string to be used as prefix for each line except the first, for which
initial is used.

a logical. If TRUE, the result is a single character vector of line text; otherwise,
it is a list of the same length as x the elements of which are character vectors of
line text obtained from the corresponding element of x. (Hence, the result in the
former case is obtained by unlisting that of the latter.)

TRUE (default) or FALSE, whether to warn when potentially problematic Con-
trol Sequences are encountered. These could cause the assumptions fansi
makes about how strings are rendered on your display to be incorrect, for exam-
ple by moving the cursor (see ?fansi). At most one warning will be issued per
element in each input vector. Will also warn about some badly encoded UTF-8
strings, but a lack of UTF-8 warnings is not a guarantee of correct encoding (use
validUTF8 for that).

character a vector of the capabilities of the terminal, can be any combination of
"bright" (SGR codes 90-97, 100-107), "256" (SGR codes starting with "38;5" or
"48;5™"), "truecolor" (SGR codes starting with "38;2" or "48;2"), and "all". "all"
behaves as it does for the ctl parameter: "all" combined with any other value
means all terminal capabilities except that one. fansi will warn if it encounters
SGR codes that exceed the terminal capabilities specified (see term_cap_test
for details). In versions prior to 1.0, fansi would also skip exceeding SGRs
entirely instead of interpreting them. You may add the string "old" to any other-
wise valid term. cap spec to restore the pre 1.0 behavior. "old" will not interact
with "all" the way other valid values for this parameter do.

character, which Control Sequences should be treated specially. Special treat-
ment is context dependent, and may include detecting them and/or computing
their display/character width as zero. For the SGR subset of the ANSI CSI se-
quences, and OSC hyperlinks, fansi will also parse, interpret, and reapply the
sequences as needed. You can modify whether a Control Sequence is treated
specially with the ctl parameter.
* "nl": newlines.
e "c0": all other "CO" control characters (i.e. 0x01-0x1f, 0x7F), except for
newlines and the actual ESC (0x1B) character.
e "sgr": ANSI CSI SGR sequences.
 "csi": all non-SGR ANSI CSI sequences.
e "url": OSC hyperlinks
* "osc": all non-OSC-hyperlink OSC sequences.
» "esc": all other escape sequences.
» "all": all of the above, except when used in combination with any of the
above, in which case it means "all but".

TRUE or FALSE (default) whether SGR sequence should be normalized out
such that there is one distinct sequence for each SGR code. normalized strings
will occupy more space (e.g. "\033[31;42m" becomes "\033[31m\033[42m"),
but will work better with code that assumes each SGR code will be in its own
escape as crayon does.

strwrap_ctl

carry

terminate

wrap.always

pad.end

strip.spaces

tabs.as.spaces

tab.stops

Details

33

TRUE, FALSE (default), or a scalar string, controls whether to interpret the
character vector as a "single document” (TRUE or string) or as independent el-
ements (FALSE). In "single document" mode, active state at the end of an input
element is considered active at the beginning of the next vector element, sim-
ulating what happens with a document with active state at the end of a line. If
FALSE each vector element is interpreted as if there were no active state when it
begins. If character, then the active state at the end of the carry string is carried
into the first element of x (see "Replacement Functions" for differences there).
The carried state is injected in the interstice between an imaginary zeroeth char-
acter and the first character of a vector element. See the "Position Semantics"
section of substr_ctl and the "State Interactions" section of ?fansi for de-
tails. Except for strwrap_ctl where NA is treated as the string "NA", carry will
cause NAs in inputs to propagate through the remaining vector elements.

TRUE (default) or FALSE whether substrings should have active state closed to
avoid it bleeding into other strings they may be prepended onto. This does not
stop state from carrying if carry = TRUE. See the "State Interactions" section of
?fansi for details.

TRUE or FALSE (default), whether to hard wrap at requested width if no word
breaks are detected within a line. If set to TRUE then width must be at least 2.

character(1L), a single character to use as padding at the end of each line until
the line is width wide. This must be a printable ASCII character or an empty
string (default). If you set it to an empty string the line remains unpadded.

TRUE (default) or FALSE, if TRUE, extraneous white spaces (spaces, new-
lines, tabs) are removed in the same way as base::strwrap does. When FALSE,
whitespaces are preserved, except for newlines as those are implicit boundaries
between output vector elements.

FALSE (default) or TRUE, whether to convert tabs to spaces. This can only be
set to TRUE if strip.spaces is FALSE.

integer(1:n) indicating position of tab stops to use when converting tabs to spaces.
If there are more tabs in a line than defined tab stops the last tab stop is re-used.
For the purposes of applying tab stops, each input line is considered a line and
the character count begins from the beginning of the input line.

strwrap2_ctl can convert tabs to spaces, pad strings up to width, and hard-break words if single
words are wider than width.

Unlike base::strwrap, both these functions will translate any non-ASCII strings to UTF-8 and return
them in UTF-8. Additionally, invalid UTF-8 always causes errors, and prefix and indent must be

scalar.

When replacing tabs with spaces the tabs are computed relative to the beginning of the input line,
not the most recent wrap point. Additionally,indent, exdent, initial, and prefix will be ignored
when computing tab positions.

Value

A character vector, or list of character vectors if simplify is false.

34 strwrap_ctl

Control and Special Sequences

Control Sequences are non-printing characters or sequences of characters. Special Sequences are
a subset of the Control Sequences, and include CSI SGR sequences which can be used to change
rendered appearance of text, and OSC hyperlinks. See fansi for details.

Graphemes

fansi approximates grapheme widths and counts by using heuristics for grapheme breaks that work
for most common graphemes, including emoji combining sequences. The heuristic is known to
work incorrectly with invalid combining sequences, prepending marks, and sequence interruptors.
fansi does not provide a full implementation of grapheme break detection to avoid carrying a copy
of the Unicode grapheme breaks table, and also because the hope is that R will add the feature
eventually itself.

The utf8 package provides a conforming grapheme parsing implementation.

Output Stability

Several factors could affect the exact output produced by fansi functions across versions of fansi,
R, and/or across systems. In general it is best not to rely on exact fansi output, e.g. by embed-
ding it in tests.

Width and grapheme calculations depend on locale, Unicode database version, and grapheme pro-
cessing logic (which is still in development), among other things. For the most part fansi (cur-
rently) uses the internals of base: :nchar (type="width"'), but there are exceptions and this may
change in the future.

How a particular display format is encoded in Control Sequences is not guaranteed to be stable
across fansi versions. Additionally, which Special Sequences are re-encoded vs transcribed un-
touched may change. In general we will strive to keep the rendered appearance stable.

To maximize the odds of getting stable output set normalize_state to TRUE and type to "chars”
in functions that allow it, and set term. cap to a specific set of capabilities.

Bidirectional Text

fansi is unaware of text directionality and operates as if all strings are left to right (LTR). Using
fansi function with strings that contain mixed direction scripts (i.e. both LTR and RTL) may
produce undesirable results.

Note

Non-ASCII strings are converted to and returned in UTF-8 encoding. Width calculations will not
work properly in R < 3.2.2.

For the strwrap* functions the carry parameter affects whether styles are carried across input
vector elements. Styles always carry within a single wrapped vector element (e.g. if one of the
input elements gets wrapped into three lines, the styles will carry through those three lines even if
carry=FALSE, but not across input vector elements).

https://cran.r-project.org/package=utf8

substr_ctl 35

See Also

?fansi for details on how Control Sequences are interpreted, particularly if you are getting unex-
pected results, normalize_state for more details on what the normalize parameter does, state_at_end
to compute active state at the end of strings, close_state to compute the sequence required to close
active state.

Examples

hello.1 <- "hello \@33[41mred\@33[49m world”
hello.2 <- "hello\t\@33[41mred\@33[49m\tworld”

strwrap_ctl(hello.1, 12)
strwrap_ctl(hello.2, 12)

In default mode strwrap2_ctl is the same as strwrap_ctl
strwrap2_ctl(hello.2, 12)

But you can leave whitespace unchanged, ‘warn®
set to false as otherwise tabs causes warning
strwrap2_ctl(hello.2, 12, strip.spaces=FALSE, warn=FALSE)

And convert tabs to spaces
strwrap2_ctl(hello.2, 12, tabs.as.spaces=TRUE)

If your display has 8 wide tab stops the following two
outputs should look the same
writeLines(strwrap2_ctl(hello.2, 80, tabs.as.spaces=TRUE))
writeLines(hello.2)

tab stops are NOT auto-detected, but you may provide
your own
strwrap2_ctl(hello.2, 12, tabs.as.spaces=TRUE, tab.stops=c(6, 12))

You can also force padding at the end to equal width
writeLines(strwrap2_ctl("hello how are you today”, 10, pad.end="."))

And a more involved example where we read the
NEWS file, color it line by line, wrap it to
25 width and display some of it in 3 columns
(works best on displays that support 256 color
SGR sequences)

NEWS <- readLines(file.path(R.home('doc'), 'NEWS'))

NEWS.C <- fansi_lines(NEWS, step=2) # color each line

W <- strwrap2_ctl(NEWS.C, 25, pad.end=" ", wrap.always=TRUE)
writeLines(c("", paste(W[1:20], W[100:120], W[200:2201), ""))

substr_ctl Control Sequence Aware Version of substr

36

Description

substr_ctl

substr_ctl is a drop-in replacement for substr. Performance is slightly slower than substr, and
more so for type = 'width'. Special Control Sequences will be included in the substrings to reflect
their format when as it was when part of the source string. substr2_ctl adds the ability to extract
substrings based on grapheme count or display width in addition to the normal character width, as
well as several other options.

Usage

substr_ctl(

X,

start,

stop,

warn = getOption(”fansi.warn”, TRUE),

term.cap = getOption(”fansi.term.cap”, dflt_term_cap()),

ctl = "all”,

normalize = getOption("fansi.normalize"”, FALSE),
carry = getOption("fansi.carry”, FALSE),
terminate = getOption("fansi.terminate”, TRUE)

substr2_ctl(

X)

start,

stop,

type = "chars”,
round = "start",

tabs.as.spaces = getOption(”fansi.tabs.as.spaces”, FALSE),

tab.stops = getOption("fansi.tab.stops”, 8L),
warn = getOption(”fansi.warn”, TRUE),

term.cap = getOption(”fansi.term.cap”, dflt_term_cap()),

ctl = "all”,

normalize = getOption("fansi.normalize"”, FALSE),
carry = getOption("fansi.carry”, FALSE),
terminate = getOption("fansi.terminate”, TRUE)

substr_ctl(

)

X’

start,

stop,

warn = getOption(”fansi.warn”, TRUE),

term.cap = getOption(”fansi.term.cap”, dflt_term_cap()),

ctl = "all"”,

normalize = getOption("fansi.normalize"”, FALSE),
carry = getOption("”fansi.carry”, FALSE),
terminate = getOption("fansi.terminate”, TRUE)
<- value

substr_ctl 37

substr2_ctl(

X,

start,

stop,

type = "chars”,
round = "start”,

tabs.as.spaces = getOption(”fansi.tabs.as.spaces”, FALSE),
tab.stops = getOption("fansi.tab.stops”, 8L),
warn = getOption(”fansi.warn”, TRUE),
term.cap = getOption(”fansi.term.cap”, dflt_term_cap()),
ctl = "all",
normalize = getOption("fansi.normalize"”, FALSE),
carry = getOption("fansi.carry”, FALSE),
terminate = getOption("fansi.terminate”, TRUE)
) <- value

Arguments

X a character vector or object that can be coerced to such.
start integer. The first element to be extracted or replaced.
stop integer. The first element to be extracted or replaced.

warn TRUE (default) or FALSE, whether to warn when potentially problematic Con-
trol Sequences are encountered. These could cause the assumptions fansi
makes about how strings are rendered on your display to be incorrect, for exam-
ple by moving the cursor (see ?fansi). At most one warning will be issued per
element in each input vector. Will also warn about some badly encoded UTF-8
strings, but a lack of UTF-8 warnings is not a guarantee of correct encoding (use
validUTF8 for that).

term.cap character a vector of the capabilities of the terminal, can be any combination of
"bright" (SGR codes 90-97, 100-107), "256" (SGR codes starting with "38;5" or
"48;5"), "truecolor" (SGR codes starting with "38;2" or "48;2"), and "all". "all"
behaves as it does for the ctl parameter: "all" combined with any other value
means all terminal capabilities except that one. fansi will warn if it encounters
SGR codes that exceed the terminal capabilities specified (see term_cap_test
for details). In versions prior to 1.0, fansi would also skip exceeding SGRs
entirely instead of interpreting them. You may add the string "old" to any other-
wise valid term. cap spec to restore the pre 1.0 behavior. "old" will not interact
with "all" the way other valid values for this parameter do.

ctl character, which Control Sequences should be treated specially. Special treat-
ment is context dependent, and may include detecting them and/or computing
their display/character width as zero. For the SGR subset of the ANSI CSI se-
quences, and OSC hyperlinks, fansi will also parse, interpret, and reapply the
sequences as needed. You can modify whether a Control Sequence is treated
specially with the ctl parameter.

e "nl": newlines.

38

normalize

carry

terminate

type

round

tabs.as.spaces

tab.stops

value

substr_ctl

e "c0": all other "CO" control characters (i.e. 0x01-0Ox1f, Ox7F), except for
newlines and the actual ESC (0x1B) character.

* "sgr": ANSI CSI SGR sequences.

 "csi": all non-SGR ANSI CSI sequences.

e "url": OSC hyperlinks

e "osc": all non-OSC-hyperlink OSC sequences.
» "esc": all other escape sequences.

» "all": all of the above, except when used in combination with any of the
above, in which case it means "all but".

TRUE or FALSE (default) whether SGR sequence should be normalized out
such that there is one distinct sequence for each SGR code. normalized strings
will occupy more space (e.g. "\033[31;42m" becomes "\033[31m\033[42m"),
but will work better with code that assumes each SGR code will be in its own
escape as crayon does.

TRUE, FALSE (default), or a scalar string, controls whether to interpret the
character vector as a "single document" (TRUE or string) or as independent el-
ements (FALSE). In "single document" mode, active state at the end of an input
element is considered active at the beginning of the next vector element, sim-
ulating what happens with a document with active state at the end of a line. If
FALSE each vector element is interpreted as if there were no active state when it
begins. If character, then the active state at the end of the carry string is carried
into the first element of x (see "Replacement Functions" for differences there).
The carried state is injected in the interstice between an imaginary zeroeth char-
acter and the first character of a vector element. See the "Position Semantics"
section of substr_ctl and the "State Interactions" section of ?fansi for de-
tails. Except for strwrap_ctl where NA is treated as the string "NA", carry will
cause NAs in inputs to propagate through the remaining vector elements.

TRUE (default) or FALSE whether substrings should have active state closed to
avoid it bleeding into other strings they may be prepended onto. This does not
stop state from carrying if carry = TRUE. See the "State Interactions" section of
?fansi for details.

character(1L) partial matching c("chars”, "width"”, "graphemes"), although
types other than "chars" only work correctly with R >=3.2.2. See ?nchar.

character(1L) partial matching c("start"”, "stop”, "both”, "neither"”), con-
trols how to resolve ambiguities when a start or stop value in "width" type
mode falls within a wide display character. See details.

FALSE (default) or TRUE, whether to convert tabs to spaces (and supress tab
related warnings). This can only be set to TRUE if strip.spaces is FALSE.

integer(1:n) indicating position of tab stops to use when converting tabs to spaces.
If there are more tabs in a line than defined tab stops the last tab stop is re-used.
For the purposes of applying tab stops, each input line is considered a line and
the character count begins from the beginning of the input line.

a character vector or object that can be coerced to such.

substr_ctl 39

Value

A character vector of the same length and with the same attributes as x (after possible coercion and
re-encoding to UTF-8).

Control and Special Sequences

Control Sequences are non-printing characters or sequences of characters. Special Sequences are
a subset of the Control Sequences, and include CSI SGR sequences which can be used to change
rendered appearance of text, and OSC hyperlinks. See fansi for details.

Position Semantics

When computing substrings, Normal (non-control) characters are considered to occupy positions in
strings, whereas Control Sequences occupy the interstices between them. The string:

"hello-\0@33[3Tmworld\@33[m!"

is interpreted as:

\@33[3Tm \@33[m

start and stop reference character positions so they never explicitly select for the interstitial Con-
trol Sequences. The latter are implicitly selected if they appear in interstices after the first character
and before the last. Additionally, because Special Sequences (CSI SGR and OSC hyperlinks) affect
all subsequent characters in a string, any active Special Sequence, whether opened just before a
character or much before, will be reflected in the state fansi prepends to the beginning of each
substring.

It is possible to select Control Sequences at the end of a string by specifying stop values past the
end of the string, although for Special Sequences this only produces visible results if terminate is
set to FALSE. Similarly, it is possible to select Control Sequences preceding the beginning of a string
by specifying start values less than one, although as noted earlier this is unnecessary for Special
Sequences as those are output by fansi before each substring.

Because exact substrings on anything other than character count cannot be guaranteed (e.g. as a
result of multi-byte encodings, or double display-width characters) substr2_ctl must make as-
sumptions on how to resolve provided start/stop values that are infeasible and does so via the
round parameter.

If we use "start" as the round value, then any time the start value corresponds to the middle of
a multi-byte or a wide character, then that character is included in the substring, while any similar
partially included character via the stop is left out. The converse is true if we use "stop" as the
round value. "neither" would cause all partial characters to be dropped irrespective whether they
correspond to start or stop, and "both" could cause all of them to be included. See examples.

A number of Normal characters such as combining diacritic marks have reported width of zero.
These are typically displayed overlaid on top of the preceding glyph, as in the case of "e\u301”

40

substr_ctl

forming "e" with an acute accent. Unlike Control Sequences, which also have reported width of
zero, fansi groups zero-width Normal characters with the last preceding non-zero width Normal
character. This is incorrect for some rare zero-width Normal characters such as prepending marks
(see "Output Stability" and "Graphemes").

Output Stability

Several factors could affect the exact output produced by fansi functions across versions of fansi,
R, and/or across systems. In general it is best not to rely on exact fansi output, e.g. by embed-
ding it in tests.

Width and grapheme calculations depend on locale, Unicode database version, and grapheme pro-
cessing logic (which is still in development), among other things. For the most part fansi (cur-
rently) uses the internals of base: :nchar(type="'width'), but there are exceptions and this may
change in the future.

How a particular display format is encoded in Control Sequences is not guaranteed to be stable
across fansi versions. Additionally, which Special Sequences are re-encoded vs transcribed un-
touched may change. In general we will strive to keep the rendered appearance stable.

To maximize the odds of getting stable output set normalize_state to TRUE and type to "chars”
in functions that allow it, and set term. cap to a specific set of capabilities.

Replacement Functions

Semantics for replacement functions have the additional requirement that the result appear as if it
is the input modified in place between the positions designated by start and stop. terminate
only affects the boundaries between the original substring and the spliced one, normalize only
affects the same boundaries, and tabs.as. spaces only affects value, and x must be ASCII only
or marked "UTF-8".

terminate = FALSE only makes sense in replacement mode if only one of x or value contains
Control Sequences. fansi will not account for any interactions of state in x and value.

The carry parameter causes state to carry within the original string and the replacement values
independently, as if they were columns of text cut from different pages and pasted together. String
values for carry are disallowed in replacement mode as it is ambiguous which of x or value they
would modify (see examples).

When in type = 'width' mode, it is only guaranteed that the result will be no wider than the
original x. Narrower strings may result if a mixture of narrow and wide graphemes cannot be
replaced exactly with the same width value, possibly because the provided start and stop values
(or the implicit ones generated for value) do not align with grapheme boundaries.

Graphemes

fansi approximates grapheme widths and counts by using heuristics for grapheme breaks that work
for most common graphemes, including emoji combining sequences. The heuristic is known to
work incorrectly with invalid combining sequences, prepending marks, and sequence interruptors.
fansi does not provide a full implementation of grapheme break detection to avoid carrying a copy
of the Unicode grapheme breaks table, and also because the hope is that R will add the feature
eventually itself.

The utf8 package provides a conforming grapheme parsing implementation.

https://cran.r-project.org/package=utf8

substr_ctl 41

Bidirectional Text

fansi is unaware of text directionality and operates as if all strings are left to right (LTR). Using
fansi function with strings that contain mixed direction scripts (i.e. both LTR and RTL) may
produce undesirable results.

Note

Non-ASCII strings are converted to and returned in UTF-8 encoding. Width calculations will not
work properly in R < 3.2.2.

If stop < start, the return value is always an empty string.

See Also

?fansi for details on how Control Sequences are interpreted, particularly if you are getting unex-
pected results, normalize_state for more details on what the normalize parameter does, state_at_end
to compute active state at the end of strings, close_state to compute the sequence required to close
active state.

Examples

substr_ct1(”\033[42mhello\@33[m world", 1, 9)
substr_ctl(”\033[42mhello\0@33[m world”, 3, 9)

Positions 2 and 4 are in the middle of the full width W (\uFF37) for
the ‘start® and ‘stop‘ positions respectively. Use ‘round®

to control result:

x <= "\uFF37n\uFF37"

X
substr2_ctl(x,
substr2_ctl(x,
substr2_ctl(x,
substr2_ctl(x,

, type='width', round='start')

, type='width', round='stop')

, type='width', round='neither"')
, type='width', round='both")

’

’

NN NN
B S S

’

We can specify which escapes are considered special:
substr_ct1(”\@33[31mhello\tworld”, 1, 6, ctl="sgr', warn=FALSE)
substr_ct1(”\033[31mhello\tworld”, 1, 6, ctl=c('all', 'c@'), warn=FALSE)

“carry" allows SGR to carry from one element to the next
substr_ctl(c(”\@33[33mhello”, "world"), 1, 3)
substr_ctl(c(”\033[33mhello”, "world"), 1, 3, carry=TRUE)
substr_ctl(c(”\@33[33mhello”, "world"), 1, 3, carry="\033[44m")

We can omit the termination
bleed <- substr_ctl(c("\@33[41mhello”, "world"), 1, 3, terminate=FALSE)

writeLines(bleed) # Style will bleed out of string
end <- "\@33[@m\n"
writeLines(end) # Stanch bleeding

Trailing sequences omitted unless ‘stop‘ past end.
substr_ct1(”"ABC\@33[42m", 1, 3, terminate=FALSE)
substr_ct1(”ABC\@33[42m", 1, 4, terminate=FALSE)

42 tabs_as_spaces

Replacement functions

Xx0<- x1 <- x2 <- x3 <- c("\033[42mABC", "\@33[34mDEF")
substr_ctl(x1, 2, 2) <= "_"

substr_ctl(x2, 2, 2) <- "\@33[m_"

substr_ctl(x3, 2, 2) <- "\@33[45m_"

writeLines(c(x@, end, x1, end, x2, end, x3, end))

With “carry = TRUE® strings look like original

x0<- x1 <- x2 <- x3 <- c¢("\033[42mABC", "\@33[34mDEF")
substr_ctl(x@, 2, 2, carry=TRUE) <- "_"

substr_ctl(x1, 2, 2, carry=TRUE) <- "\@33[m_"
substr_ctl(x2, 2, 2, carry=TRUE) <- "\@33[45m_"
writeLines(c(x@, end, x1, end, x2, end, x3, end))

Work-around to specify carry strings in replacement mode
x <- c("ABC", "DEF")

val <- "#"

x2 <= ¢("\033[42m", x)

val2 <- c(”\033[45m", rep_len(val, length(x)))
substr_ctl(x2, 2, 2, carry=TRUE) <- val2

(x <= x[-1D)

tabs_as_spaces Replace Tabs With Spaces

Description

Finds horizontal tab characters (0x09) in a string and replaces them with the spaces that produce
the same horizontal offset.

Usage

tabs_as_spaces(
X,
tab.stops = getOption("fansi.tab.stops”, 8L),
warn = getOption(”fansi.warn”, TRUE),

ctl = "all”
)
Arguments
X character vector or object coercible to character; any tabs therein will be re-
placed.
tab.stops integer(1:n) indicating position of tab stops to use when converting tabs to spaces.

If there are more tabs in a line than defined tab stops the last tab stop is re-used.
For the purposes of applying tab stops, each input line is considered a line and
the character count begins from the beginning of the input line.

tabs_as_spaces

warn

ctl

Details

43

TRUE (default) or FALSE, whether to warn when potentially problematic Con-
trol Sequences are encountered. These could cause the assumptions fansi
makes about how strings are rendered on your display to be incorrect, for exam-
ple by moving the cursor (see ?fansi). At most one warning will be issued per
element in each input vector. Will also warn about some badly encoded UTF-8
strings, but a lack of UTF-8 warnings is not a guarantee of correct encoding (use
validUTF8 for that).

character, which Control Sequences should be treated specially. Special treat-
ment is context dependent, and may include detecting them and/or computing
their display/character width as zero. For the SGR subset of the ANSI CSI se-
quences, and OSC hyperlinks, fansi will also parse, interpret, and reapply the
sequences as needed. You can modify whether a Control Sequence is treated
specially with the ctl parameter.

* "nl": newlines.

e "c0": all other "CO" control characters (i.e. 0x01-0Ox1f, Ox7F), except for
newlines and the actual ESC (0x1B) character.

e "sgr": ANSI CSI SGR sequences.

* "csi": all non-SGR ANSI CSI sequences.

e "url": OSC hyperlinks

* "osc": all non-OSC-hyperlink OSC sequences.
e "esc": all other escape sequences.

e "all": all of the above, except when used in combination with any of the
above, in which case it means "all but".

Since we do not know of a reliable cross platform means of detecting tab stops you will need to
provide them yourself if you are using anything outside of the standard tab stop every 8 characters

that is the default.

Value

character, x with tabs replaced by spaces, with elements possibly converted to UTF-8.

Note

Non-ASCII strings are converted to and returned in UTF-8 encoding. The ctl parameter only af-
fects which Control Sequences are considered zero width. Tabs will always be converted to spaces,
irrespective of the ctl setting.

See Also

?fansi for details on how Control Sequences are interpreted, particularly if you are getting unex-
pected results, unhandled_ctl for detecting bad control sequences.

44 term_cap_test

Examples

string <- "1\t12\t123\t1234\t12345678"'
tabs_as_spaces(string)
writelLines(
c(
mme |==mm | ===m- e g
tabs_as_spaces(string)
)
writelLines(
c(
il el B el e el B B B B B A
tabs_as_spaces(string, tab.stops=c(2, 3))
))
writeLines(
c(
e |-=mm- |--m-- I
tabs_as_spaces(string, tab.stops=c(2, 3, 8))
)

term_cap_test Test Terminal Capabilities

Description

Outputs ANSI CSI SGR formatted text to screen so that you may visually inspect what color capa-
bilities your terminal supports.

Usage

term_cap_test()

Details
The three tested terminal capabilities are:

* "bright" for bright colors with SGR codes in 90-97 and 100-107

* "256" for colors defined by "38;5;x" and "48;5;x" where x is in 0-255

* "truecolor" for colors defined by "38;2;x;y;z" and "48;x;y;x" where X, y, and z are in 0-255
Each of the color capabilities your terminal supports should be displayed with a blue background
and a red foreground. For reference the corresponding CSI SGR sequences are displayed as well.

You should compare the screen output from this function to getOption('fansi.term.cap', dflt_term_cap)
to ensure that they are self consistent.

By default fansi assumes terminals support bright and 256 color modes, and also tests for truecolor
support via the SCOLORTERM system variable.

Functions with the term.cap parameter like substr_ctl will warn if they encounter 256 or true
color SGR sequences and term. cap indicates they are unsupported as such a terminal may misin-
terpret those sequences. Bright codes and OSC hyperlinks in terminals that do not support them
will likely be silently ignored, so fansi functions do not warn about those.

to_html 45

Value

character the test vector, invisibly

See Also

dflt_term_cap, has_ctl.

Examples

term_cap_test()

to_html Convert Control Sequences to HTML Equivalents

Description

Interprets CSI SGR sequences and OSC hyperlinks to produce strings with the state reproduced with
SPAN elements, inline CSS styles, and A anchors. Optionally for colors, the SPAN elements may
be assigned classes instead of inline styles, in which case it is the user’s responsibility to provide a
style sheet. Input that contains special HTML characters ("<", ">", "&", ™", and "\"") likely should
be escaped with html_esc, and to_html will warn if it encounters the first two.

Usage

to_html(
X,
warn = getOption(”fansi.warn”, TRUE),
term.cap = getOption(”fansi.term.cap”, dflt_term_cap()),
classes = FALSE,
carry = getOption("fansi.carry”, TRUE)

)
Arguments

X a character vector or object that can be coerced to such.

warn TRUE (default) or FALSE, whether to warn when potentially problematic Con-
trol Sequences are encountered. These could cause the assumptions fansi
makes about how strings are rendered on your display to be incorrect, for exam-
ple by moving the cursor (see ?fansi). At most one warning will be issued per
element in each input vector. Will also warn about some badly encoded UTF-8
strings, but a lack of UTF-8 warnings is not a guarantee of correct encoding (use
validUTF8 for that).

term.cap character a vector of the capabilities of the terminal, can be any combination of

"bright" (SGR codes 90-97, 100-107), "256" (SGR codes starting with "38;5" or
"48;5"), "truecolor" (SGR codes starting with "38;2" or "48;2"), and "all". "all"
behaves as it does for the ctl parameter: "all" combined with any other value

46

classes

carry

to_html

means all terminal capabilities except that one. fansi will warn if it encounters
SGR codes that exceed the terminal capabilities specified (see term_cap_test
for details). In versions prior to 1.0, fansi would also skip exceeding SGRs
entirely instead of interpreting them. You may add the string "old" to any other-
wise valid term. cap spec to restore the pre 1.0 behavior. "old" will not interact
with "all" the way other valid values for this parameter do.

FALSE (default), TRUE, or character vector of either 16, 32, or 512 class names.
Character strings may only contain ASCII characters corresponding to letters,
numbers, the hyphen, or the underscore. It is the user’s responsibility to provide
values that are legal class names.

* FALSE: All colors rendered as inline CSS styles.

* TRUE: Each of the 256 basic colors is mapped to a class in form "fansi-
color-###" (or "fansi-bgcol-###" for background colors) where "###" is a
zero padded three digit number in 0:255. Basic colors specified with SGR
codes 30-37 (or 40-47) map to 000:007, and bright ones specified with 90-
97 (or 100-107) map to 008:015. 8 bit colors specified with SGR codes
38;5;### or 48;5;### map directly based on the value of "###". Implicitly,
this maps the 8 bit colors in 0:7 to the basic colors, and those in 8:15 to the
bright ones even though these are not exactly the same when using inline
styles. "truecolor"s specified with 38;2;#;#;# or 48;2;#;#;# do not map to
classes and are rendered as inline styles.

* character(16): The eight basic colors are mapped to the string values in
the vector, all others are rendered as inline CSS styles. Basic colors are
mapped irrespective of whether they are encoded as the basic colors or as 8-
bit colors. Sixteen elements are needed because there must be eight classes
for foreground colors, and eight classes for background colors. Classes
should be ordered in ascending order of color number, with foreground and
background classes alternating starting with foreground (see examples).

* character(32): Like character(16), except the basic and bright colors are
mapped.

* character(512): Like character(16), except the basic, bright, and all other
8-bit colors are mapped.

TRUE, FALSE (default), or a scalar string, controls whether to interpret the
character vector as a "single document" (TRUE or string) or as independent el-
ements (FALSE). In "single document" mode, active state at the end of an input
element is considered active at the beginning of the next vector element, sim-
ulating what happens with a document with active state at the end of a line. If
FALSE each vector element is interpreted as if there were no active state when it
begins. If character, then the active state at the end of the carry string is carried
into the first element of x (see "Replacement Functions" for differences there).
The carried state is injected in the interstice between an imaginary zeroeth char-
acter and the first character of a vector element. See the "Position Semantics"
section of substr_ctl and the "State Interactions" section of ?fansi for de-
tails. Except for strwrap_ctl where NA is treated as the string "NA", carry will
cause NAs in inputs to propagate through the remaining vector elements.

to_html 47

Details

Only "observable" formats are translated. These include colors, background-colors, and basic styles
(CSISGR codes 1-6, 8, 9). Style 7, the "inverse" style, is implemented by explicitly switching fore-
ground and background colors, if there are any. Styles 5-6 (blink) are rendered as "text-decoration”
but likely will do nothing in the browser. Style 8 (conceal) sets the color to transparent.

Parameters in OSC sequences are not copied over as they might have different semantics in the OSC
sequences than they would in HTML (e.g. the "id" parameter is intended to be non-unique in OSC).

Each element of the input vector is translated into a stand-alone valid HTML string. In particular,
any open tags generated by fansi are closed at the end of an element and re-opened on the subse-
quent element with the same style. This allows safe combination of HTML translated strings, for
example by pasteing them together. The trade-off is that there may be redundant HTML produced.
To reduce redundancy you can first collapse the input vector into one string, being mindful that very
large strings may exceed maximum string size when converted to HTML.

fansi-opened tags are closed and new ones open anytime the "observable" state changes. to_html
never produces nested tags, even if at times that might produce more compact output. While it would
be possible to match a CSI/OSC encoded state with nested tags, it would increase the complexity
of the code substantially for little gain.

Value

A character vector of the same length as x with all escape sequences removed and any basic ANSI
CSI SGR escape sequences applied via SPAN HTML tags.

Note

Non-ASCII strings are converted to and returned in UTF-8 encoding.

to_html always terminates as not doing so produces invalid HTML. If you wish for the last active
SPAN to bleed into subsequent text you may do so with e.g. sub("(?:)?$", "", x)
or similar. Additionally, unlike other functions, the default is carry = TRUE for compatibility with
semantics of prior versions of fansi.

See Also
Other HTML functions: html_esc(), in_html1(), make_styles()

Examples

to_html("hello\@33[31;42;1mworld\@33[m")
to_html("hello\@33[31;42;1mworld\0@33[m", classes=TRUE)

Input contains HTML special chars
x <- "<hello \@33[42m'there' \@33[34m &\033[m \"moon\"!"
writeLines(x)
Not run:
in_html(
c(
to_html(html_esc(x)), # Good
to_html(x) # Bad (warning)!

48

trimws_ctl

)

End(Not run)
Generate some class names for basic colors
classes <- expand.grid(
"myclass”,
c("fg", "bg"),
c("black”, "red", "green", "yellow”, "blue", "magenta”, "cyan", "white")
)
classes # order is important!
classes <- do.call(paste, c(classes, sep="-"))
We only provide 16 classes, so Only basic colors are
mapped to classes; others styled inline.
to_html(
"\0@33[94mhello\@33[m \0@33[31;42; 1mworld\@33[m",
classes=classes
)
Create a whole web page with a style sheet for 256 colors and
the colors shown in a table.
class.256 <- do.call(paste, c(expand.grid(c("fg", "bg"), 0:255), sep="-"))
sgr.256 <- sgr_256() # A demo of all 256 colors
writeLines(sgr.256[1:8]) # SGR formatting

Convert to HTML using classes instead of inline styles:
html.256 <- to_html(sgr.256, classes=class.256)
writeLines(html.256[1]) # No inline colors

Generate different style sheets. See ‘?make_styles‘ for details.
default <- make_styles(class.256)

mix <- matrix(c(.6,.2,.2, .2,.6,.2, .2,.2,.6), 3)

desaturated <- make_styles(class.256, mix)

writeLines(default[1:4])

writeLines(desaturated[1:4])

Embed in HTML page and diplay; only CSS changing

Not run:
in_html(html.256) # no CSS
in_html(html.256, css=default) # default CSS

in_html(html.256, css=desaturated) # desaturated CSS

End(Not run)

trimws_ctl Control Sequence Aware Version of trimws

Description

Removes any whitespace before the first and/or after the last non-Control Sequence character. Un-
like with the base: : trimws, only the default whitespace specification is supported.

trimws_ctl 49

Usage

trimws_ctl(
X,
which = c("both", "left"”, "right"),
whitespace = "[\t\r\nl",
warn = getOption(”"fansi.warn”, TRUE),
term.cap = getOption(”fansi.term.cap”, dflt_term_cap()),
ctl = "all"”,
normalize = getOption("fansi.normalize"”, FALSE)

Arguments

X a character vector

which a character string specifying whether to remove both leading and trailing whites-
pace (default), or only leading ("1left") or trailing ("right”). Can be abbrevi-
ated.

whitespace must be set to the default value, in the future it may become possible to change
this parameter.

warn TRUE (default) or FALSE, whether to warn when potentially problematic Con-
trol Sequences are encountered. These could cause the assumptions fansi
makes about how strings are rendered on your display to be incorrect, for exam-
ple by moving the cursor (see ?fansi). At most one warning will be issued per
element in each input vector. Will also warn about some badly encoded UTF-8
strings, but a lack of UTF-8 warnings is not a guarantee of correct encoding (use
validUTF8 for that).

term.cap character a vector of the capabilities of the terminal, can be any combination of
"bright" (SGR codes 90-97, 100-107), "256" (SGR codes starting with "38;5" or
"48;5"), "truecolor" (SGR codes starting with "38;2" or "48;2"), and "all". "all"
behaves as it does for the ctl parameter: "all" combined with any other value
means all terminal capabilities except that one. fansi will warn if it encounters
SGR codes that exceed the terminal capabilities specified (see term_cap_test
for details). In versions prior to 1.0, fansi would also skip exceeding SGRs
entirely instead of interpreting them. You may add the string "old" to any other-
wise valid term. cap spec to restore the pre 1.0 behavior. "old" will not interact
with "all" the way other valid values for this parameter do.

ctl character, which Control Sequences should be treated specially. Special treat-
ment is context dependent, and may include detecting them and/or computing
their display/character width as zero. For the SGR subset of the ANSI CSI se-
quences, and OSC hyperlinks, fansi will also parse, interpret, and reapply the
sequences as needed. You can modify whether a Control Sequence is treated
specially with the ctl parameter.

e "nl": newlines.

e "c0": all other "CO" control characters (i.e. 0x01-0Ox1f, Ox7F), except for
newlines and the actual ESC (0x1B) character.

e "sgr": ANSI CSI SGR sequences.

50 trimws_ctl

¢ "csi": all non-SGR ANSI CSI sequences.

e "url": OSC hyperlinks

e "osc": all non-OSC-hyperlink OSC sequences.

» "esc": all other escape sequences.

e "all": all of the above, except when used in combination with any of the

above, in which case it means "all but".

normalize TRUE or FALSE (default) whether SGR sequence should be normalized out
such that there is one distinct sequence for each SGR code. normalized strings
will occupy more space (e.g. "\033[31;42m" becomes "\033[31m\033[42m"),
but will work better with code that assumes each SGR code will be in its own
escape as crayon does.

Value

The input with white space removed as described.

Control and Special Sequences

Control Sequences are non-printing characters or sequences of characters. Special Sequences are
a subset of the Control Sequences, and include CSI SGR sequences which can be used to change
rendered appearance of text, and OSC hyperlinks. See fansi for details.

Output Stability

Several factors could affect the exact output produced by fansi functions across versions of fansi,
R, and/or across systems. In general it is best not to rely on exact fansi output, e.g. by embed-
ding it in tests.

Width and grapheme calculations depend on locale, Unicode database version, and grapheme pro-
cessing logic (which is still in development), among other things. For the most part fansi (cur-
rently) uses the internals of base: :nchar(type="'width"), but there are exceptions and this may
change in the future.

How a particular display format is encoded in Control Sequences is not guaranteed to be stable
across fansi versions. Additionally, which Special Sequences are re-encoded vs transcribed un-
touched may change. In general we will strive to keep the rendered appearance stable.

To maximize the odds of getting stable output set normalize_state to TRUE and type to "chars”
in functions that allow it, and set term. cap to a specific set of capabilities.

Examples

trimws_ctl(” \@33[31m\thello world\t\@33[39m ")

unhandled_ctl 51

unhandled_ctl Identify Unhandled Control Sequences

Description

Will return position and types of unhandled Control Sequences in a character vector. Unhandled
sequences may cause fansi to interpret strings in a way different to your display. See fansi for
details. Functions that interpret Special Sequences (CSI SGR or OSC hyperlinks) might omit bad
Special Sequences or some of their components in output substrings, particularly if they are leading
or trailing. Some functions are more tolerant of bad inputs than others. For example nchar_ctl
will not report unsupported colors because it only cares about counts or widths. unhandled_ctl
will report all potentially problematic sequences.

Usage

unhandled_ctl(x, term.cap = getOption("fansi.term.cap”, dflt_term_cap()))

Arguments

X character vector

term.cap character a vector of the capabilities of the terminal, can be any combination of
"bright" (SGR codes 90-97, 100-107), "256" (SGR codes starting with "38;5" or
"48;5"), "truecolor" (SGR codes starting with "38;2" or "48;2"), and "all". "all"
behaves as it does for the ctl parameter: "all" combined with any other value
means all terminal capabilities except that one. fansi will warn if it encounters
SGR codes that exceed the terminal capabilities specified (see term_cap_test
for details). In versions prior to 1.0, fansi would also skip exceeding SGRs
entirely instead of interpreting them. You may add the string "old" to any other-
wise valid term. cap spec to restore the pre 1.0 behavior. "old" will not interact
with "all" the way other valid values for this parameter do.

Details

To work around tabs present in input, you can use tabs_as_spaces or the tabs.as.spaces pa-
rameter on functions that have it, or the strip_ctl function to remove the troublesome sequences.
Alternatively, you can use warn=FALSE to suppress the warnings.

This is a debugging function that is not optimized for speed and the precise output of which might
change with fansi versions.

The return value is a data frame with five columns:

* index: integer the index in x with the unhandled sequence
e start: integer the start position of the sequence (in characters)

* stop: integer the end of the sequence (in characters), but note that if there are multiple ESC
sequences abutting each other they will all be treated as one, even if some of those sequences
are valid.

* error: the reason why the sequence was not handled:

52

unhandled_ctl

unknown-substring: SGR substring with a value that does not correspond to a known
SGR code or OSC hyperlink with unsupported parameters.

invalid-substr: SGR contains uncommon characters in ":<=>", intermediate bytes, other
invalid characters, or there is an invalid subsequence (e.g. "ESC[38;2m" which should
specify an RGB triplet but does not). OSCs contain invalid bytes, or OSC hyperlinks
contain otherwise valid OSC bytes in 0x08-0x0d.

exceed-term-cap: contains color codes not supported by the terminal (see term_cap_test).
Bright colors with color codes in the 90-97 and 100-107 range in terminals that do not
support them are not considered errors, whereas 256 or truecolor codes in terminals that
do not support them are. This is because the latter are often misinterpreted by terminals
that do not support them, whereas the former are typically silently ignored.

CSI/OSC: a non-SGR CSI sequence, or non-hyperlink OSC sequence.
CSI/OSC-bad-substr: a CSI or OSC sequence containing invalid characters.

malformed-CSI/OSC: a malformed CSI or OSC sequence, typically one that never en-
counters its closing sequence before the end of a string.

non-CSI/OSC: a non-CSI or non-OSC escape sequence, i.e. one where the ESC is fol-
lowed by something other than "[" or "]". Since we assume all non-CSI sequences are
only 2 characters long include the ESC, this type of sequence is the most likely to cause
problems as some are not actually two characters long.

malformed-ESC: a malformed two byte ESC sequence (i.e. one not ending in 0x40-0x7e).
CO0: a "C0" control character (e.g. tab, bell, etc.).

malformed-UTF8: illegal UTF8 encoding.

non-ASCII: non-ASCII bytes in escape sequences.

* translated: whether the string was translated to UTF-8, might be helpful in odd cases were
character offsets change depending on encoding. You should only worry about this if you
cannot tie out the start/stop values to the escape sequence shown.

¢ €sC:

Value

character the unhandled escape sequence

Data frame with as many rows as there are unhandled escape sequences and columns containing
useful information for debugging the problem. See details.

Note

Non-ASCII strings are converted to UTF-8 encoding.

See Also

?fansi for details on how Control Sequences are interpreted, particularly if you are getting unex-
pected results, unhandled_ctl for detecting bad control sequences.

Examples

string <-

c(

"\@33[41mhello world\@33[m"”, "foo\@33[22>m", "\@33[999mbar”,
"baz \033[31#3m", "a\@33[31k", "hello\@33m world”

)

unhandled_ctl

unhandled_ctl(string)

53

Index

+ HTML functions nchar_ctl, 6, 13, 51
html_esc, 9 normalize_state, 16, 28, 30, 35, 41
in_html, 10 nzchar_ctl (nchar_ctl), 13
make_styles, 11
to_html, 45 paste, 47
?fansi, 8, 14-17, 21-30, 32, 33, 35, 37, 38,
41,43, 45, 46, 49, 52 regular expression, 25

?nchar, 13, 38

. set_knit_hooks, 18
?normalize_state, 5

sgr_256, 20
state_at_end, 21, 28, 30, 35, 41

as.character, 29, 31 -
strip_ctl, 23, 51

base: :nchar, 6, 14 strsplit_ctl, 25
base: :strsplit, 25, 27 strtrim2_ctl (strtrim_ctl), 28
base::strtrim, 28, 30 strtrim_ctl, 28

strwrap2_ctl (strwrap_ctl), 30
strwrap_ctl, 17, 22, 26, 29, 30, 33, 38, 46
substr2_ctl (substr_ctl), 35
close_state, 28, 30, 35, 41 substr2_ctl<- (substr_ctl), 35
close_state (state_at_end), 21 substr_ctl, 17, 22, 26, 27, 29, 33, 35, 38, 46
substr_ctl<- (substr_ctl), 35

base: :strwrap, 33
base: :trimws, 48

dflt_css (dflt_term_cap), 2

dflt_term_cap, 2, 45 tabs_as_spaces, 4,42, 51
term_cap_test, 3, 4, 16, 22, 26, 32, 37, 44,

Encoding, 25 46,49, 51, 52
to_html, 9-12, 19, 45

fansi, 3, 14, 22, 27, 34, 39, 50, 51 to_html(), 79

fansi-package (fansi), 3 trimws_ctl, 48

fansi_lines, 7
unhandled_ctl, 8, 15, 17, 23, 24,43, 51, 52

has_ctl, 7, 19, 45
html_code_block, 9, 719 validUTF8, 8, 14, 16, 21, 24, 25, 29, 32, 37,

html_code_block(), 19 43,45,49
html_esc,9, 11, 12, 19, 45,47

in_html, 10, 10, 12,47

make_styles, 10, 11, 11,47
make_styles(), 11,21

NA, 13

54

	dflt_term_cap
	fansi
	fansi_lines
	has_ctl
	html_code_block
	html_esc
	in_html
	make_styles
	nchar_ctl
	normalize_state
	set_knit_hooks
	sgr_256
	state_at_end
	strip_ctl
	strsplit_ctl
	strtrim_ctl
	strwrap_ctl
	substr_ctl
	tabs_as_spaces
	term_cap_test
	to_html
	trimws_ctl
	unhandled_ctl
	Index

