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Overview

These notes give details on how the mid-p adjustment is done. Section 1 describes the mid-p
adjustment as it is done for the exact2x2 and uncondExact2x2 functions. Section 2 describes
the mid-p adjustment as implemented in the binomMeld.test function.

1 Usual Mid-p Adjustment for Two Binomial Distribu-

tions

The following is how the usual mid-p adjustment is done (for example in the exact2x2 and
uncondExact2x2 functions). The mid-p value has a long history (see e.g., Lancaster, 1961 or
the list of references in Hirji 2006, p. 50).

Let X = [X1, X2] with Xa ∼ Binom(na, θa) for a = 1, 2. Suppose we are interested in
β = b(θ), where b(θ) is some function of θ1 and θ2. Common examples are the di�erence,
βd = θ2 − θ1, the ratio, βr = θ2/θ1, and the odds ratio, βor = {θ2(1− θ1)} / {θ1(1− θ2)}.

Let T (X) be some test statistic, where larger values are most extreme with respect to the
null hypothesis. Let Θ0 be the set of all possible values of [θ1, θ2] under the null hypothesis.
Then a valid (i.e., exact) p-value is

p(x,Θ0) = sup
θ∈Θ0

Prθ [T (X) ≥ T (x)] .

These exact p-values are necessarily conservative because for most θ ∈ Θ0 we have
Prθ [p(X,Θ0) ≤ α] < α. A less conservative approach, but one that is no longer valid (i.e.,
no longer exact), is to use a mid-p value. The mid-p value is

pmid(x,Θ0) = sup
θ∈Θ0

{
Prθ [T (X) > T (x)] +

1

2
Prθ [T (X) = T (x)]

}
.

It is convenient to write Θ0 in terms of β. For example,

Θ0 = {θ : b(θ) = β0}

For this example, instead of writing the null hypothesis as H0 : θ ∈ Θ0, we write it in terms
of β = b(θ) as H0 : β = β0. We are generally interested in three classes of hypotheses:
two-sided hypotheses,

H0 : β = β0

H1 : β ̸= β0
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or one of the one-sided hypotheses,

Alternative is Less Alternative is Greater

H0 : β ≥ β0 H0 : β ≤ β0

H1 : β < β0 H1 : β > β0.

Let pts(x, β0) be the p-value for testing the two-sided hypotheses, let pU(x, β0) be the p-value
for testing H0 : β ≥ β0, and pL(x, β0) be the p-value for testing H0 : β ≤ β0.

Then we can create 100(1 − α)% con�dence regions as the set of β0 value that fail to
reject the associated null hypothesis. For example,

Cts(x, 1− α) = {β : pts(x, β) > α}

gives a �two-sided� con�dence region. The region may not be an interval if the p-value
function is not unimodal. This problem occurs with Fisher's exact test (the Fisher-Irwin
version, or `minlike' version). For central con�dence regions we take the union of the one-
sided con�dence regions, in other words,

Cc(x, 1− α) = CL(x, 1− α/2) ∪ CU(x, 1− α/2),

where CL and CU are the one-sided con�dence regions,

CL(x, 1− α/2) = {β : pL(x, β) > α/2}

and

CU(x, 1− α/2) = {β : pU(x, β) > α/2} .

If the regions are intervals, and we let L(x, 1−α/2) = minCL(x, 1−α/2) and U(x, 1−α/2) =
maxCU(x, 1− α/2), then the central interval is

Cc(x, 1− α) = {L(x, 1− α/2), U(x, 1− α/2)} .

For the mid-p con�dence regions, we replace the p-values with the mid-p values.

2 Mid-p Modi�cations with Binomial Melding

For a single binomial response, the mid p-value and associated central con�dence interval
can be represented using con�dence distribution random variables. Suppose that the exact
central 100(1-α) percent binomial con�dence interval for a single binomial random variable
(i.e., the default in binom.test) is (L(1− α/2), U(1− α/2)). Then the lower and upper
con�dence distribution random variables are respectively, WL = L(A1) and WU = U(A2),
where A1 and A2 and independent uniform random variables. Let B be an independent
Bernoulli random variable with parameter 1/2. Then the 95 percent central mid-p con�dence
interval for the binomial parameter is the middle 95 percent of the distribution of W =
B ∗WL + (1−B) ∗WU . This is shown in the appendix of Fay and Brittain (2016).
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The way the midp=TRUE option is done in binomMeld.test is to replace the upper and
lower con�dence distribution random variables in the usual melding equations, with the
�mid-p� con�dence distribution random variable (CD-RV) analogous to W for each group.
For example if the lower and upper CD-RVs for group 1 are W1L and W1U , then the mid-p
CD-RV is W1 = B1 ∗W1L + (1 − B1) ∗W1U , where B1 is a Bernoulli random variable with
parameter 1/2. The mid-p CD-RV W2 is de�ned analogously. It is fairly simple to program a
Monte Carlo estimate of the �mid� p-value and associated con�dence interval. Let g(θ1, θ2) be
the parameter of interest (e.g., g(θ1, θ2) = θ2 − θ1 for parmtype="di�erence"). The one-sided
p-values are the proportion of times that g(W1,W2) is ≤ nullparm (for alternative="greater")
or ≥ nullparm (for alternative="less"). The con�dence intervals just use the appropriate
quantiles of the Monte Carlo values of g(W1,W2).

When nmc=0, we estimate the one-sided p-values with numeric integration. Concep-
tually, the usual melded p-value might be, for example when alternative="greater" and
nullparm= β0:

Pr[g(W1U ,W2L) ≤ β0] =
∫
Pr[g(W1, w2) ≤ β0|W2 = w2]Pr[W2 = w2]

where W1U is the upper con�dence distribution random variable (CD-RV) for group 1 and
W2L is the lower CD-RV for group 2. These CD-RVs are beta distributions (see Fay, Proschan,
and Brittain, 2015). For the mid-p version, we use

Pr[g(W1,W2) ≤ β0] =
1

4

∫
Pr[g(W1L, w2) ≤ β0|W2L = w]Pr[W2L = w] +

1

4

∫
Pr[g(W1L, w2) ≤ β0|W2U = w]Pr[W2U = w] +

1

4

∫
Pr[g(W1U , w2) ≤ β0|W2L = w]Pr[W2L = w] +

1

4

∫
Pr[g(W1U , w2) ≤ β0|W2U = w]Pr[W2U = w].

The integration simpli�es for special cases (e.g., when x1 = 0), and in other case we just
use the integrate function. For the con�dence intervals we solve for the β0 values such that
the p-values equal either α (for one-sided alternatives) or α/2 (for two-sided alternatives),
where alpha=1-conf.level. If there is no β0 value that solves that, we set the con�dence limit
to the appropriate extreme.

It is known that the p-values that match the melded con�dence intervals for two inde-
pendent binomial observations exactly equal the one-sided Fisher's exact p-values (see Fay,
et al, 2015). For example,

> x1<-6

> n1<-12

> x2<-15

> n2<- 17

> exact2x2(matrix(c(x2,n2-x2,x1,n1-x1),2,2), tsmethod="central", midp=FALSE)

Central Fisher's Exact Test

3



data: matrix(c(x2, n2 - x2, x1, n1 - x1), 2, 2)

p-value = 0.06506

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.9119249 89.4167455

sample estimates:

odds ratio

6.924704

> binomMeld.test(x1,n1,x2,n2, parmtype="oddsratio", midp=FALSE)

melded binomial test for oddsratio

data: sample 1:(6/12), sample 2:(15/17)

proportion 1 = 0.5, proportion 2 = 0.88235, p-value = 0.06506

alternative hypothesis: true oddsratio is not equal to 1

95 percent confidence interval:

0.909023 106.265540

sample estimates:

odds ratio {p2(1-p1)}/{p1(1-p2)}

7.5

Note, the con�dence intervals for the two methods are not equal.
This does not necessarily mean that the midp versions give equivalent p-values:

> x1<-6

> n1<-12

> x2<-15

> n2<- 17

> exact2x2(matrix(c(x2,n2-x2,x1,n1-x1),2,2), tsmethod="central", midp=TRUE)

Central Fisher's Exact Test (mid-p version)

data: matrix(c(x2, n2 - x2, x1, n1 - x1), 2, 2)

p-value = 0.03578

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

1.12685 62.05021

sample estimates:

odds ratio

6.924704

> binomMeld.test(x1,n1,x2,n2, parmtype="oddsratio", midp=TRUE)

melded binomial test for oddsratio, mid-p version
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data: sample 1:(6/12), sample 2:(15/17)

proportion 1 = 0.5, proportion 2 = 0.88235, p-value = 0.02899

alternative hypothesis: true oddsratio is not equal to 1

95 percent confidence interval:

1.214721 66.148301

sample estimates:

odds ratio {p2(1-p1)}/{p1(1-p2)}

7.5
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