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McNemar's Original Test

Consider paired binary response data. For example, suppose you have twins randomized to
two treatment groups (Test and Control) then tested on a binary outcome (pass or fail).
There are 4 possible outcomes for each pair: (a) both twins fail, (b) the twin in the control
group fails and the one in the test group passes, (c) the twin on the test group fails and the
one in the control group passes, or (d) both twins pass. Here is a table where the of the
number of sets of twins falling in each of the four categories are denoted a,b,c and d:

Test
Control Fail Pass
Fail a b
Pass c d

In order to test if the treatment is helpful, we use only the number discordant pairs of
twins, b and c, since the other pairs of twins tell us nothing about whether the treatment is
helpful or not. McNemar's test is

Q ≡ Q(b, c) =
(b− c)2

b+ c

which for large samples is distributed like a chi-squared distribution with 1 degree of freedom.
A closer approximation to the chi-squared distributin uses a continuity correction:

QC ≡ QC(b, c) =
(|b− c| − 1)2

b+ c

In R this test is given by the function `mcnemar.test'.
Case-control data may be analyzed this way as well. Suppose you have a set of people

with some rare disease (e.g., a certain type of cancer); these are called the cases. For this
design you match each case with a contol who is as similar as feasible on all important
covariates except the exposure of interest. Here is a table2:

Control
Case Exposed Not Exposed
Exposed a b
Not Exposed c d

1The June 29, 2020 version added a section with powerPaired2x2. The April 25, 2016 version added

Appendix A, and moved the �rst appendix to Appendix B.
2Table was incorrect in original version.
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For this case as well we can use Q or QC to test for no association between cases/control
status and exposure status.

For either design, we can estimate the odds ratio by b/c, which is the maximum likelihood
estimate (see Breslow and Day, 1980, p. 165).

Consider some hypothetical data (chosen to highlight some points):

Test
Control Fail Pass
Fail 21 9
Pass 2 12

When we perform McNemar's test with the continuity correction we get

> x<-matrix(c(21,9,2,12),2,2)

> mcnemar.test(x)

McNemar's Chi-squared test with continuity correction

data: x

McNemar's chi-squared = 3.2727, df = 1, p-value = 0.07044

Without the continuity correction we get

> mcnemar.test(x,correct=FALSE)

McNemar's Chi-squared test

data: x

McNemar's chi-squared = 4.4545, df = 1, p-value = 0.03481

Since the inferences change so much, and are on either side of the traditional 0.05 cuto�
of signi�cance, it would be nice to have an exact version of the test to be clearer about
signi�cance at the 0.05 level. We study that in the next section.

Exact Version of McNemar's Test

After conditioning on the total number of discordant pairs, b+ c, we can treat the problem
as B ∼ Binomial(b+c, θ), where B is the random variable associated with b. The odds ratio
from the unconditional model is equal to the odds associated with θ from the conditional
model,3

Odds Ratio ≡ ϕ =
θ

1− θ
(1)

(Breslow and Day, 1980, p. 166). See Appendix A for full explanation of equation 1. Under
the null hypothesis θ = .5. Since it is easy to perform exact tests on a binomial parameter,

3Revision to April 25, 2016 version.
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we can perform exact versions of McNemar's test by using the `binom.exact' function of the
package `exactci' then transform the results into odds ratios via equation 1. This is how the
calculations are done in the `exact2x2' function when paired=TRUE. The `alternative' and
the `tsmethod' options work in the way one would expect. So although McNemar's test was
developed as a two-sided test, we can easily get one-sided exact McNemar-type Tests. For
two-sided tests we can get three di�erent versions of the two-sided exact McNemar's test
using the three `tsmethod' options. In Appendix B we show that all three two-sided methods
give the same p-value and they all are equivalent to the exact version of McNemar's test.
So there is only one de�ned exact McNemar's test. The di�erence between the 'tsmethod'
options is in the calculation of the con�dence intervals. The default is to use 'central'
con�dence intervals so that the probability that the true parameter is less than the lower
100(1− α)% con�dence interval is guaranteed to be less than or equal to α/2, and similarly
for the upper con�dence interval. These guarantees on each tail are not true for the 'minlike'
and 'blaker' two-sided con�dence intervals.

Using x de�ned earlier, here is the exact McNemar's test with the central con�dence
intervals:

> mcnemar.exact(x)

Exact McNemar test (with central confidence intervals)

data: x

b = 2, c = 9, p-value = 0.06543

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.02336464 1.07363844

sample estimates:

odds ratio

0.2222222

Power for Exact McNemar Test

McNemar's test is for paired binary observations. Let Yi1 and Yi2 be the responses from the
ith pair, where Yi1 is the response from the control individual in the pair, and Yi2 is the
response from the test individual in the pair. Let the response of the ith pair be [Yi1, Yi2].
Then there are only 4 types of pairs according to their responses, type a: (0, 0), type b:
(0, 1), type c: (1, 0), and type d: (1, 1), which align with the 4 cells in the 2 × 2 table. Let
πa, πb, πc and πd denote the probability of observing a pair of each type.

The paired exact McNemar test (including one-sided versions) only uses the pairs of type
b and c. So for the power calculation we only need πb, πc, and the total number of pairs.

The function powerPaired2x2 calculates the power of the exact McNemar test.
Here is the result when πb = .5 and πc = .3 and the number of pairs equals 100:

> powerPaired2x2(pb=.5,pc=.3,npairs=100)
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Power for McNemar's Exact Test

power = 0.5693122

npairs = 100

pb = 0.5

pc = 0.3

sig.level = 0.05

alternative = two.sided

nullOddsRatio = 1

NOTE: errbound= 1e-06

Appendix A: Relationship of Odds for Conditional Data

and Odds Ratio for Unconditional Data

Let Yij be the jth binary response from the ith pair. For example, Yi1 could be the binary
response from the twin randomized to the control group in the ith set of twins, and Yi2 could
be the binary response from the twin randomized to the test group in the ith set of twins.
Let πij = Pr[Yij = 1]. Then the odds ratio (i.e., ratio of odds(test)/odds(control)) for the
ith set of twins is

ϕi =
πi2/(1− πi2)

πi1/(1− πi1)
=

πi2(1− πi1)

πi1(1− πi2)
.

Suppose we have a logistic model with the log odds modeled as

log

(
πij

1− πij

)
= µi + I[j = 2]β,

where I[j = 2] = 1 when j = 2 and 0 when j = 1, µi is a random twin e�ect, and
exp(β) is the e�ect of the test compared to the control on the log odds. Under this model,
ϕi ≡ ϕ = exp(β). In other words, the odds ratio does not change from twin set to twin set.

Now consider conditioning on Yi1 + Yi2 = 1, so that we only consider the pairs with one
positive response. Then the probability that the test member passes under the above model
conditioning that one member of the twin set passes is

θi = Pr[Yi2 = 1|Yi1 + Yi2 = 1, µi, β]

=
Pr[Yi2 = 1 and Yi1 = 0|µi, β]

Pr[(Yi2 = 1 and Yi1 = 0) or (Yi2 = 0 and Yi1 = 1) |µi, β]

=
πi2(1− πi1)

πi2(1− πi1) + πi1(1− πi2)
.

Then the odds that the test member in the ith set passes, conditioning on only one member
passing, is

θi
1− θi

=
πi2(1− πi1)

πi1(1− πi2)
= ϕ.
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By algebra, we can rewrite the conditional probability for the ith set, θi, in terms of the
conditional odds as

θi =
ϕ

1 + ϕ
.

So θi does not depend on i and we write θi ≡ θ.
If we take n = b + c of these conditional pairs, then B =

∑
i:Yi1+Yi2=1 Yi2 is binomial

with parameters n and θ, where θ = Pr[Yi2 = 1|Yi1 + Yi2 = 1] is the probability of a postive
response in a test member of a set with only one positive response. Then if we transform that
probability into an odds we get θ/(1 − θ) = ϕ. In other words, the odds of the conditional
random variable is the same as the odds ratio of interest under the full unconditional model.

Appendix B: Equivalence of two-sided p-values

For the two-sided exact tests, the sample space is B ∈ {0, 1, . . . , b + c}. Let n = b + c and
let the binomial mass function under the null hypothesis of θ = .5 (i.e., ϕ = 1) be

f(x) =

(
n
x

)(
1

2

)x (1
2

)n−x

= 2−n

(
n
x

)
.

The exact McNemar p-value is de�ned as

pe =
∑

x:Q(x,n−x)≥Q(b,c)

f(x)

Here are the de�nitions of the exact p-values for the three two-sided methods. For the
`central' method, it is

pc = min
{
1, 2 ∗min

(
F (x), F̄ (x)

)}
where F (x) =

∑x
i=0 f(i) and F̄ (x) = 1−F (x− 1) and F (−1) = 0. For the `minlike' method

the p-value is

pm =
∑

x:f(x)≤f(b)

f(x)

For the `blaker' method the p-value is

pb =
∑

x:min{F (x),F̄ (x)}≤min{F (b),F̄ (b)}
f(x)

To show the equivalence of pe, pc, pm, and pb we �rst rewrite the summation indices in pe.
Note that

Q(x, n− x) =
4(x− n

2
)2

n

so the summation indices may be rewritten as:

{x : Q(x, n− x) ≥ Q(b, c)} =
{
x :

∣∣∣∣x− n

2

∣∣∣∣ ≥ ∣∣∣∣b− n

2

∣∣∣∣} (2)
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In other words, pe is just the sum of f(x) for all x that are as far away or further from the
center (n/2) as b. Note that f(x) is increasing for all x < n/2 and decreasing for all x > n/2.
Further note that f(x) = f(n − x) for all x so that F (x) = F̄ (n − x) for all x. Thus, it
makes sense that all 4 p-values are equivalent for the case when θ = .5.

Here are the details showing the equivalence. We break up the possibilities into three
cases:

Case 1, b = n/2: In this case, from equation 2, the whole sample space is covered so pe = 1.
Also F (x) = F̄ (x) > 1/2 so pc = 1. Because the unique peak of the f(x) function
happens at n/2 when n is even (n must be even when b = n/2), we can see that pm = 1.

Also because of that peak, min
{
F (x), F̄ (x)

}
is maximized at b = n/2 and pb = 1.

Case 2, b < n/2: In this case, the set of all x described by equation 2 is all x ≤ b and all

n− x ≥ n− b so that pe = F (b) + F̄ (n− b). Also, min
{
F (x), F̄ (x)

}
is F (x), and

F (x) =
∑

i:f(i)≤f(x) and i<n/2

f(i).

Further,
F (x) = F̄ (n− x) =

∑
i:f(i)≤f(x) and i>n/2

f(i).

So pc = 2 ∗ F (b) = F (b) + F̄ (n− b) =
∑

i:f(i)≤f(b) f(i) which is equivalent to pm. Also

since F (x) = F̄ (n − x) we can see that all values of x with min
{
F (x), F̄ (x)

}
≤ F (b)

will also give the same p-value and pb is equivalent to the other p-values.

Case 3, b > n/2: By symmetry, we can show through similar arguments to Case 2 that all
4 p-values are equivalent.
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