Package ‘etree’

October 13, 2022
Title Classification and Regression with Structured and Mixed-Type
Data
Version 0.1.0

Description Implementation of Energy Trees, a statistical model to perform
classification and regression with structured and mixed-type data. The
model has a similar structure to Conditional Trees, but brings in Energy
Statistics to test independence between variables that are possibly
structured and of different nature. Currently, the package covers functions
and graphs as structured covariates. It builds upon 'partykit' to
provide functionalities for fitting, printing, plotting, and predicting with
Energy Trees. Energy Trees are described in Giubilei et al. (2022)
<arXiv:2207.04430>.

License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.0
Depends R (>=3.7.0)

Imports brainGraph, cluster, energy, fda.usc (>= 2.0.0), igraph,
NetworkDistance, parallel, partykit, survival, TDA, usedist

Suggests knitr, MLmetrics, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3
VignetteBuilder knitr

URL https://github.com/ricgbl/etree

BugReports https://github.com/ricgbl/etree/issues
NeedsCompilation no
Author Riccardo Giubilei [aut, cre] (<https://orcid.org/0000-0002-1674-4886>),
Tullia Padellini [aut],
Pierpaolo Brutti [aut],
Marco Brandi [ctb],
Gabriel Nespoli [ctb],
Torsten Hothorn [ctb] (<https://orcid.org/0000-0001-8301-0471>,

1

https://arxiv.org/abs/2207.04430
https://github.com/ricgbl/etree
https://github.com/ricgbl/etree/issues
https://orcid.org/0000-0002-1674-4886
https://orcid.org/0000-0001-8301-0471

(partykit author)),
Achim Zeileis [ctb] (<https://orcid.org/0000-0003-0918-3766>, (partykit
author))

Maintainer Riccardo Giubilei <riccardogbl@gmail.com>
Repository CRAN
Date/Publication 2022-07-16 08:30:02 UTC

R topics documented:

etree-package

etree-package L. L e 2
data_clIs e s 3
data_rego e 3
dist_comp e e e e 4
eforest L e 6
CIIEE o e e e e e e e 9
etree-methods 12
BIIEE-SIZE e e e e e 15
nodeapply e 15
nodeids L e e e e 17
plotetree 18
predicteforest e e e e 20
predictetree e e e e e e 21

Index 22

etree-package etree: Classification and Regression With Structured and Mixed-Type
Data
Description

Implementation of Energy Trees, a statistical model to perform classification and regression with
structured and mixed-type data. The model has a similar structure to Conditional Trees, but brings in
Energy Statistics to test independence between variables that are possibly structured and of different
nature. Currently, the package covers functions and graphs as structured covariates. It builds upon
“partykit’ to provide functionalities for fitting, printing, plotting, and predicting with Energy Trees.

https://orcid.org/0000-0003-0918-3766

data_cls 3

data_cls Classification toy dataset

Description

A simple dataset containing simulated values for a nominal response variable and four covariates
of both mixed and partially structured type. The data generation process is based on Example 4.7
(”Signal shape classification”, pages 73-77) from Saito (1994).

Usage

data_cls

Format

List with two elements: covs, which is a list containing the covariates, and resp, which is a factor
of length 150 representing the response variable. The response variable is divided into three classes
whose labels are cylinder (Cyl), bell (Bel) and funnel (Fun). The four covariates in covs all have
length 150 and are characterized as follows:

* Nominal: Cyl observations are given level 1 with probability 0.8 and levels 2 and 3 with
probability 0.1 each, Bel observations are given level 2 with probability 0.8 and levels 1 and
3 with probability 0.1 each, Fun observations are given level 3 with probability 0.8 and levels
1 and 2 with probability 0.1 each;

* Numeric: coefficients for one of the basis used to perform the B-splines expansion of the
curves that are in turn specified as in Saito (1994);

* Functional: curves as specified in Saito (1994);

* Graphs: Erd\"os-R\’enyi graphs with connection probability 0.10 for Cyl observations, 0.125
for Bel observations, 0.15 for Fun observations.
References

Saito, N. (1994). Local feature extraction and its applications using a library of bases (Doctoral
dissertation, Yale University).

data_reg Regression toy dataset

Description

A simple dataset containing simulated values for a numeric response variable and four covariates
of both mixed and partially structured type. The data generation process is based on Section 5
("Example: synthetic data”) from Serban and Wasserman (2005).

4 dist_comp

Usage

data_reg

Format

List with two elements: covs, which is a list containing the covariates, and resp, which is a numeric
vector of length 200 representing the response variable. The response variable is specified as in Ser-
ban and Wasserman (2005). The four covariates in covs all have length 200 and are characterized
as follows:

* Nominal: level O for observations having negative response variable, level 1 otherwise;

* Numeric: coefficients for one of the basis used to perform the B-splines expansion of the
curves that are in turn specified as in Serban and Wasserman (2005);

» Functional: curves as specified in Serban and Wasserman (2005), with 50 observations coming
from each of the four curve shapes;

* Graphs: Erd\"os-R\’enyi graphs with connection probability given by a transformation of the
response variable obtained standardizing between 0.2 and 0.8 its value after adding a normally
distributed noise with mean 0 and standard deviation 7.

References

Serban, N., and Wasserman, L. (2005). CATS: clustering after transformation and smoothing. Jour-
nal of the American Statistical Association, 100(471), 990-999.

dist_comp Distances

Description

Compute pairwise distances starting from single objects containing the original univariate observa-
tions.

Usage
dist_comp(x, 1p = 2)

Arguments

X Object containing the original univariate observations. Currently available types
and the form they need to have to be correctly recognized are the following:
* Logical: logical vectors;
e Numeric: numeric or integer vectors;
¢ Nominal: factors;
* Functions: objects of class "fdata";
* Graphs: (lists of) objects of class "igraph”;

dist_comp 5

* Persistence diagrams: (lists of) objects with attributes(x)$names == "diagram”.
See Details to find out which distance is used in each case.

1p Integer specifying which norm should be used to compute the distances for func-
tional data.

Details
The distances used in each case are the following:

* Logical: Euclidean distance, implemented via dist();

* Numeric: Euclidean distance, implemented via dist();

* Nominal: Gower’s distance, implemented via daisy();

* Functions: LP-norm, implemented via metric.1lp() with default options;

* Graphs: Edge Difference distance (Hammond et al., 2013), implemented via nd.edd();

* Persistence diagrams: Wasserstein distance, implemented via wasserstein() with default
options;

Value

Object of class "dist"” containing the pairwise distances.

References

D. K. Hammond, Y. Gur, and C. R. Johnson (2013). Graph diffusion distance: A difference mea-
sure for weighted graphs based on the graph laplacian exponential kernel. In 2013 IEEE Global
Conference on Signal and Information Processing, pages 419-422.

Examples

Number of observations
nobs <- 10

Logical
obj <- as.logical(rbinom(nobs, 1, 0.5))
d <- dist_comp(obj)

Integer
obj <- rpois(nobs, 5)
d <- dist_comp(obj)

Numeric
obj <- rnorm(nobs)
d <- dist_comp(obj)

Factors
obj <- factor(letters[1:nobs])
d <- dist_comp(obj)

6 eforest

Functional data
obj <- fda.usc::rproc2fdata(nobs, seq(@, 1, len = 100), sigma = 1)
d <- dist_comp(obj)

Graphs
obj <- lapply(1:nobs, function(j) igraph::sample_gnp(100, ©.2))
d <- dist_comp(obj)

Persistence diagrams

x <- lapply(rep(100, nobs), function(np) TDA::circleUnif(np))
obj <- lapply(x, TDA::ripsDiag, maxdimension = 1, maxscale = 3)
d <- dist_comp(obj)

eforest Energy Forests

Description

Fits an Energy Forest, in the form of either a bagging of Energy Trees or a Random Energy Forest,
depending on the value of the random_covs parameter.

Usage

eforest(
response,
covariates,
weights = NULL,
ntrees = 100,
ncores = 1L,
minbucket = 1,
alpha = 1,
R = 500,
split_type = "cluster”,
coeff_split_type = "test”,
p_adjust_method = "fdr",
perf_metric = NULL,

random_covs = "auto”,
verbose = FALSE
)
Arguments
response Response variable, an object of class either "factor” or "numeric” (for classi-
fication and regression, respectively).
covariates Set of covariates. Must be provided as a list, where each element is a different

variable. Currently available types and the form they need to have to be correctly
recognized are the following:

eforest 7

e Numeric: numeric or integer vectors;

¢ Nominal: factors;

* Functions: objects of class "fdata";

* Graphs: (lists of) objects of class "igraph”.

Each element (i.e., variable) in the covariates list must have the same length(),
which corresponds to the sample size.

weights Optional vector of non-negative integer-valued weights to be used in the fitting
process. If not provided, all observations are assumed to have weight equal to 1.

ntrees Number of Energy Trees to grow, i.e., the number of bootstrap samples to be
generated and used for fitting.

ncores Number of cores to use, i.e., at most how many child processes will be run
simultaneously. Must be exactly 1 on Windows (which uses the master process).
ncores corresponds to mc. cores in mclapply (), which is actually used to grow
the single Energy Trees in a parallel fashion.

minbucket Positive integer specifying the minimum number of observations that each ter-
minal node must contain. Default is 5.

alpha Nominal level controlling the probability of type I error in the Energy tests of
independence used for variable selection. Default is 0.05.

R Number of replicates employed to approximate the sampling distribution of the
test statistic in every Energy test of independence. Default is 1000.

split_type Splitting method used when the selected covariate is structured. It has two possi-
ble values: "coeff" for feature vector extraction, and "cluster” for clustering.
See Details for further information.

coeff_split_type
Method to select the split point for the chosen component when the selected
covariate is structured and split_type = "coeff". It has two possible values:
"test", in which case Energy tests of independence are used, and "traditional”,
to employ traditional methods (Gini index for classification and RSS for regres-
sion). See Details for further information.

p_adjust_method
Multiple-testing adjustment method for P-values, which can be set to any of the
values provided by p.adjust.methods. Default is "fdr" for False Discovery
Rate.

perf_metric Performance metric that is used to compute the Out-Of-Bag score. If NULL,
default choices are used: Balanced Accuracy for classification and Root Mean
Square Percentage Error for regression. See Details for further information and
possible alternatives.

random_covs Size of the random subset of covariates to choose from at each split. If set
to NULL, all the covariates are considered each time, resulting in a bagging of
Energy Trees. When random_covs is an integer greater than 1 and less than the
total number of covariates, the model is a Random Energy Forest. By default,
it is equal to "auto”, which implies the square root of the number of covariates
for classification, or one third of the number of covariates for regression (in both
cases, rounded down to the nearest integer).

verbose Logical indicating whether to print a one-line notification for the conclusion of
each tree’s fitting process.

8 eforest

Details

eforest() generates ntrees bootstrap samples and then calls etree() on each of them. Then, it
computes the Out-Of-Bag (OOB) score using the performance metric defined through perf_metric.

For classification, possible values of perf_metric are "BAcc” and "WBAcc”. Both are general
enough to be used in multiclass classification problems, still producing sensible results in the case of
binary classification. The two options are based on the calculation of a ground performance metric,
the Balanced Accuracy, which is defined as the arithmetic mean between Sensitivity and Specificity.
In this framework, Balanced Accuracy is computed using a "One vs. All" approach, i.e., considering
one class at a time: positive instances are those belonging to that class, and negatives are the ones
belonging to any other class. Then, the "One vs. All" Balanced Accuracies obtained by considering
each class must be averaged. When perf_metric = "BAcc” (default for classification tasks), the
average is arithmetic. When perf_metric = "WBAcc"”, the average is weighted using class sizes,
hence giving more importance to the "One vs. All" Balanced Accuracy of larger classes.

For regression, the default value of perf_metric is "RMSPE", namely, Root Mean Square Percent-
age Error. Other available options are c("MAE", "MAPE", "MedianAE", "MedianAPE", "MSE",
"NRMSE", "RAE","RMSE", "RMLSE"). Each of these name points to the corresponding homonym
function from the package MLmetrics, whose documentation provides more information about their
definition.

Value

Object of class "eforest” with three elements: 1) ensemble, which is a list gathering all the
fitted trees; 2) oob_score, an object of class "numeric” representing the OOB score computed
using the performance metric defined through perf_metric; 3) perf_metric, an object of class
"character” returning the performance metric used for computations.

Examples

Covariates

set.seed(123)

nobs <- 100

cov_num <- rnorm(nobs)

cov_nom <- factor(rbinom(nobs, size = 1, prob = 0.5))

cov_gph <- lapply(1:nobs, function(j) igraph::sample_gnp(100, 0.2))
cov_fun <- fda.usc::rproc2fdata(nobs, seq(@, 1, len = 100), sigma = 1)
cov_list <- list(cov_num, cov_nom, cov_gph, cov_fun)

Response variable(s)

resp_reg <- cov_num * 2

y <= round((cov_num - min(cov_num)) / (max(cov_num) - min(cov_num)), @)
resp_cls <- factor(y)

Regression #i#

eforest_fit <- eforest(response = resp_reg, covariates = cov_list, ntrees = 12)
print(eforest_fit$ensemble[[1]])

plot(eforest_fit$ensemble[[1]])

mean((resp_reg - predict(eforest_fit)) * 2)

etree 9

Classification

eforest_fit <- eforest(response = resp_cls, covariates = cov_list, ntrees = 12)
print(eforest_fit$ensemble[[12]])

plot(eforest_fit$ensemble[[12]1])

table(resp_cls, predict(eforest_fit))

etree Energy Tree

Description

Fits an Energy Tree for classification or regression.

Usage

etree(
response,
covariates,
weights = NULL,
minbucket = 5,
alpha = 0.05,
R = 1000,
split_type = "coeff",
coeff_split_type = "test”,
p_adjust_method = "fdr",
random_covs = NULL

)
Arguments
response Response variable, an object of class either "factor” or "numeric” (for classi-
fication and regression, respectively).
covariates Set of covariates. Must be provided as a list, where each element is a different
variable. Currently available types and the form they need to have to be correctly
recognized are the following:
e Numeric: numeric or integer vectors;
¢ Nominal: factors;
* Functions: objects of class "fdata";
* Graphs: (lists of) objects of class "igraph”.
Each element (i.e., variable) in the covariates list must have the same length(),
which corresponds to the sample size.
weights Optional vector of non-negative integer-valued weights to be used in the fitting

process. If not provided, all observations are assumed to have weight equal to 1.

10 etree

minbucket Positive integer specifying the minimum number of observations that each ter-
minal node must contain. Default is 5.

alpha Nominal level controlling the probability of type I error in the Energy tests of
independence used for variable selection. Default is 0.05.

R Number of replicates employed to approximate the sampling distribution of the
test statistic in every Energy test of independence. Default is 1000.

split_type Splitting method used when the selected covariate is structured. It has two possi-
ble values: "coeff" for feature vector extraction, and "cluster” for clustering.
See Details for further information.

coeff_split_type
Method to select the split point for the chosen component when the selected
covariate is structured and split_type = "coeff". It has two possible values:
"test”, in which case Energy tests of independence are used, and "traditional”,
to employ traditional methods (Gini index for classification and RSS for regres-
sion). See Details for further information.

p_adjust_method
Multiple-testing adjustment method for P-values, which can be set to any of the
values provided by p.adjust.methods. Default is "fdr" for False Discovery
Rate.

random_covs Size of the random subset of covariates to choose from at each split. If set to
NULL (default), all the covariates are considered each time.

Details

etree() is the main function of the homonym package. It allows implementing Energy Trees by
simply specifying the response variable, the set of covariates, and possibly some other parameters.
The function is specified in the same way regardless of the task type: the choice between classifica-
tion and regression is automatically made depending on the nature of the response variable.

Energy Trees (Giubilei et al., 2022) are a recursive partitioning tree-based model built upon Con-
ditional Trees (Hothorn et al., 2006). At each step of Energy Trees’ iterative procedure, an Energy
test of independence (Szekely et al., 2007) is performed between the response variable and each
of the J covariates. If the test of global independence (defined as the intersection of the J tests of
partial independence) is not rejected at the significance level set by alpha, the recursion is stopped;
otherwise, the covariate most associated with the response in terms of P-value is selected for split-
ting. When the covariate is traditional (i.e, numeric or nominal), an Energy test of independence
is performed for each possible split point, and the one yielding the strongest association with the
response is chosen. When the selected covariate is structured, the split procedure is defined by the
value of split_type, and possibly by that of coeff_split_type.

split_type specifies the splitting method for structured covariates. It has two possible values:

e "coeff": in this case, feature vector extraction is used to transform the structured selected
covariate into a set of numeric components using a representation that is specific to its type.
Auvailable transformations of such a kind are cubic B-spline expansions for functional data and
shell distributions (Carmi et al., 2007) for graphs - obtained through k-cores (Seidman, 1983),
s-cores (Eidsaa and Almaas, 2013), and d-cores (Giatsidis et al., 2013), for binary, weighted,
and directed graphs, respectively. Then, the component most associated with the response is
selected using Energy tests of independence (Szekely et al., 2007), and the split point for that
component is chosen using the method defined by coeff_split_type;

etree

11

"cluster”: in this case, the observed values for the structured selected covariate are used
within a Partitioning Around Medoids (Kaufmann and Rousseeuw, 1987) step to split obser-
vations into the two kid nodes. Medoids calculation and units assignment are performed using
pam(). Distances are specific to each type of variable (see dist_comp() for details).

coeff_split_type defines the method to select the split point for the chosen component of the
selected structured covariate if and only if split_type = "coeff". It has two possible values:

Value

"test"”: an Energy test of independence (Szekely et al., 2007) is performed for each possible
split point of the chosen component, and the one yielding the strongest association with the
response is selected;

"traditional”: the split point for the chosen component is selected as the one minimizing
the Gini index (for classification) or the RSS (for regression) in the two kid nodes.

n o on

An object of class "etree”, "constparty”, and "party”. It stores all the information about the
fitted tree. Its elements can be individually accessed using the $ operator. Their names and content
are the following:

node: a partynode object representing the basic structure of the tree;

data: a list containing the data used for the fitting process. Traditional covariates are in-
cluded in their original form, while structured covariates are stored in the form of components
if split_type = "coeff” or as a factor whose levels go from 1 to the total number of obser-
vations if split_type = "cluster”;

fitted: a data. frame whose number of rows coincides with the sample size. It includes the
fitted terminal node identifiers (in " (fitted)") and the response values of all observations (in
"(response)");

terms: a terms object;

names (optional): names of the nodes in the tree. They can be set using a character vector:
if its length is smaller than the number of nodes, the remaining nodes have missing names; if
its length is larger, exceeding names are ignored.

References

R. Giubilei, T. Padellini, P. Brutti (2022). Energy Trees: Regression and Classification With Struc-
tured and Mixed-Type Covariates. arXiv preprint. https://arxiv.org/pdf/2207.04430.pdf.

S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir (2007). A model of internet topology
using k-shell decomposition. Proceedings of the National Academy of Sciences, 104(27):11150-
11154,

M. Eidsaa and E. Almaas (2013). S-core network decomposition: A generalization of k-core anal-
ysis to weighted networks. Physical Review E, 88(6):062819.

C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis (2013). D-cores: measuring collaboration of
directed graphs based on degeneracy. Knowledge and information systems, 35(2):311-343.

T. Hothorn, K. Hornik, and A. Zeileis (2006). Unbiased recursive partitioning: A conditional infer-
ence framework. Journal of Computational and Graphical Statistics, 15(3):651-674.

12 etree-methods

L. Kaufmann and P. Rousseeuw (1987). Clustering by means of medoids. Data Analysis based on
the L1-Norm and Related Methods, pages 405-416.

S. B. Seidman (1983). Network structure and minimum degree. Social networks, 5(3):269-287.

G. J. Szekely, M. L. Rizzo, and N. K. Bakirov (2007). Measuring and testing dependence by
correlation of distances. The Annals of Statistics, 35(6):2769-2794.

See Also

ctree() for the partykit implementation of Conditional Trees (Hothorn et al., 2006).

Examples

Covariates

nobs <- 100

cov_num <- rnorm(nobs)

cov_nom <- factor(rbinom(nobs, size = 1, prob = 0.5))

cov_gph <- lapply(1:nobs, function(j) igraph::sample_gnp(100, 0.2))
cov_fun <- fda.usc::rproc2fdata(nobs, seq(@, 1, len = 100), sigma = 1)
cov_list <- list(cov_num, cov_nom, cov_gph, cov_fun)

Response variable(s)

resp_reg <- cov_num * 2

y <= round((cov_num - min(cov_num)) / (max(cov_num) - min(cov_num)), @)
resp_cls <- factor(y)

Regression #i#

etree_fit <- etree(response = resp_reg, covariates = cov_list)
print(etree_fit)

plot(etree_fit)

mean((resp_reg - predict(etree_fit)) * 2)

Classification #i#

etree_fit <- etree(response = resp_cls, covariates = cov_list)
print(etree_fit)

plot(etree_fit)

table(resp_cls, predict(etree_fit))

etree-methods Methods for "etree" objects

Description

Methods for objects of class "etree".

etree-methods 13

Usage
S3 method for class 'etree'
print(
X,
FUN = NULL,
digits = getOption("digits"”) - 4,
header = NULL,

footer = TRUE,

)

S3 method for class 'etree'
length(x)

S3 method for class 'etree'
depth(x, root = FALSE, ...)

S3 method for class 'etree'
width(x, ...)

S3 method for class 'etree'

x[i, ...]
S3 method for class 'etree'
xCli, ...]]
Arguments
X Object of class "etree”.
FUN Function to be applied to nodes.
digits Number of digits to be printed.
header Header to be printed.
footer Footer to be printed.
Additional arguments.
root Logical indicating whether the root node should be counted in depth() or not
(default).
i Integer specifying the root of the subtree to extract.
Value

The print() method generates a textual representation of the tree. length() returns the number
of nodes in the tree, depth () the depth of the tree and width() the number of terminal nodes. The
subset methods extract subtrees starting from a given node.

14 etree-methods

Functions

* print.etree: Generates textual representation of the tree.
e length.party: Number of nodes in the tree.

* depth.party: Depth of the three.

e width.party: Number of terminal nodes.

* [.etree: Extract subtrees.

e [[.etree: Extract subtrees.

Examples

Covariates

nobs <- 100

cov_num <- rnorm(nobs)

cov_nom <- factor(rbinom(nobs, size = 1, prob = 0.5))

cov_gph <- lapply(1:nobs, function(j) igraph::sample_gnp(100, 0.2))
cov_fun <- fda.usc::rproc2fdata(nobs, seq(@, 1, len = 100), sigma = 1)
cov_list <- list(cov_num, cov_nom, cov_gph, cov_fun)

Response variable
resp_reg <- cov_num * 2

Fit
etree_fit <- etree(response = resp_reg, covariates = cov_list)

Print
print(etree_fit)

Number of nodes in the tree
length(etree_fit)

Depth of the tree
depth(etree_fit)

Number of terminal nodes in the tree
width(etree_fit)

Extract subtrees
etree_fit[2]
etree_fit[[2]]

etree-size

15

etree-size Size of Energy Trees

Description

Depth and width of an Energy Tree.

Usage
depth(x, ...)

width(x, ...)

Arguments

X An object of class etree.

Additional arguments.

Value

depth() returns the depth of the tree and width() gives the number of terminal nodes.

Functions

* depth: Depth of the three.

e width: Number of terminal nodes in the tree.

nodeapply Apply functions over nodes

Description

Returns a list of values obtained by applying a function to "etree” or "partynode” objects.

Usage

nodeapply(obj, ids = 1, FUN = NULL, ...)

S3 method for class 'partynode'’
nodeapply(obj, ids = 1, FUN = NULL, ...)

S3 method for class 'etree'
nodeapply(obj, ids = 1, FUN = NULL, by_node = TRUE, ...)

16 nodeapply

Arguments
obj Object of class "etree” or "partynode”.
ids Integer vector of node identifiers to apply over.
FUN Function to be applied to nodes. By default, the node itself is returned.
Additional arguments.
by_node Logical indicating whether FUN should be applied to subsets of "partynode”
objects (default) or not, in which case it is applied to subsets of "etree"” objects.
Details

The method for "partynode” objects apply function FUN to all nodes with node identifiers in ids.
The method for "etree” objects by default calls the nodeapply method on the corresponding node
slot. If by_node is FALSE, it is applied to the "etree"” object with root node ids.

Value

A list of results whose length is given by length(ids).

Methods (by class)

* partynode: nodeapply() method for objects of class "partynode".

* etree: nodeapply() method for objects of class "etree".

Examples

Covariates

nobs <- 100

cov_num <- rnorm(nobs)

cov_nom <- factor(rbinom(nobs, size = 1, prob = 0.5))

cov_gph <- lapply(1:nobs, function(j) igraph::sample_gnp(100, 0.2))
cov_fun <- fda.usc::rproc2fdata(nobs, seq(@, 1, len = 100), sigma = 1)
cov_list <- list(cov_num, cov_nom, cov_gph, cov_fun)

Response variable
resp_reg <- cov_num * 2

Fit
etree_fit <- etree(response = resp_reg, covariates = cov_list)

Get pvalues of inner nodes

tnodes <- nodeids(etree_fit, terminal = TRUE)

nodes <- 1:max(tnodes)

inodes <- nodes[-tnodes]

nodeapply(etree_fit, ids = inodes, FUN = function(n) n$info$pvalue)

nodeids 17

nodeids Extract node identifiers.

Description

Extract unique identifiers from inner and terminals nodes of "etree” or "partynode” objects.

Usage
nodeids(obj, ...)

S3 method for class 'partynode'
nodeids(obj, from = NULL, terminal = FALSE, ...)

S3 method for class 'etree'

nodeids(obj, from = NULL, terminal = FALSE, ...)
Arguments
obj Object of class "etree” or "partynode”.

Additional arguments.

from Integer specifying the node to start from.
terminal Logical indicating whether only identifiers of terminal nodes should be returned
(FALSE by default).
Value

An integer vector of node identifiers.

Methods (by class)

* partynode: nodeids() method for objects of class "partynode".

* etree: nodeids() method for objects of class "etree".

Examples

Covariates

nobs <- 100

cov_num <- rnorm(nobs)

cov_nom <- factor(rbinom(nobs, size = 1, prob = 0.5))

cov_gph <- lapply(1:nobs, function(j) igraph::sample_gnp(100, 0.2))
cov_fun <- fda.usc::rproc2fdata(nobs, seq(@, 1, len = 100), sigma = 1)
cov_list <- list(cov_num, cov_nom, cov_gph, cov_fun)

18 plot.etree

Response variable
resp_reg <- cov_num * 2

Fit
etree_fit <- etree(response = resp_reg, covariates = cov_list)

Get all nodes identifiers
nodes_ids <- nodeids(etree_fit)

Get terminal nodes identifiers
tnodes_ids <- nodeids(etree_fit, terminal = TRUE)

Get all nodes identifiers starting from 2
nodes_ids2 <- nodeids(etree_fit, from = 2)

plot.etree Visualization of Energy Trees

Description

Returns the plot of an object of class "etree”.

Usage
S3 method for class 'etree'
plot(
X’
main = NULL,

terminal_panel = NULL,

tp_args = list(),

inner_panel = node_inner,
ip_args = list(),

edge_panel = edge_simple,
ep_args = list(),

type = c("extended”, "simple"),
drop_terminal = NULL,

tnex = NULL,
newpage = TRUE,
pop = TRUE,
gp = gpar(Q),
)
Arguments
X An object of class "etree”, i.e., a fitted Energy Tree.

main Optional title for the plot.

plot.etree

terminal_panel

tp_args

inner_panel

ip_args

edge_panel

ep_args

type

drop_terminal
tnex

newpage

pop

gp

Details

19

Optional panel function of the form function(node) plotting the terminal nodes.
Alternatively, a panel generating function of class "grapcon_generator” that

is called with arguments x and tp_args to set up a panel function. By default,

an appropriate panel function is chosen depending on the scale of the dependent

variable.

List of arguments passed to terminal_panel if this is a "grapcon_generator”
object.

Optional panel function of the form function(node) plotting the inner nodes.
Alternatively, a panel generating function of class "grapcon_generator” that
is called with arguments x and ip_args to set up a panel function.

List of arguments passed to inner_panel if this is a "grapcon_generator"
object.

Optional panel function of the form function(split, ordered = FALSE, left
= TRUE) plotting the edges. Alternatively, a panel generating function of class
"grapcon_generator"” that is called with arguments x and ep_args to set up a
panel function.

List of arguments passed to edge_panel if this is a "grapcon_generator” ob-
ject.

Character specifying the complexity of the plot: extended tries to visualize the
distribution of the response variable in each terminal node whereas simple only
gives some summary information.

Logical indicating whether all terminal nodes should be plotted at the bottom.
Numeric value giving the terminal node extension in relation to the inner nodes.
Logical indicating whether grid.newpage () should be called.

Logical indicating whether the viewport tree should be popped before return.
Graphical parameters.

Additional arguments.

The plot() method for "etree” objects allows for the visualization of fitted Energy Trees, as
returned by etree() or as contained in the ensemble element of a fitted Random Energy Forest.

Value

No return value, called for side effects (plotting the tree).

20 predict.eforest

predict.eforest Predictions for Energy Forests

Description

Compute predictions for objects of class "eforest” (i.e., as returned by eforest()).

Usage
S3 method for class 'eforest'
predict(object, newdata = NULL, ...)
Arguments
object A fitted Energy Forest of class "eforest”.
newdata Optional set of new covariates used to make predictions. Must be provided as

a list, where each element is a different variable. Currently available types and
the form they need to have to be correctly recognized are the following:

e Numeric: numeric or integer vectors;

e Nominal: factors;

* Functions: objects of class "fdata";

* Graphs: (lists of) objects of class "igraph”.
Each element (i.e., variable) in the covariates list must have the same length(),

which corresponds to the (new) sample size. If newdata is omitted, fitted values
of individual trees are somehow combined (see Details) and returned.

Additional arguments.

Details

The predict() method for "eforest"” objects computes predictions for Energy Forests as returned
by eforest (). Predictions are based either on the fitted values (if newdata is NULL) or on the new
set of covariates (when newdata is provided). In both cases, each tree in object$ensemble is used
to make predictions by calling predict() on it (with the same specification of newdata). Then,
individual trees’ predictions for any single observation are combined by majority voting rule for
classification or by arithmetic mean for regression.

Value

Predictions, in the form of a factor for classification or as a numeric vector for regression.

predict.etree 21

predict.etree Predictions for Energy Trees

Description

Compute predictions for objects of class "etree” (i.e., fitted Energy Trees as returned by etree(),
or as contained in the ensemble element of a fitted Random Energy Forest).

Usage
S3 method for class 'etree'
predict(object, newdata = NULL, perm = NULL, ...)
Arguments
object A fitted Energy Tree of class "etree”.
newdata Optional set of new covariates used to make predictions. Must be provided as

a list, where each element is a different variable. Currently available types and
the form they need to have to be correctly recognized are the following:

* Numeric: numeric or integer vectors;

¢ Nominal: factors;

* Functions: objects of class "fdata";

* Graphs: (lists of) objects of class "igraph”.
Each element (i.e., variable) in the covariates list must have the same length(),

which corresponds to the (new) sample size. If newdata is omitted, fitted values
are returned.

perm Optional character vector of variable names. Splits of nodes with a primary split
in any of these variables will be permuted (after dealing with surrogates). Note
that surrogate split in the perm variables will not be permuted.

Additional arguments.

Details

The predict () method for "etree” objects yields predictions for fitted Energy Trees as returned
by etree() or as contained in the ensemble element of a fitted Random Energy Forest. Predictions
are based either on fitted values (if newdata is NULL) or on the new set of covariates (if newdata is
provided). The values of split_type and coeff_split_type, as well as the number of compo-
nents for each structured covariate (needed to compute an equivalent representation for the covari-
ates in newdata when split_type = "coeff"), are automatically retrieved from the object of class
"etree”.

Value

Predictions, in the form of a factor for classification or as a numeric vector for regression.

Index

+ datasets

data_cls, 3

data_reg, 3
[.etree (etree-methods), 12
[[.etree (etree-methods), 12

ctree(), 12

daisy(), 5

data_cls, 3

data_reg, 3

depth (etree-size), 15
depth.etree (etree-methods), 12
depth.party (etree-methods), 12
dist(), 5

dist_comp, 4

dist_comp(), 11

eforest, 6
eforest(), 20
etree, 9
etree(), 8, 19, 21
etree-methods, 12
etree-package, 2
etree-size, 15

length.etree (etree-methods), 12
length.party (etree-methods), 12

mclapply(), 7
metric.1lp(), 5
MLmetrics, 8

nd.edd(), 5
nodeapply, 15
nodeids, 17

p.adjust.methods, 7, 10
pam(), 11

partynode, 11
plot.etree, 18

22

predict(), 20
predict.eforest, 20
predict.etree, 21

print.etree (etree-methods), 12

terms, 11

wasserstein(), 5

width (etree-size), 15
width.etree (etree-methods), 12
width.party (etree-methods), 12

	etree-package
	data_cls
	data_reg
	dist_comp
	eforest
	etree
	etree-methods
	etree-size
	nodeapply
	nodeids
	plot.etree
	predict.eforest
	predict.etree
	Index

