
Package ‘estimatr’
February 28, 2025

Type Package

Title Fast Estimators for Design-Based Inference

Version 1.0.6

Description Fast procedures for small set of commonly-used, design-appropriate estimators with ro-
bust standard errors and confidence intervals. Includes estimators for linear regression, instru-
mental variables regression, difference-in-means, Horvitz-Thompson estimation, and regres-
sion improving precision of experimental estimates by interacting treatment with centered pre-
treatment covariates introduced by Lin (2013) <doi:10.1214/12-AOAS583>.

URL https://declaredesign.org/r/estimatr/,

https://github.com/DeclareDesign/estimatr

BugReports https://github.com/DeclareDesign/estimatr/issues

License MIT + file LICENSE

Depends R (>= 3.6.0)

Imports Formula, generics, methods, Rcpp (>= 0.12.16), rlang (>=
0.2.0)

LinkingTo Rcpp, RcppEigen

Encoding UTF-8

RoxygenNote 7.3.2

LazyData true

Suggests fabricatr (>= 0.10.0), randomizr (>= 0.20.0), AER,
clubSandwich, emmeans (>= 1.4), estimability, margins,
modelsummary, prediction, RcppEigen, sandwich, stargazer,
testthat, car

Enhances texreg

NeedsCompilation yes

Author Graeme Blair [aut, cre],
Jasper Cooper [aut],
Alexander Coppock [aut],
Macartan Humphreys [aut],
Luke Sonnet [aut],

1

https://doi.org/10.1214/12-AOAS583
https://declaredesign.org/r/estimatr/
https://github.com/DeclareDesign/estimatr
https://github.com/DeclareDesign/estimatr/issues

2 alo_star_men

Neal Fultz [ctb],
Lily Medina [ctb],
Russell Lenth [ctb],
Molly Offer-Westort [ctb]

Maintainer Graeme Blair <graeme.blair@gmail.com>

Repository CRAN

Date/Publication 2025-02-28 19:30:02 UTC

Contents
alo_star_men . 2
commarobust . 3
declaration_to_condition_pr_mat . 4
difference_in_means . 6
estimatr . 10
estimatr_glancers . 11
estimatr_tidiers . 13
extract.robust_default . 14
gen_pr_matrix_cluster . 16
horvitz_thompson . 16
iv_robust . 21
lh_robust . 25
lm_lin . 27
lm_robust . 30
lm_robust_fit . 35
na.omit_detailed.data.frame . 37
permutations_to_condition_pr_mat . 37
predict.lm_robust . 38
starprep . 40

Index 43

alo_star_men Replication data for Lin 2013

Description

A dataset containing the data to replicate: Lin, Winston. 2013. "Agnostic notes on regression adjust-
ments to experimental data: Reexamining Freedman’s critique." The Annals of Applied Statistics.
Stat. 7(1): 295-318. doi:10.1214/12-AOAS583. https://projecteuclid.org/euclid.aoas/1365527200.

Usage

alo_star_men

commarobust 3

Format

A data frame with educational treatments and outcomes:

gpa0 high school GPA

sfsp financial incentives and support treatment

ssp support only treatment

GPA_year1 college GPA year 1

GPA_year2 college GPA year 2

Details

This data was originally taken from the following paper, subset to men who showed up to college,
were in one of the arms with the support condition, and had GPA data for their first year in college.

Angrist, Joshua, Daniel Lang, and Philip Oreopoulos. 2009. "Incentives and Services for College
Achievement: Evidence from a Randomized Trial." American Economic Journal: Applied Eco-
nomics 1(1): 136-63. https://www.aeaweb.org/articles?id=10.1257/app.1.1.136

Source

https://www.aeaweb.org/articles?id=10.1257/app.1.1.136

commarobust Build lm_robust object from lm fit

Description

Build lm_robust object from lm fit

Usage

commarobust(model, se_type = NULL, clusters = NULL, ci = TRUE, alpha = 0.05)

Arguments

model an lm model object

se_type The sort of standard error sought. If clusters is not specified the options are
"HC0", "HC1" (or "stata", the equivalent), "HC2" (default), "HC3", or "classi-
cal". If clusters is specified the options are "CR0", "CR2" (default), or "stata".
Can also specify "none", which may speed up estimation of the coefficients.

clusters A vector corresponding to the clusters in the data.

ci logical. Whether to compute and return p-values and confidence intervals, TRUE
by default.

alpha The significance level, 0.05 by default.

https://www.aeaweb.org/articles?id=10.1257/app.1.1.136

4 declaration_to_condition_pr_mat

Value

an lm_robust object.

Examples

lmo <- lm(mpg ~ hp, data = mtcars)

Default HC2
commarobust(lmo)

commarobust(lmo, se_type = "HC3")

commarobust(lmo, se_type = "stata", clusters = mtcars$carb)

declaration_to_condition_pr_mat

Builds condition probability matrices for Horvitz-Thompson estima-
tion from randomizr declaration

Description

Builds condition probability matrices for Horvitz-Thompson estimation from randomizr declara-
tion

Usage

declaration_to_condition_pr_mat(
ra_declaration,
condition1 = NULL,
condition2 = NULL,
prob_matrix = NULL

)

Arguments

ra_declaration An object of class "ra_declaration", generated by the declare_ra function
in randomizr. This object contains the experimental design that will be repre-
sented in a condition probability matrix

condition1 The name of the first condition, often the control group. If NULL, defaults to first
condition in randomizr declaration. Either both condition1 and condition2
have to be specified or both left as NULL.

condition2 The name of the second condition, often the treatment group. If NULL, de-
faults to second condition in randomizr declaration. Either both condition1
and condition2 have to be specified or both left as NULL.

prob_matrix An optional probability matrix to override the one in ra_declaration

declaration_to_condition_pr_mat 5

Details

This function takes a "ra_declaration", generated by the declare_ra function in randomizr and
returns a 2n*2n matrix that can be used to fully specify the design for horvitz_thompson estima-
tion. This is done by passing this matrix to the condition_pr_mat argument of horvitz_thompson.

Currently, this function can learn the condition probability matrix for a wide variety of randomiza-
tions: simple, complete, simple clustered, complete clustered, blocked, block-clustered.

A condition probability matrix is made up of four submatrices, each of which corresponds to the
joint and marginal probability that each observation is in one of the two treatment conditions.

The upper-left quadrant is an n*n matrix. On the diagonal is the marginal probability of being in
condition 1, often control, for every unit (Pr(Z_i = Condition1) where Z represents the vector of
treatment conditions). The off-diagonal elements are the joint probabilities of each unit being in
condition 1 with each other unit, Pr(Z_i = Condition1, Z_j = Condition1) where i indexes the rows
and j indexes the columns.

The upper-right quadrant is also an n*n matrix. On the diagonal is the joint probability of a unit
being in condition 1 and condition 2, often the treatment, and thus is always 0. The off-diagonal
elements are the joint probability of unit i being in condition 1 and unit j being in condition 2, Pr(Z_i
= Condition1, Z_j = Condition2).

The lower-left quadrant is also an n*n matrix. On the diagonal is the joint probability of a unit
being in condition 1 and condition 2, and thus is always 0. The off-diagonal elements are the joint
probability of unit i being in condition 2 and unit j being in condition 1, Pr(Z_i = Condition2, Z_j =
Condition1).

The lower-right quadrant is an n*n matrix. On the diagonal is the marginal probability of being
in condition 2, often treatment, for every unit (Pr(Z_i = Condition2)). The off-diagonal elements
are the joint probability of each unit being in condition 2 together, Pr(Z_i = Condition2, Z_j =
Condition2).

Value

a numeric 2n*2n matrix of marginal and joint condition treatment probabilities to be passed to the
condition_pr_mat argument of horvitz_thompson. See details.

See Also

permutations_to_condition_pr_mat

Examples

Learn condition probability matrix from complete blocked design
library(randomizr)
n <- 100
dat <- data.frame(

blocks = sample(letters[1:10], size = n, replace = TRUE),
y = rnorm(n)

)

Declare complete blocked randomization
bl_declaration <- declare_ra(blocks = dat$blocks, prob = 0.4, simple = FALSE)
Get probabilities

6 difference_in_means

block_pr_mat <- declaration_to_condition_pr_mat(bl_declaration, 0, 1)
Do randomiztion
dat$z <- conduct_ra(bl_declaration)

horvitz_thompson(y ~ z, data = dat, condition_pr_mat = block_pr_mat)

When you pass a declaration to horvitz_thompson, this function is called

Equivalent to above call
horvitz_thompson(y ~ z, data = dat, ra_declaration = bl_declaration)

difference_in_means Design-based difference-in-means estimator

Description

Difference-in-means estimators that selects the appropriate point estimate, standard errors, and de-
grees of freedom for a variety of designs: unit randomized, cluster randomized, block randomized,
block-cluster randomized, matched-pairs, and matched-pair cluster randomized designs

Usage

difference_in_means(
formula,
data,
blocks,
clusters,
weights,
subset,
se_type = c("default", "none"),
condition1 = NULL,
condition2 = NULL,
ci = TRUE,
alpha = 0.05

)

Arguments

formula an object of class formula, as in lm, such as Y ~ Z with only one variable on the
right-hand side, the treatment.

data A data.frame.

blocks An optional bare (unquoted) name of the block variable. Use for blocked designs
only.

clusters An optional bare (unquoted) name of the variable that corresponds to the clusters
in the data; used for cluster randomized designs. For blocked designs, clusters
must nest within blocks.

difference_in_means 7

weights the bare (unquoted) names of the weights variable in the supplied data.

subset An optional bare (unquoted) expression specifying a subset of observations to
be used.

se_type An optional string that can be one of c("default", "none"). If "default" (the
default), it will use the default standard error estimator for the design, and if
"none" then standard errors will not be computed which may speed up run time
if only the point estimate is required.

condition1 value in the treatment vector of the condition to be the control. Effects are
estimated with condition1 as the control and condition2 as the treatment. If
unspecified, condition1 is the "first" condition and condition2 is the "second"
according to levels if the treatment is a factor or according to a sortif it is a
numeric or character variable (i.e if unspecified and the treatment is 0s and 1s,
condition1 will by default be 0 and condition2 will be 1). See the examples
for more.

condition2 value in the treatment vector of the condition to be the treatment. See condition1.

ci logical. Whether to compute and return p-values and confidence intervals, TRUE
by default.

alpha The significance level, 0.05 by default.

Details

This function implements a difference-in-means estimator, with support for blocked, clustered,
matched-pairs, block-clustered, and matched-pair clustered designs. One specifies their design by
passing the blocks and clusters in their data and this function chooses which estimator is most
appropriate.

If you pass only blocks, if all blocks are of size two, we will infer that the design is a matched-pairs
design. If they are all size four or larger, we will infer that it is a regular blocked design. If you pass
both blocks and clusters, we will similarly infer whether it is a matched-pairs clustered design
or a block-clustered design the number of clusters per block. If the user passes only clusters, we
will infer that the design was cluster-randomized. If the user specifies neither the blocks nor the
clusters, a regular Welch’s t-test will be performed.

Importantly, if the user specifies weights, the estimation is handed off to lm_robust with the appro-
priate robust standard errors as weighted difference-in-means estimators are not implemented here.
More details of the about each of the estimators can be found in the mathematical notes.

Value

Returns an object of class "difference_in_means".

The post-estimation commands functions summary and tidy return results in a data.frame. To get
useful data out of the return, you can use these data frames, you can use the resulting list directly,
or you can use the generic accessor functions coef and confint.

An object of class "difference_in_means" is a list containing at least the following components:

coefficients the estimated difference in means

std.error the estimated standard error

statistic the t-statistic

https://declaredesign.org/r/estimatr/articles/mathematical-notes.html

8 difference_in_means

df the estimated degrees of freedom

p.value the p-value from a two-sided t-test using coefficients, std.error, and df

conf.low the lower bound of the 1 - alpha percent confidence interval

conf.high the upper bound of the 1 - alpha percent confidence interval

term a character vector of coefficient names

alpha the significance level specified by the user

N the number of observations used

outcome the name of the outcome variable

design the name of the design learned from the arguments passed

References

Gerber, Alan S, and Donald P Green. 2012. Field Experiments: Design, Analysis, and Interpreta-
tion. New York: W.W. Norton.

Imai, Kosuke, Gary King, Clayton Nall. 2009. "The Essential Role of Pair Matching in Cluster-
Randomized Experiments, with Application to the Mexican Universal Health Insurance Evalua-
tion." Statistical Science 24 (1). Institute of Mathematical Statistics: 29-53. doi:10.1214/08STS274.

See Also

lm_lin

Examples

library(fabricatr)
library(randomizr)
Get appropriate standard errors for unit-randomized designs

1. Unit randomized

dat <- fabricate(

N = 100,
Y = rnorm(100),
Z_comp = complete_ra(N, prob = 0.4),

)

table(dat$Z_comp)
difference_in_means(Y ~ Z_comp, data = dat)

2. Cluster randomized

Accurates estimates and standard errors for clustered designs
dat$clust <- sample(20, size = nrow(dat), replace = TRUE)
dat$Z_clust <- cluster_ra(dat$clust, prob = 0.6)

table(datZ_clust, datclust)

https://doi.org/10.1214/08-STS274

difference_in_means 9

summary(difference_in_means(Y ~ Z_clust, clusters = clust, data = dat))

3. Block randomized

dat$block <- rep(1:10, each = 10)
dat$Z_block <- block_ra(dat$block, prob = 0.5)

table(datZ_block, datblock)
difference_in_means(Y ~ Z_block, blocks = block, data = dat)

4. Block cluster randomized

Learns this design if there are two clusters per block
dat$small_clust <- rep(1:50, each = 2)
dat$big_blocks <- rep(1:5, each = 10)

dat$Z_blcl <- block_and_cluster_ra(
blocks = dat$big_blocks,
clusters = dat$small_clust
)

difference_in_means(
Y ~ Z_blcl,
blocks = big_blocks,
clusters = small_clust,
data = dat
)

5. Matched-pairs

Matched-pair estimates and standard errors are also accurate
Specified same as blocked design, function learns that
it is matched pair from size of blocks!
dat$pairs <- rep(1:50, each = 2)
dat$Z_pairs <- block_ra(dat$pairs, prob = 0.5)

table(dat$pairs, dat$Z_pairs)
difference_in_means(Y ~ Z_pairs, blocks = pairs, data = dat)

6. Matched-pair cluster randomized

Learns this design if there are two clusters per block
dat$small_clust <- rep(1:50, each = 2)
dat$cluster_pairs <- rep(1:25, each = 4)
table(dat$cluster_pairs, dat$small_clust)

dat$Z_mpcl <- block_and_cluster_ra(
blocks = dat$cluster_pairs,
clusters = dat$small_clust

10 estimatr

)

difference_in_means(
Y ~ Z_mpcl,
blocks = cluster_pairs,
clusters = small_clust,
data = dat
)

Other examples

Also works with multi-valued treatments if users specify
comparison of interest
dat$Z_multi <- simple_ra(

nrow(dat),
conditions = c("Treatment 2", "Treatment 1", "Control"),
prob_each = c(0.4, 0.4, 0.2)

)

Only need to specify which condition is treated `condition2` and
which is control `condition1`
difference_in_means(

Y ~ Z_multi,
condition1 = "Treatment 2",
condition2 = "Control",
data = dat

)
difference_in_means(

Y ~ Z_multi,
condition1 = "Treatment 1",
condition2 = "Control",
data = dat

)

Specifying weights will result in estimation via lm_robust()
dat$w <- runif(nrow(dat))
difference_in_means(Y ~ Z_comp, weights = w, data = dat)
lm_robust(Y ~ Z_comp, weights = w, data = dat)

estimatr estimatr

Description

Fast procedures for small set of commonly-used, design-appropriate estimators with robust standard
errors and confidence intervals. Includes estimators for linear regression, instrumental variables re-
gression, difference-in-means, Horvitz-Thompson estimation, and regression improving precision

estimatr_glancers 11

of experimental estimates by interacting treatment with centered pre-treatment covariates intro-
duced by Lin (2013) <doi:10.1214/12-AOAS583>.

Author(s)

Maintainer: Graeme Blair <graeme.blair@gmail.com>

Authors:

• Jasper Cooper <jjc2247@columbia.edu>

• Alexander Coppock <alex.coppock@yale.edu>

• Macartan Humphreys <macartan@gmail.com>

• Luke Sonnet <luke.sonnet@gmail.com>

Other contributors:

• Neal Fultz <nfultz@gmail.com> [contributor]

• Lily Medina <lilymiru@gmail.com> [contributor]

• Russell Lenth <russell-lenth@uiowa.edu> [contributor]

• Molly Offer-Westort <mollyow@uchicago.edu> [contributor]

See Also

Useful links:

• https://declaredesign.org/r/estimatr/

• https://github.com/DeclareDesign/estimatr

• Report bugs at https://github.com/DeclareDesign/estimatr/issues

estimatr_glancers Glance at an estimatr object

Description

Glance at an estimatr object

Usage

S3 method for class 'lm_robust'
glance(x, ...)

S3 method for class 'lh_robust'
glance(x, ...)

S3 method for class 'iv_robust'
glance(x, ...)

https://declaredesign.org/r/estimatr/
https://github.com/DeclareDesign/estimatr
https://github.com/DeclareDesign/estimatr/issues

12 estimatr_glancers

S3 method for class 'difference_in_means'
glance(x, ...)

S3 method for class 'horvitz_thompson'
glance(x, ...)

Arguments

x An object returned by one of the estimators

... extra arguments (not used)

Value

For glance.lm_robust, a data.frame with columns:

r.squared the R2,
R2 = 1− Sum(e[i]2)/Sum((y[i]− y∗)2),

where y∗ is the mean of y[i] if there is an intercept and zero otherwise, and e[i]
is the ith residual.

adj.r.squared the R2 but penalized for having more parameters, rank

se_type the standard error type specified by the user

statistic the value of the F-statistic

p.value p-value from the F test

df.residual residual degrees of freedom

nobs the number of observations used

For glance.lh_robust, we glance the lm_robust component only. You can access the linear
hypotheses as a data.frame directy from the lh component of the lh_robust object

For glance.iv_robust, a data.frame with columns:

r.squared The R2 of the second stage regression

adj.r.squared The R2 but penalized for having more parameters, rank

df.residual residual degrees of freedom

N the number of observations used

se_type the standard error type specified by the user

statistic the value of the F-statistic

p.value p-value from the F test
statistic.weakinst

the value of the first stage F-statistic, useful for the weak instruments test; only
reported if there is only one endogenous variable

p.value.weakinst

p-value from the first-stage F test, a test of weak instruments; only reported if
there is only one endogenous variable

estimatr_tidiers 13

statistic.endogeneity

the value of the F-statistic for the test of endogeneity; often called the Wu-
Hausman statistic, with robust standard errors, we employ the regression based
test

p.value.endogeneity

p-value from the F-test for endogeneity

statistic.overid

the value of the chi-squared statistic for the test of instrument correlation with
the error term; only reported with overidentification

p.value.overid p-value from the chi-squared test; only reported with overidentification

For glance.difference_in_means, a data.frame with columns:

design the design used, and therefore the estimator used

df the degrees of freedom

nobs the number of observations used

nblocks the number of blocks, if used

nclusters the number of clusters, if used

condition2 the second, "treatment", condition

condition1 the first, "control", condition

For glance.horvitz_thompson, a data.frame with columns:

nobs the number of observations used

se_type the type of standard error estimator used

condition2 the second, "treatment", condition

condition1 the first, "control", condition

See Also

generics::glance(), lm_robust(), lm_lin(), iv_robust(), difference_in_means(), horvitz_thompson()

estimatr_tidiers Tidy an estimatr object

Description

Tidy an estimatr object

14 extract.robust_default

Usage

S3 method for class 'lm_robust'
tidy(x, conf.int = TRUE, conf.level = NULL, ...)

S3 method for class 'iv_robust'
tidy(x, conf.int = TRUE, conf.level = NULL, ...)

S3 method for class 'difference_in_means'
tidy(x, conf.int = TRUE, conf.level = NULL, ...)

S3 method for class 'horvitz_thompson'
tidy(x, conf.int = TRUE, conf.level = NULL, ...)

S3 method for class 'lh_robust'
tidy(x, conf.int = TRUE, conf.level = NULL, ...)

S3 method for class 'lh'
tidy(x, conf.int = TRUE, conf.level = NULL, ...)

Arguments

x An object returned by one of the estimators

conf.int Logical indicating whether or not to include a confidence interval in the tidied
output. Defaults to ‘TRUE’.

conf.level The confidence level to use for the confidence interval if ‘conf.int = TRUE’.
Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corre-
sponds to a 95 percent confidence interval.

... extra arguments (not used)

Value

A data.frame with columns for coefficient names, estimates, standard errors, confidence intervals,
p-values, degrees of freedom, and the name of the outcome variable

See Also

generics::tidy(), lm_robust(), iv_robust(), difference_in_means(), horvitz_thompson()

extract.robust_default

Extract model data for texreg package

Description

Prepares a "lm_robust" or "iv_robust" object for the texreg package. This is largely a clone of
the extract.lm method.

extract.robust_default 15

Usage

extract.robust_default(
model,
include.ci = TRUE,
include.rsquared = TRUE,
include.adjrs = TRUE,
include.nobs = TRUE,
include.fstatistic = FALSE,
include.rmse = TRUE,
include.nclusts = TRUE,
...

)

extract.lm_robust(
model,
include.ci = TRUE,
include.rsquared = TRUE,
include.adjrs = TRUE,
include.nobs = TRUE,
include.fstatistic = FALSE,
include.rmse = TRUE,
include.nclusts = TRUE,
...

)

extract.iv_robust(
model,
include.ci = TRUE,
include.rsquared = TRUE,
include.adjrs = TRUE,
include.nobs = TRUE,
include.fstatistic = FALSE,
include.rmse = TRUE,
include.nclusts = TRUE,
...

)

Arguments

model an object of class lm_robust or "iv_robust"

include.ci logical. Defaults to TRUE
include.rsquared

logical. Defaults to TRUE

include.adjrs logical. Defaults to TRUE

include.nobs logical. Defaults to TRUE
include.fstatistic

logical. Defaults to TRUE

16 horvitz_thompson

include.rmse logical. Defaults to TRUE

include.nclusts

logical. Defaults to TRUE if clusters in model

... unused

gen_pr_matrix_cluster Generate condition probability matrix given clusters and probabilities

Description

Generate condition probability matrix given clusters and probabilities

Usage

gen_pr_matrix_cluster(clusters, treat_probs, simple)

Arguments

clusters A vector of clusters

treat_probs A vector of treatment (condition 2) probabilities

simple A boolean for whether the assignment is a random sample assignment (TRUE,
default) or complete random assignment (FALSE)

Value

a numeric 2n*2n matrix of marginal and joint condition treatment probabilities to be passed to the
condition_pr_mat argument of horvitz_thompson.

See Also

declaration_to_condition_pr_mat

horvitz_thompson Horvitz-Thompson estimator for two-armed trials

Description

Horvitz-Thompson estimators that are unbiased for designs in which the randomization scheme is
known

horvitz_thompson 17

Usage

horvitz_thompson(
formula,
data,
blocks,
clusters,
simple = NULL,
condition_prs,
condition_pr_mat = NULL,
ra_declaration = NULL,
subset,
condition1 = NULL,
condition2 = NULL,
se_type = c("youngs", "constant", "none"),
ci = TRUE,
alpha = 0.05,
return_condition_pr_mat = FALSE

)

Arguments

formula an object of class formula, as in lm, such as Y ~ Z with only one variable on the
right-hand side, the treatment.

data A data.frame.

blocks An optional bare (unquoted) name of the block variable. Use for blocked designs
only. See details.

clusters An optional bare (unquoted) name of the variable that corresponds to the clusters
in the data; used for cluster randomized designs. For blocked designs, clusters
must be within blocks.

simple logical, optional. Whether the randomization is simple (TRUE) or complete
(FALSE). This is ignored if blocks are specified, as all blocked designs use
complete randomization, or either ra_declaration or condition_pr_mat are
passed. Otherwise, it defaults to TRUE.

condition_prs An optional bare (unquoted) name of the variable with the condition 2 (treat-
ment) probabilities. See details. May also use a single number for the condition
2 probability if it is constant.

condition_pr_mat

An optional 2n * 2n matrix of marginal and joint probabilities of all units in
condition1 and condition2. See details.

ra_declaration An object of class "ra_declaration", from the declare_ra function in the
randomizr package. This is the third way that one can specify a design for
this estimator. Cannot be used along with any of condition_prs, blocks,
clusters, or condition_pr_mat. See details.

subset An optional bare (unquoted) expression specifying a subset of observations to
be used.

18 horvitz_thompson

condition1 value in the treatment vector of the condition to be the control. Effects are
estimated with condition1 as the control and condition2 as the treatment. If
unspecified, condition1 is the "first" condition and condition2 is the "second"
according to levels if the treatment is a factor or according to a sortif it is a
numeric or character variable (i.e if unspecified and the treatment is 0s and 1s,
condition1 will by default be 0 and condition2 will be 1). See the examples
for more.

condition2 value in the treatment vector of the condition to be the treatment. See condition1.

se_type can be one of c("youngs", "constant", "none") and corresponds the esti-
mator of the standard errors. Default estimator uses Young’s inequality (and is
conservative) while the other uses a constant treatment effects assumption and
only works for simple randomized designs at the moment. If "none" then stan-
dard errors will not be computed which may speed up run time if only the point
estimate is required.

ci logical. Whether to compute and return p-values and confidence intervals, TRUE
by default.

alpha The significance level, 0.05 by default.
return_condition_pr_mat

logical. Whether to return the condition probability matrix. Returns NULL if
the design is simple randomization, FALSE by default.

Details

This function implements the Horvitz-Thompson estimator for treatment effects for two-armed tri-
als. This estimator is useful for estimating unbiased treatment effects given any randomization
scheme as long as the randomization scheme is known.

In short, the Horvitz-Thompson estimator essentially reweights each unit by the probability of it
being in its observed condition. Pivotal to the estimation of treatment effects using this estimator
are the marginal condition probabilities (i.e., the probability that any one unit is in a particular
treatment condition). Pivotal to estimating the variance whenever the design is more complicated
than simple randomization are the joint condition probabilities (i.e., the probabilities that any two
units have a particular set of treatment conditions, either the same or different). The estimator we
provide here considers the case with two treatment conditions.

Users interested in more details can see the mathematical notes for more information and references,
or see the references below.

There are three distinct ways that users can specify the design to the function. The preferred way
is to use the declare_ra function in the randomizr package. This function takes several argu-
ments, including blocks, clusters, treatment probabilities, whether randomization is simple or not,
and more. Passing the outcome of that function, an object of class "ra_declaration" to the
ra_declaration argument in this function, will lead to a call of the declaration_to_condition_pr_mat
function which generates the condition probability matrix needed to estimate treatment effects and
standard errors. We provide many examples below of how this could be done.

The second way is to pass the names of vectors in your data to condition_prs, blocks, and
clusters. You can further specify whether the randomization was simple or complete using the
simple argument. Note that if blocks are specified the randomization is always treated as complete.

https://declaredesign.org/r/estimatr/articles/mathematical-notes.html

horvitz_thompson 19

From these vectors, the function learns how to build the condition probability matrix that is used in
estimation.

In the case where condition_prs is specified, this function assumes those probabilities are the
marginal probability that each unit is in condition2 and then uses the other arguments (blocks,
clusters, simple) to learn the rest of the design. If users do not pass condition_prs, this function
learns the probability of being in condition2 from the data. That is, none of these arguments are
specified, we assume that there was a simple randomization where the probability of each unit
being in condition2 was the average of all units in condition2. Similarly, we learn the block-level
probability of treatment within blocks by looking at the mean number of units in condition2 if
condition_prs is not specified.

The third way is to pass a condition_pr_mat directly. One can see more about this object in the
documentation for declaration_to_condition_pr_mat and permutations_to_condition_pr_mat.
Essentially, this 2n * 2n matrix allows users to specify marginal and joint marginal probabilities of
units being in conditions 1 and 2 of arbitrary complexity. Users should only use this option if they
are certain they know what they are doing.

Value

Returns an object of class "horvitz_thompson".

The post-estimation commands functions summary and tidy return results in a data.frame. To get
useful data out of the return, you can use these data frames, you can use the resulting list directly,
or you can use the generic accessor functions coef and confint.

An object of class "horvitz_thompson" is a list containing at least the following components:

coefficients the estimated difference in totals

std.error the estimated standard error

statistic the z-statistic

df the estimated degrees of freedom

p.value the p-value from a two-sided z-test using coefficients and std.error

conf.low the lower bound of the 1 - alpha percent confidence interval

conf.high the upper bound of the 1 - alpha percent confidence interval

term a character vector of coefficient names

alpha the significance level specified by the user

nobs the number of observations used

outcome the name of the outcome variable
condition_pr_mat

the condition probability matrix if return_condition_pr_mat is TRUE

References

Aronow, Peter M, and Joel A Middleton. 2013. "A Class of Unbiased Estimators of the Aver-
age Treatment Effect in Randomized Experiments." Journal of Causal Inference 1 (1): 135-54.
doi:10.1515/jci20120009.

https://doi.org/10.1515/jci-2012-0009

20 horvitz_thompson

Aronow, Peter M, and Cyrus Samii. 2017. "Estimating Average Causal Effects Under Interfer-
ence Between Units." Annals of Applied Statistics, forthcoming. https://arxiv.org/abs/1305.
6156v3.

Middleton, Joel A, and Peter M Aronow. 2015. "Unbiased Estimation of the Average Treat-
ment Effect in Cluster-Randomized Experiments." Statistics, Politics and Policy 6 (1-2): 39-75.
doi:10.1515/spp20130002.

See Also

declare_ra

Examples

Set seed
set.seed(42)

Simulate data
n <- 10
dat <- data.frame(y = rnorm(n))

library(randomizr)

#----------
1. Simple random assignment
#----------
dat$p <- 0.5
dat$z <- rbinom(n, size = 1, prob = dat$p)

If you only pass condition_prs, we assume simple random sampling
horvitz_thompson(y ~ z, data = dat, condition_prs = p)
Assume constant effects instead
horvitz_thompson(y ~ z, data = dat, condition_prs = p, se_type = "constant")

Also can use randomizr to pass a declaration
srs_declaration <- declare_ra(N = nrow(dat), prob = 0.5, simple = TRUE)
horvitz_thompson(y ~ z, data = dat, ra_declaration = srs_declaration)

#----------
2. Complete random assignment
#----------

dat$z <- sample(rep(0:1, each = n/2))
Can use a declaration
crs_declaration <- declare_ra(N = nrow(dat), prob = 0.5, simple = FALSE)
horvitz_thompson(y ~ z, data = dat, ra_declaration = crs_declaration)
Can precompute condition_pr_mat and pass it
(faster for multiple runs with same condition probability matrix)
crs_pr_mat <- declaration_to_condition_pr_mat(crs_declaration)
horvitz_thompson(y ~ z, data = dat, condition_pr_mat = crs_pr_mat)

#----------
3. Clustered treatment, complete random assigment

https://arxiv.org/abs/1305.6156v3
https://arxiv.org/abs/1305.6156v3
https://doi.org/10.1515/spp-2013-0002

iv_robust 21

#-----------
Simulating data
dat$cl <- rep(1:4, times = c(2, 2, 3, 3))
dat$prob <- 0.5
clust_crs_decl <- declare_ra(N = nrow(dat), clusters = dat$cl, prob = 0.5)
dat$z <- conduct_ra(clust_crs_decl)
Easiest to specify using declaration
ht_cl <- horvitz_thompson(y ~ z, data = dat, ra_declaration = clust_crs_decl)
Also can pass the condition probability and the clusters
ht_cl_manual <- horvitz_thompson(

y ~ z,
data = dat,
clusters = cl,
condition_prs = prob,
simple = FALSE

)
ht_cl
ht_cl_manual

Blocked estimators specified similarly

#----------
More complicated assignment
#----------

arbitrary permutation matrix
possible_treats <- cbind(

c(1, 1, 0, 1, 0, 0, 0, 1, 1, 0),
c(0, 1, 1, 0, 1, 1, 0, 1, 0, 1),
c(1, 0, 1, 1, 1, 1, 1, 0, 0, 0)

)
arb_pr_mat <- permutations_to_condition_pr_mat(possible_treats)
Simulating a column to be realized treatment
dat$z <- possible_treats[, sample(ncol(possible_treats), size = 1)]
horvitz_thompson(y ~ z, data = dat, condition_pr_mat = arb_pr_mat)

iv_robust Two-Stage Least Squares Instrumental Variables Regression

Description

This formula estimates an instrumental variables regression using two-stage least squares with a
variety of options for robust standard errors

Usage

iv_robust(
formula,
data,

22 iv_robust

weights,
subset,
clusters,
fixed_effects,
se_type = NULL,
ci = TRUE,
alpha = 0.05,
diagnostics = FALSE,
return_vcov = TRUE,
try_cholesky = FALSE

)

Arguments

formula an object of class formula of the regression and the instruments. For example,
the formula y ~ x1 + x2 | z1 + z2 specifies x1 and x2 as endogenous regressors
and z1 and z2 as their respective instruments.

data A data.frame

weights the bare (unquoted) names of the weights variable in the supplied data.

subset An optional bare (unquoted) expression specifying a subset of observations to
be used.

clusters An optional bare (unquoted) name of the variable that corresponds to the clusters
in the data.

fixed_effects An optional right-sided formula containing the fixed effects that will be pro-
jected out of the data, such as ~ blockID. Do not pass multiple-fixed effects
with intersecting groups. Speed gains are greatest for variables with large num-
bers of groups and when using "HC1" or "stata" standard errors. See ’Details’.

se_type The sort of standard error sought. If clusters is not specified the options are
"HC0", "HC1" (or "stata", the equivalent), "HC2" (default), "HC3", or "classi-
cal". If clusters is specified the options are "CR0", "CR2" (default), or "stata".
Can also specify "none", which may speed up estimation of the coefficients.

ci logical. Whether to compute and return p-values and confidence intervals, TRUE
by default.

alpha The significance level, 0.05 by default.

diagnostics logical. Whether to compute and return instrumental variable diagnostic statis-
tics and tests.

return_vcov logical. Whether to return the variance-covariance matrix for later usage, TRUE
by default.

try_cholesky logical. Whether to try using a Cholesky decomposition to solve least squares
instead of a QR decomposition, FALSE by default. Using a Cholesky decompo-
sition may result in speed gains, but should only be used if users are sure their
model is full-rank (i.e., there is no perfect multi-collinearity)

iv_robust 23

Details

This function performs two-stage least squares estimation to fit instrumental variables regression.
The syntax is similar to that in ivreg from the AER package. Regressors and instruments should
be specified in a two-part formula, such as y ~ x1 + x2 | z1 + z2 + z3, where x1 and x2 are regres-
sors and z1, z2, and z3 are instruments. Unlike ivreg, you must explicitly specify all exogenous
regressors on both sides of the bar.

The default variance estimators are the same as in lm_robust. Without clusters, we default to
HC2 standard errors, and with clusters we default to CR2 standard errors. 2SLS variance estimates
are computed using the same estimators as in lm_robust, however the design matrix used are the
second-stage regressors, which includes the estimated endogenous regressors, and the residuals
used are the difference between the outcome and a fit produced by the second-stage coefficients
and the first-stage (endogenous) regressors. More notes on this can be found at the mathematical
appendix.

If fixed_effects are specified, both the outcome, regressors, and instruments are centered using
the method of alternating projections (Halperin 1962; Gaure 2013). Specifying fixed effects in this
way will result in large speed gains with standard error estimators that do not need to invert the
matrix of fixed effects. This means using "classical", "HC0", "HC1", "CR0", or "stata" standard
errors will be faster than other standard error estimators. Be wary when specifying fixed effects that
may result in perfect fits for some observations or if there are intersecting groups across multiple
fixed effect variables (e.g. if you specify both "year" and "country" fixed effects with an unbalanced
panel where one year you only have data for one country).

If diagnostics are requested, we compute and return three sets of diagnostics. First, we return
tests for weak instruments using first-stage F-statistics (diagnostic_first_stage_fstatistic).
Specifically, the F-statistics reported compare the model regressing each endogeneous variable on
both the included exogenous variables and the instruments to a model where each endogenous
variable is regressed only on the included exogenous variables (without the instruments). A signifi-
cant F-test for weak instruments provides evidence against the null hypothesis that the instruments
are weak. Second, we return tests for the endogeneity of the endogenous variables, often called
the Wu-Hausman test (diagnostic_endogeneity_test). We implement the regression test from
Hausman (1978), which allows for robust variance estimation. A significant endogeneity test pro-
vides evidence against the null that all the variables are exogenous. Third, we return a test for
the correlation between the instruments and the error term (diagnostic_overid_test). We im-
plement the Wooldridge (1995) robust score test, which is identical to Sargan’s (1958) test with
classical standard errors. This test is only reported if the model is overidentified (i.e. the number of
instruments is greater than the number of endogenous regressors), and if no weights are specified.

Value

An object of class "iv_robust".

The post-estimation commands functions summary and tidy return results in a data.frame. To get
useful data out of the return, you can use these data frames, you can use the resulting list directly,
or you can use the generic accessor functions coef, vcov, confint, and predict.

An object of class "iv_robust" is a list containing at least the following components:

coefficients the estimated coefficients

std.error the estimated standard errors

https://declaredesign.org/r/estimatr/articles/mathematical-notes.html
https://declaredesign.org/r/estimatr/articles/mathematical-notes.html

24 iv_robust

statistic the t-statistic

df the estimated degrees of freedom

p.value the p-values from a two-sided t-test using coefficients, std.error, and df

conf.low the lower bound of the 1 - alpha percent confidence interval

conf.high the upper bound of the 1 - alpha percent confidence interval

term a character vector of coefficient names

alpha the significance level specified by the user

se_type the standard error type specified by the user

res_var the residual variance

nobs the number of observations used

k the number of columns in the design matrix (includes linearly dependent columns!)

rank the rank of the fitted model

vcov the fitted variance covariance matrix

r.squared the R2 of the second stage regression

adj.r.squared the R2 of the second stage regression, but penalized for having more parameters,
rank

fstatistic a vector with the value of the second stage F-statistic with the numerator and
denominator degrees of freedom

firststage_fstatistic

a vector with the value of the first stage F-statistic with the numerator and de-
nominator degrees of freedom, useful for a test for weak instruments

weighted whether or not weights were applied

call the original function call

fitted.values the matrix of predicted means

We also return terms with the second stage terms and terms_regressors with the first stage terms,
both of which used by predict. If fixed_effects are specified, then we return proj_fstatistic,
proj_r.squared, and proj_adj.r.squared, which are model fit statistics that are computed on
the projected model (after demeaning the fixed effects).

We also return various diagnostics when `diagnostics` == TRUE. These are stored in diagnostic_first_stage_fstatistic,
diagnostic_endogeneity_test, and diagnostic_overid_test. They have the test statistic, rel-
evant degrees of freedom, and p.value in a named vector. See ’Details’ for more. These are printed
in a formatted table when the model object is passed to summary().

References

Gaure, Simon. 2013. "OLS with multiple high dimensional category variables." Computational
Statistics & Data Analysis 66: 8-1. doi:10.1016/j.csda.2013.03.024

Halperin, I. 1962. "The product of projection operators." Acta Scientiarum Mathematicarum (Szeged)
23(1-2): 96-99.

https://doi.org/10.1016/j.csda.2013.03.024

lh_robust 25

Examples

library(fabricatr)
dat <- fabricate(

N = 40,
Y = rpois(N, lambda = 4),
Z = rbinom(N, 1, prob = 0.4),
D = Z * rbinom(N, 1, prob = 0.8),
X = rnorm(N),
G = sample(letters[1:4], N, replace = TRUE)

)

Instrument for treatment `D` with encouragement `Z`
tidy(iv_robust(Y ~ D + X | Z + X, data = dat))

Instrument with Stata's `ivregress 2sls , small rob` HC1 variance
tidy(iv_robust(Y ~ D | Z, data = dat, se_type = "stata"))

With clusters, we use CR2 errors by default
dat$cl <- rep(letters[1:5], length.out = nrow(dat))
tidy(iv_robust(Y ~ D | Z, data = dat, clusters = cl))

Again, easy to replicate Stata (again with `small` correction in Stata)
tidy(iv_robust(Y ~ D | Z, data = dat, clusters = cl, se_type = "stata"))

We can also specify fixed effects, that will be taken as exogenous regressors
Speed gains with fixed effects are greatests with "stata" or "HC1" std.errors
tidy(iv_robust(Y ~ D | Z, data = dat, fixed_effects = ~ G, se_type = "HC1"))

lh_robust Linear Hypothesis for Ordinary Least Squares with Robust Standard
Errors

Description

This function fits a linear model with robust standard errors and performs linear hypothesis test.

Usage

lh_robust(..., data, linear_hypothesis)

Arguments

... Other arguments to be passed to lm_robust

data A data.frame
linear_hypothesis

A length 1 character string or a matrix specifying combination, to be passed to
the hypothesis.matrix argument of car::linearHypothesis. Joint hypotheses are
currently not handled by lh_robust. See linearHypothesis for more details.

26 lh_robust

Details

This function is a wrapper for lm_robust and for linearHypothesis. It first runs lm_robust and
next passes "lm_robust" object as an argument to linearHypothesis. Currently CR2 standard
errors are not handled by lh_robust.

Value

An object of class "lh_robust" containing the two following components:

lm_robust an object as returned by lm_robust.

lh A data frame with most of its columns pulled from linearHypothesis’ output.

The only analysis directly performed by lh_robust is a t-test for the null hypothesis of no effects
of the linear combination of coefficients as specified by the user. All other output components are
either extracted from linearHypothesis or lm_robust. Note that the estimate returned is the value
of the LHS of an equation of the form f(X) = 0. Hyptheses "x - z = 1", "x +1= z + 2" and "x-z-1=0"
will all return the value for "x-y-1"

The original output returned by linearHypothesis is added as an attribute under the "linear_hypothesis"
attribute.

Examples

library(fabricatr)
dat <- fabricate(

N = 40,
y = rpois(N, lambda = 4),
x = rnorm(N),
z = rbinom(N, 1, prob = 0.4),
clusterID = sample(1:4, 40, replace = TRUE)

)

Default variance estimator is HC2 robust standard errors
lhro <- lh_robust(y ~ x + z, data = dat, linear_hypothesis = "z + 2x = 0")

The linear hypothesis argument can be specified equivalently as:
lh_robust(y ~ x + z, data = dat, linear_hypothesis = "z = 2x")
lh_robust(y ~ x + z, data = dat, linear_hypothesis = "2*x +1*z")
lh_robust(y ~ x + z, data = dat, linear_hypothesis = "z + 2x = 0")

Also recovers other sorts of standard erorrs just as specified in \code{\link{lm_robust}}
lh_robust(y ~ x + z, data = dat, linear_hypothesis = "z + 2x = 0", se_type = "classical")
lh_robust(y ~ x + z, data = dat, linear_hypothesis = "z + 2x = 0", se_type = "HC1")

Can tidy() main output and subcomponents in to a data.frame
lhro <- lh_robust(y ~ x + z, data = dat, linear_hypothesis = "z + 2x = 0")
tidy(lhro)
tidy(lhro$lm_robust)
tidy(lhro$lh)

Can use summary() to get more statistics on the main output and subcomponents.
summary(lhro)

lm_lin 27

summary(lhro$lm_robust)
summary(lhro$lh)

lm_lin Linear regression with the Lin (2013) covariate adjustment

Description

This function is a wrapper for lm_robust that is useful for estimating treatment effects with pre-
treatment covariate data. This implements the method described by Lin (2013).

Usage

lm_lin(
formula,
covariates,
data,
weights,
subset,
clusters,
se_type = NULL,
ci = TRUE,
alpha = 0.05,
return_vcov = TRUE,
try_cholesky = FALSE

)

Arguments

formula an object of class formula, as in lm, such as Y ~ Z with only one variable on the
right-hand side, the treatment

covariates a right-sided formula with pre-treatment covariates on the right hand side, such
as ~ x1 + x2 + x3.

data A data.frame

weights the bare (unquoted) names of the weights variable in the supplied data.

subset An optional bare (unquoted) expression specifying a subset of observations to
be used.

clusters An optional bare (unquoted) name of the variable that corresponds to the clusters
in the data.

se_type The sort of standard error sought. If clusters is not specified the options are
"HC0", "HC1" (or "stata", the equivalent), "HC2" (default), "HC3", or "classi-
cal". If clusters is specified the options are "CR0", "CR2" (default), or "stata"
are permissible.

ci logical. Whether to compute and return p-values and confidence intervals, TRUE
by default.

28 lm_lin

alpha The significance level, 0.05 by default.

return_vcov logical. Whether to return the variance-covariance matrix for later usage, TRUE
by default.

try_cholesky logical. Whether to try using a Cholesky decomposition to solve least squares
instead of a QR decomposition, FALSE by default. Using a Cholesky decompo-
sition may result in speed gains, but should only be used if users are sure their
model is full-rank (i.e., there is no perfect multi-collinearity)

Details

This function is simply a wrapper for lm_robust and implements the Lin estimator (see the refer-
ence below). This method pre-processes the data by taking the covariates specified in the `covariates`
argument, centering them by subtracting from each covariate its mean, and interacting them with
the treatment. If the treatment has multiple values, a series of dummies for each value is created and
each of those is interacted with the demeaned covariates. More details can be found in the Getting
Started vignette and the mathematical notes.

Value

An object of class "lm_robust".

The post-estimation commands functions summary and tidy return results in a data.frame. To get
useful data out of the return, you can use these data frames, you can use the resulting list directly,
or you can use the generic accessor functions coef, vcov, confint, and predict. Marginal effects
and uncertainty about them can be gotten by passing this object to margins from the margins.

Users who want to print the results in TeX of HTML can use the extract function and the texreg
package.

An object of class "lm_robust" is a list containing at least the following components:

coefficients the estimated coefficients

std.error the estimated standard errors

statistic the t-statistic

df the estimated degrees of freedom

p.value the p-values from a two-sided t-test using coefficients, std.error, and df

conf.low the lower bound of the 1 - alpha percent confidence interval

conf.high the upper bound of the 1 - alpha percent confidence interval

term a character vector of coefficient names

alpha the significance level specified by the user

se_type the standard error type specified by the user

res_var the residual variance

N the number of observations used

k the number of columns in the design matrix (includes linearly dependent columns!)

rank the rank of the fitted model

vcov the fitted variance covariance matrix

https://declaredesign.org/r/estimatr/articles/getting-started.html
https://declaredesign.org/r/estimatr/articles/getting-started.html
https://declaredesign.org/r/estimatr/articles/mathematical-notes.html

lm_lin 29

r.squared The R2,
R2 = 1− Sum(e[i]2)/Sum((y[i]− y∗)2),

where y∗ is the mean of y[i] if there is an intercept and zero otherwise, and e[i]
is the ith residual.

adj.r.squared The R2 but penalized for having more parameters, rank

weighted whether or not weights were applied

call the original function call

fitted.values the matrix of predicted means

We also return terms, contrasts, and treatment_levels, used by predict, and scaled_center
(the means of each of the covariates used for centering them).

References

Freedman, David A. 2008. "On Regression Adjustments in Experiments with Several Treatments."
The Annals of Applied Statistics. JSTOR, 176-96. doi:10.1214/07AOAS143.

Lin, Winston. 2013. "Agnostic Notes on Regression Adjustments to Experimental Data: Reex-
amining Freedman’s Critique." The Annals of Applied Statistics 7 (1). Institute of Mathematical
Statistics: 295-318. doi:10.1214/12AOAS583.

See Also

lm_robust

Examples

library(fabricatr)
library(randomizr)
dat <- fabricate(

N = 40,
x = rnorm(N, mean = 2.3),
x2 = rpois(N, lambda = 2),
x3 = runif(N),
y0 = rnorm(N) + x,
y1 = rnorm(N) + x + 0.35

)

dat$z <- complete_ra(N = nrow(dat))
dat$y <- ifelse(dat$z == 1, dat$y1, dat$y0)

Same specification as lm_robust() with one additional argument
lmlin_out <- lm_lin(y ~ z, covariates = ~ x, data = dat)
tidy(lmlin_out)

Works with multiple pre-treatment covariates
lm_lin(y ~ z, covariates = ~ x + x2, data = dat)

Also centers data AFTER evaluating any functions in formula
lmlin_out2 <- lm_lin(y ~ z, covariates = ~ x + log(x3), data = dat)

https://doi.org/10.1214/07-AOAS143
https://doi.org/10.1214/12-AOAS583

30 lm_robust

lmlin_out2$scaled_center["log(x3)"]
mean(log(dat$x3))

Works easily with clusters
dat$clusterID <- rep(1:20, each = 2)
dat$z_clust <- cluster_ra(clusters = dat$clusterID)

lm_lin(y ~ z_clust, covariates = ~ x, data = dat, clusters = clusterID)

Works with multi-valued treatments, whether treatment is specified as a
factor or not
dat$z_multi <- sample(1:3, size = nrow(dat), replace = TRUE)

lm_lin(y ~ z_multi, covariates = ~ x, data = dat)
lm_lin(y ~ factor(z_multi), covariates = ~ x, data = dat)

Stratified estimator with blocks
dat$blockID <- rep(1:5, each = 8)
dat$z_block <- block_ra(blocks = dat$blockID)

lm_lin(y ~ z_block, ~ factor(blockID), data = dat)

Fitting the model without an intercept provides estimates of mean outcomes
under each respective treatment condition
lm_lin(y ~ z_multi - 1, covariates = ~ x, data = dat)

Predictions are the same in equivalent models with and without an intercept
lmlin_out3 <- lm_lin(y ~ z_multi - 1, covariates = ~ x, data = dat)
lmlin_out4 <- lm_lin(y ~ z_multi, covariates = ~ x, data = dat)

predict(lmlin_out3, newdata = dat, se.fit = TRUE, interval = "confidence")
predict(lmlin_out4, newdata = dat, se.fit = TRUE, interval = "confidence")

Not run:
Can also use 'margins' package if you have it installed to get
marginal effects
library(margins)
Instruct 'margins' to treat z as a factor
lmlout <- lm_lin(y ~ factor(z_block), ~ x, data = dat)
summary(margins(lmlout))

Can output results using 'texreg'
library(texreg)
texregobj <- extract(lmlout)

End(Not run)

lm_robust Ordinary Least Squares with Robust Standard Errors

lm_robust 31

Description

This formula fits a linear model, provides a variety of options for robust standard errors, and con-
ducts coefficient tests

Usage

lm_robust(
formula,
data,
weights,
subset,
clusters,
fixed_effects,
se_type = NULL,
ci = TRUE,
alpha = 0.05,
return_vcov = TRUE,
try_cholesky = FALSE

)

Arguments

formula an object of class formula, as in lm

data A data.frame

weights the bare (unquoted) names of the weights variable in the supplied data.

subset An optional bare (unquoted) expression specifying a subset of observations to
be used.

clusters An optional bare (unquoted) name of the variable that corresponds to the clusters
in the data.

fixed_effects An optional right-sided formula containing the fixed effects that will be pro-
jected out of the data, such as ~ blockID. Do not pass multiple-fixed effects
with intersecting groups. Speed gains are greatest for variables with large num-
bers of groups and when using "HC1" or "stata" standard errors. See ’Details’.

se_type The sort of standard error sought. If clusters is not specified the options are
"HC0", "HC1" (or "stata", the equivalent), "HC2" (default), "HC3", or "classi-
cal". If clusters is specified the options are "CR0", "CR2" (default), or "stata".
Can also specify "none", which may speed up estimation of the coefficients.

ci logical. Whether to compute and return p-values and confidence intervals, TRUE
by default.

alpha The significance level, 0.05 by default.

return_vcov logical. Whether to return the variance-covariance matrix for later usage, TRUE
by default.

try_cholesky logical. Whether to try using a Cholesky decomposition to solve least squares
instead of a QR decomposition, FALSE by default. Using a Cholesky decompo-
sition may result in speed gains, but should only be used if users are sure their
model is full-rank (i.e., there is no perfect multi-collinearity)

32 lm_robust

Details

This function performs linear regression and provides a variety of standard errors. It takes a formula
and data much in the same was as lm does, and all auxiliary variables, such as clusters and weights,
can be passed either as quoted names of columns, as bare column names, or as a self-contained
vector. Examples of usage can be seen below and in the Getting Started vignette.

The mathematical notes in this vignette specify the exact estimators used by this function. The
default variance estimators have been chosen largely in accordance with the procedures in this
manual. The default for the case without clusters is the HC2 estimator and the default with clusters
is the analogous CR2 estimator. Users can easily replicate Stata standard errors in the clustered or
non-clustered case by setting `se_type` = "stata".

The function estimates the coefficients and standard errors in C++, using the RcppEigen package.
By default, we estimate the coefficients using Column-Pivoting QR decomposition from the Eigen
C++ library, although users could get faster solutions by setting `try_cholesky` = TRUE to use a
Cholesky decomposition instead. This will likely result in quicker solutions, but the algorithm does
not reliably detect when there are linear dependencies in the model and may fail silently if they
exist.

If `fixed_effects` are specified, both the outcome and design matrix are centered using the
method of alternating projections (Halperin 1962; Gaure 2013). Specifying fixed effects in this way
will result in large speed gains with standard error estimators that do not need to invert the matrix
of fixed effects. This means using "classical", "HC0", "HC1", "CR0", or "stata" standard errors
will be faster than other standard error estimators. Be wary when specifying fixed effects that may
result in perfect fits for some observations or if there are intersecting groups across multiple fixed
effect variables (e.g. if you specify both "year" and "country" fixed effects with an unbalanced panel
where one year you only have data for one country).

As with `lm()`, multivariate regression (multiple outcomes) will only admit observations into the
estimation that have no missingness on any outcome.

Value

An object of class "lm_robust".

The post-estimation commands functions summary and tidy return results in a data.frame. To get
useful data out of the return, you can use these data frames, you can use the resulting list directly,
or you can use the generic accessor functions coef, vcov, confint, and predict. Marginal effects
and uncertainty about them can be gotten by passing this object to margins from the margins, or
to emmeans in the emmeans package.

Users who want to print the results in TeX of HTML can use the extract function and the texreg
package.

If users specify a multivariate linear regression model (multiple outcomes), then some of the below
components will be of higher dimension to accommodate the additional models.

An object of class "lm_robust" is a list containing at least the following components:

coefficients the estimated coefficients

std.error the estimated standard errors

statistic the t-statistic

df the estimated degrees of freedom

https://declaredesign.org/r/estimatr/articles/getting-started.html
https://declaredesign.org/r/estimatr/articles/mathematical-notes.html
https://github.com/acoppock/Green-Lab-SOP/blob/master/Green_Lab_SOP.pdf
https://github.com/acoppock/Green-Lab-SOP/blob/master/Green_Lab_SOP.pdf

lm_robust 33

p.value the p-values from a two-sided t-test using coefficients, std.error, and df

conf.low the lower bound of the 1 - alpha percent confidence interval

conf.high the upper bound of the 1 - alpha percent confidence interval

term a character vector of coefficient names

alpha the significance level specified by the user

se_type the standard error type specified by the user

res_var the residual variance

N the number of observations used

k the number of columns in the design matrix (includes linearly dependent columns!)

rank the rank of the fitted model

vcov the fitted variance covariance matrix

r.squared The R2,
R2 = 1− Sum(e[i]2)/Sum((y[i]− y∗)2),

where y∗ is the mean of y[i] if there is an intercept and zero otherwise, and e[i]
is the ith residual.

adj.r.squared The R2 but penalized for having more parameters, rank

fstatistic a vector with the value of the F-statistic with the numerator and denominator
degrees of freedom

weighted whether or not weights were applied

call the original function call

fitted.values the matrix of predicted means

We also return terms and contrasts, used by predict. If fixed_effects are specified, then
we return proj_fstatistic, proj_r.squared, and proj_adj.r.squared, which are model fit
statistics that are computed on the projected model (after demeaning the fixed effects).

References

Abadie, Alberto, Susan Athey, Guido W Imbens, and Jeffrey Wooldridge. 2017. "A Class of
Unbiased Estimators of the Average Treatment Effect in Randomized Experiments." arXiv Pre-
Print. https://arxiv.org/abs/1710.02926v2.

Bell, Robert M, and Daniel F McCaffrey. 2002. "Bias Reduction in Standard Errors for Linear
Regression with Multi-Stage Samples." Survey Methodology 28 (2): 169-82.

Gaure, Simon. 2013. "OLS with multiple high dimensional category variables." Computational
Statistics & Data Analysis 66: 8-1. doi:10.1016/j.csda.2013.03.024

Halperin, I. 1962. "The product of projection operators." Acta Scientiarum Mathematicarum (Szeged)
23(1-2): 96-99.

MacKinnon, James, and Halbert White. 1985. "Some Heteroskedasticity-Consistent Covariance
Matrix Estimators with Improved Finite Sample Properties." Journal of Econometrics 29 (3): 305-
25. doi:10.1016/03044076(85)901587.

Pustejovsky, James E, and Elizabeth Tipton. 2016. "Small Sample Methods for Cluster-Robust
Variance Estimation and Hypothesis Testing in Fixed Effects Models." Journal of Business & Eco-
nomic Statistics. Taylor & Francis. doi:10.1080/07350015.2016.1247004.

https://arxiv.org/abs/1710.02926v2
https://doi.org/10.1016/j.csda.2013.03.024
https://doi.org/10.1016/0304-4076%2885%2990158-7
https://doi.org/10.1080/07350015.2016.1247004

34 lm_robust

Samii, Cyrus, and Peter M Aronow. 2012. "On Equivalencies Between Design-Based and Regression-
Based Variance Estimators for Randomized Experiments." Statistics and Probability Letters 82 (2).
doi:10.1016/j.spl.2011.10.024.

Examples

set.seed(15)
library(fabricatr)
dat <- fabricate(

N = 40,
y = rpois(N, lambda = 4),
x = rnorm(N),
z = rbinom(N, 1, prob = 0.4)

)

Default variance estimator is HC2 robust standard errors
lmro <- lm_robust(y ~ x + z, data = dat)

Can tidy() the data in to a data.frame
tidy(lmro)
Can use summary() to get more statistics
summary(lmro)
Can also get coefficients three ways
lmro$coefficients
coef(lmro)
tidy(lmro)$estimate
Can also get confidence intervals from object or with new 1 - `alpha`
lmro$conf.low
confint(lmro, level = 0.8)

Can recover classical standard errors
lmclassic <- lm_robust(y ~ x + z, data = dat, se_type = "classical")
tidy(lmclassic)

Can easily match Stata's robust standard errors
lmstata <- lm_robust(y ~ x + z, data = dat, se_type = "stata")
tidy(lmstata)

Easy to specify clusters for cluster-robust inference
dat$clusterID <- sample(1:10, size = 40, replace = TRUE)

lmclust <- lm_robust(y ~ x + z, data = dat, clusters = clusterID)
tidy(lmclust)

Can also match Stata's clustered standard errors
lm_robust(

y ~ x + z,
data = dat,
clusters = clusterID,
se_type = "stata"

)

Works just as LM does with functions in the formula

https://doi.org/10.1016/j.spl.2011.10.024

lm_robust_fit 35

dat$blockID <- rep(c("A", "B", "C", "D"), each = 10)

lm_robust(y ~ x + z + factor(blockID), data = dat)

Weights are also easily specified
dat$w <- runif(40)

lm_robust(
y ~ x + z,
data = dat,
weights = w,
clusters = clusterID

)

Subsetting works just as in `lm()`
lm_robust(y ~ x, data = dat, subset = z == 1)

One can also choose to set the significance level for different CIs
lm_robust(y ~ x + z, data = dat, alpha = 0.1)

We can also specify fixed effects
Speed gains with fixed effects are greatest with "stata" or "HC1" std.errors
tidy(lm_robust(y ~ z, data = dat, fixed_effects = ~ blockID, se_type = "HC1"))

Not run:
Can also use 'margins' or 'emmeans' package if you have them installed
to get marginal effects
library(margins)
lmrout <- lm_robust(y ~ x + z, data = dat)
summary(margins(lmrout))

Can output results using 'texreg'
library(texreg)
texreg(lmrout)

Using emmeans to obtain covariate-adjusted means
library(emmeans)
fiber.rlm <- lm_robust(strength ~ diameter + machine, data = fiber)
emmeans(fiber.rlm, "machine")

End(Not run)

lm_robust_fit Internal method that creates linear fits

Description

Internal method that creates linear fits

36 lm_robust_fit

Usage

lm_robust_fit(
y,
X,
yoriginal = NULL,
Xoriginal = NULL,
weights,
cluster,
fixed_effects = NULL,
ci = TRUE,
se_type,
has_int,
alpha = 0.05,
return_vcov = TRUE,
return_fit = TRUE,
try_cholesky = FALSE,
iv_stage = list(0)

)

Arguments

y numeric outcome vector

X numeric design matrix

yoriginal numeric outcome vector, unprojected if there are fixed effects

Xoriginal numeric design matrix, unprojected if there are fixed effects. Any column named
"(Intercept)" will be dropped

weights numeric weights vector

cluster numeric cluster vector

fixed_effects character matrix of fixed effect groups

ci boolean that when T returns confidence intervals and p-values

se_type character denoting which kind of SEs to return

has_int logical, whether the model has an intercept, used for R2

alpha numeric denoting the test size for confidence intervals

return_vcov logical, whether to return the vcov matrix for later usage

return_fit logical, whether to return fitted values

try_cholesky logical, whether to try using a cholesky decomposition to solve LS instead of a
QR decomposition

iv_stage list of length two, the first element denotes the stage of 2SLS IV estimation,
where 0 is used for OLS. The second element is only used for the second
stage of 2SLS and has the first stage design matrix. For OLS, the default,
list(0), for the first stage of 2SLS list(1), for second stage of 2SLS list(2,
first_stage_design_mat).

na.omit_detailed.data.frame 37

na.omit_detailed.data.frame

Extra logging on na.omit handler

Description

Extra logging on na.omit handler

Usage

na.omit_detailed.data.frame(object)

Arguments

object a data.frame

Value

a normal omit object, with the extra attribute why_omit, which contains the leftmost column con-
taining an NA for each row that was dropped, by column name, if any were dropped.

See Also

na.omit

permutations_to_condition_pr_mat

Builds condition probability matrices for Horvitz-Thompson estima-
tion from permutation matrix

Description

Builds condition probability matrices for Horvitz-Thompson estimation from permutation matrix

Usage

permutations_to_condition_pr_mat(permutations)

Arguments

permutations A matrix where the rows are units and the columns are different treatment per-
mutations; treated units must be represented with a 1 and control units with a
0

38 predict.lm_robust

Details

This function takes a matrix of permutations, for example from the obtain_permutation_matrix
function in randomizr or through simulation and returns a 2n*2n matrix that can be used to fully
specify the design for horvitz_thompson estimation. You can read more about these matrices in
the documentation for the declaration_to_condition_pr_mat function.

This is done by passing this matrix to the condition_pr_mat argument of

Value

a numeric 2n*2n matrix of marginal and joint condition treatment probabilities to be passed to the
condition_pr_mat argument of horvitz_thompson.

See Also

declare_ra, declaration_to_condition_pr_mat

Examples

Complete randomization
perms <- replicate(1000, sample(rep(0:1, each = 50)))
comp_pr_mat <- permutations_to_condition_pr_mat(perms)

Arbitrary randomization
possible_treats <- cbind(

c(1, 1, 0, 1, 0, 0, 0, 1, 1, 0),
c(0, 1, 1, 0, 1, 1, 0, 1, 0, 1),
c(1, 0, 1, 1, 1, 1, 1, 0, 0, 0)

)
arb_pr_mat <- permutations_to_condition_pr_mat(possible_treats)
Simulating a column to be realized treatment
z <- possible_treats[, sample(ncol(possible_treats), size = 1)]
y <- rnorm(nrow(possible_treats))
horvitz_thompson(y ~ z, condition_pr_mat = arb_pr_mat)

predict.lm_robust Predict method for lm_robust object

Description

Predict method for lm_robust object

Usage

S3 method for class 'lm_robust'
predict(
object,
newdata,

predict.lm_robust 39

se.fit = FALSE,
interval = c("none", "confidence", "prediction"),
alpha = 0.05,
na.action = na.pass,
pred.var = NULL,
weights,
...

)

Arguments

object an object of class ’lm_robust’

newdata a data frame in which to look for variables with which to predict

se.fit logical. Whether standard errors are required, default = FALSE

interval type of interval calculation. Can be abbreviated, default = none

alpha numeric denoting the test size for confidence intervals

na.action function determining what should be done with missing values in newdata. The
default is to predict NA.

pred.var the variance(s) for future observations to be assumed for prediction intervals.

weights variance weights for prediction. This can be a numeric vector or a bare (un-
quoted) name of the weights variable in the supplied newdata.

... other arguments, unused

Details

Produces predicted values, obtained by evaluating the regression function in the frame newdata for
fits from lm_robust and lm_lin. If the logical se.fit is TRUE, standard errors of the predictions are
calculated. Setting intervals specifies computation of confidence or prediction (tolerance) intervals
at the specified level, sometimes referred to as narrow vs. wide intervals.

The equation used for the standard error of a prediction given a row of data x is:√
(xΣx′),

where Σ is the estimated variance-covariance matrix from lm_robust.

The prediction intervals are for a single observation at each case in newdata with error variance(s)
pred.var. The the default is to assume that future observations have the same error variance as
those used for fitting, which is gotten from the fit lm_robust object. If weights is supplied, the
inverse of this is used as a scale factor. If the fit was weighted, the default is to assume constant
prediction variance, with a warning.

Examples

Set seed
set.seed(42)

Simulate data
n <- 10
dat <- data.frame(y = rnorm(n), x = rnorm(n))

40 starprep

Fit lm
lm_out <- lm_robust(y ~ x, data = dat)
Get predicted fits
fits <- predict(lm_out, newdata = dat)
With standard errors and confidence intervals
fits <- predict(lm_out, newdata = dat, se.fit = TRUE, interval = "confidence")

Use new data as well
new_dat <- data.frame(x = runif(n, 5, 8))
predict(lm_out, newdata = new_dat)

You can also supply custom variance weights for prediction intervals
new_dat$w <- runif(n)
predict(lm_out, newdata = new_dat, weights = w, interval = "prediction")

Works for 'lm_lin' models as well
dat$z <- sample(1:3, size = nrow(dat), replace = TRUE)
lmlin_out1 <- lm_lin(y ~ z, covariates = ~ x, data = dat)
predict(lmlin_out1, newdata = dat, interval = "prediction")

Predictions from Lin models are equivalent with and without an intercept
and for multi-level treatments entered as numeric or factor variables
lmlin_out2 <- lm_lin(y ~ z - 1, covariates = ~ x, data = dat)
lmlin_out3 <- lm_lin(y ~ factor(z), covariates = ~ x, data = dat)
lmlin_out4 <- lm_lin(y ~ factor(z) - 1, covariates = ~ x, data = dat)

predict(lmlin_out2, newdata = dat, interval = "prediction")
predict(lmlin_out3, newdata = dat, interval = "prediction")
predict(lmlin_out4, newdata = dat, interval = "prediction")

In Lin models, predict will stop with an error message if new
treatment levels are supplied in the new data
new_dat$z <- sample(0:3, size = nrow(new_dat), replace = TRUE)
predict(lmlin_out, newdata = new_dat)

starprep Prepare model fits for stargazer

Description

Prepare model fits for stargazer

Usage

starprep(
...,
stat = c("std.error", "statistic", "p.value", "ci", "df"),

starprep 41

se_type = NULL,
clusters = NULL,
alpha = 0.05

)

Arguments

... a list of lm_robust or lm objects

stat either "std.error" (the default), "statistic" (the t-statistic), "p.value", "ci", or "df"

se_type (optional) if any of the objects are lm objects, what standard errors should be
used. Must only be one type and will be used for all lm objects passed to
starprep. See commarobust for more.

clusters (optional) if any of the objects are lm objects, what clusters should be used, if
clusters should be used. Must only be one vector and will be used for all lm
objects passed to starprep. See commarobust for more.

alpha (optional) if any of the objects are lm objects, what significance level should be
used for the p-values or confidence intervals

Details

Used to help extract statistics from lists of model fits for stargazer. Prefers lm_robust objects, but
because stargazer does not work with lm_robust objects, starprep can also take lm objects and
calls commarobust to get the preferred, robust statistics.

Value

a list of vectors of extracted statistics for stargazers

Examples

library(stargazer)

lm1 <- lm(mpg ~ hp, data = mtcars)
lm2 <- lm(mpg ~ hp + wt, data = mtcars)

Use default "HC2" standard errors
stargazer(lm1, lm2,

se = starprep(lm1, lm2),
p = starprep(lm1, lm2, stat = "p.value"),
omit.stat = "f")

NB: We remove the F-stat because stargazer only can use original F-stat
which uses classical SEs

Use default "CR2" standard errors with clusters
stargazer(lm1, lm2,

se = starprep(lm1, lm2, clusters = mtcars$carb),
p = starprep(lm1, lm2, clusters = mtcars$carb, stat = "p.value"),
omit.stat = "f")

Can also specify significance levels and different standard errors

42 starprep

stargazer(lm1, lm2,
ci.custom = starprep(lm1, lm2, se_type = "HC3", alpha = 0.1, stat = "ci"),
omit.stat = "f")

Index

∗ datasets
alo_star_men, 2

∗ estimatr glancers
estimatr_glancers, 11

∗ estimatr tidiers
estimatr_tidiers, 13

alo_star_men, 2

commarobust, 3

declaration_to_condition_pr_mat, 4, 16,
18, 19, 38

declare_ra, 4, 5, 17, 18, 20, 38
difference_in_means, 6
difference_in_means(), 13, 14

estimatr, 10
estimatr-package (estimatr), 10
estimatr_glancers, 11
estimatr_tidiers, 13
extract, 28, 32
extract.iv_robust

(extract.robust_default), 14
extract.lm_robust

(extract.robust_default), 14
extract.robust_default, 14

gen_pr_matrix_cluster, 16
generics::glance(), 13
generics::tidy(), 14
glance.difference_in_means

(estimatr_glancers), 11
glance.horvitz_thompson

(estimatr_glancers), 11
glance.iv_robust (estimatr_glancers), 11
glance.lh_robust (estimatr_glancers), 11
glance.lm_robust (estimatr_glancers), 11

horvitz_thompson, 5, 16, 16, 38
horvitz_thompson(), 13, 14

iv_robust, 21
iv_robust(), 13, 14

lh_robust, 25
linearHypothesis, 25, 26
lm, 6, 17, 27, 31, 32
lm_lin, 8, 27
lm_lin(), 13
lm_robust, 4, 7, 15, 23, 25–29, 30, 39
lm_robust(), 13, 14
lm_robust_fit, 35

margins, 28, 32

na.omit, 37
na.omit_detailed.data.frame, 37

obtain_permutation_matrix, 38

permutations_to_condition_pr_mat, 5, 19,
37

predict.lm_robust, 38

starprep, 40

tidy, 7, 19, 23, 28, 32
tidy.difference_in_means

(estimatr_tidiers), 13
tidy.horvitz_thompson

(estimatr_tidiers), 13
tidy.iv_robust (estimatr_tidiers), 13
tidy.lh (estimatr_tidiers), 13
tidy.lh_robust (estimatr_tidiers), 13
tidy.lm_robust (estimatr_tidiers), 13

43

	alo_star_men
	commarobust
	declaration_to_condition_pr_mat
	difference_in_means
	estimatr
	estimatr_glancers
	estimatr_tidiers
	extract.robust_default
	gen_pr_matrix_cluster
	horvitz_thompson
	iv_robust
	lh_robust
	lm_lin
	lm_robust
	lm_robust_fit
	na.omit_detailed.data.frame
	permutations_to_condition_pr_mat
	predict.lm_robust
	starprep
	Index

