
Package ‘escalation’
June 27, 2024

Type Package

Title A Modular Approach to Dose-Finding Clinical Trials

Version 0.1.10

Date 2024-06-26

Maintainer Kristian Brock <kristian.brock@gmail.com>

Description Methods for working with dose-finding clinical trials. We provide
implementations of many dose-finding clinical trial designs, including the
continual reassessment method (CRM) by O'Quigley et al. (1990)
<doi:10.2307/2531628>, the toxicity probability interval (TPI) design by Ji
et al. (2007) <doi:10.1177/1740774507079442>, the modified TPI (mTPI) design
by Ji et al. (2010) <doi:10.1177/1740774510382799>, the Bayesian optimal
interval design (BOIN) by Liu & Yuan (2015) <doi:10.1111/rssc.12089>, EffTox
by Thall & Cook (2004) <doi:10.1111/j.0006-341X.2004.00218.x>; the design of
Wages & Tait (2015) <doi:10.1080/10543406.2014.920873>, and the 3+3
described by Korn et al. (1994) <doi:10.1002/sim.4780131802>. All designs
are implemented with a common interface. We also offer optional additional
classes to tailor the behaviour of all designs, including avoiding skipping
doses, stopping after n patients have been treated at the recommended dose,
stopping when a toxicity condition is met, or demanding that n patients are
treated before stopping is allowed. By daisy-chaining together these classes
using the pipe operator from 'magrittr', it is simple to tailor the
behaviour of a dose-finding design so it behaves how the trialist wants.
Having provided a flexible interface for specifying designs, we then provide
functions to run simulations and calculate dose-paths for future cohorts of
patients.

License GPL (>= 3)

Encoding UTF-8

Depends magrittr

Imports dplyr, tidyr (>= 1.0), tidyselect, stringr, purrr, tibble,
ggplot2, gtools, dfcrm, BOIN, trialr (>= 0.1.5), DiagrammeR,
RColorBrewer, viridis, binom, R6, mvtnorm, testthat

RoxygenNote 7.2.3

1

https://doi.org/10.2307/2531628
https://doi.org/10.1177/1740774507079442
https://doi.org/10.1177/1740774510382799
https://doi.org/10.1111/rssc.12089
https://doi.org/10.1111/j.0006-341X.2004.00218.x
https://doi.org/10.1080/10543406.2014.920873
https://doi.org/10.1002/sim.4780131802

2 Contents

URL https://brockk.github.io/escalation/,

https://github.com/brockk/escalation

BugReports https://github.com/brockk/escalation/issues

Suggests knitr, rmarkdown, covr

VignetteBuilder knitr

NeedsCompilation no

Author Kristian Brock [aut, cre] (<https://orcid.org/0000-0002-3921-0166>),
Daniel Slade [aut] (<https://orcid.org/0000-0001-6063-1283>),
Michael Sweeting [aut] (<https://orcid.org/0000-0003-0980-8965>)

Repository CRAN

Date/Publication 2024-06-27 11:50:07 UTC

Contents
escalation-package . 4
as_tibble.dose_paths . 5
as_tibble.selector . 5
as_tibble.simulations_collection . 6
calculate_probabilities . 7
check_dose_selector_consistency . 8
cohort . 8
cohorts_of_n . 9
continue . 10
convergence_plot . 10
CorrelatedPatientSample . 11
crystallised_dose_paths . 13
demand_n_at_dose . 14
dont_skip_doses . 15
doses_given . 16
dose_admissible . 17
dose_indices . 18
dose_paths . 18
dose_paths_function . 19
eff . 19
eff_at_dose . 20
eff_limit . 21
empiric_eff_rate . 22
empiric_tox_rate . 22
enforce_three_plus_three . 23
fit . 24
follow_path . 24
get_boin . 25
get_boin12 . 26
get_dfcrm . 28
get_dfcrm_tite . 29

https://brockk.github.io/escalation/
https://github.com/brockk/escalation
https://github.com/brockk/escalation/issues
https://orcid.org/0000-0002-3921-0166
https://orcid.org/0000-0001-6063-1283
https://orcid.org/0000-0003-0980-8965

Contents 3

get_dose_paths . 31
get_empiric_crm_skeleton_weights . 31
get_mtpi . 32
get_mtpi2 . 34
get_potential_outcomes . 36
get_random_selector . 37
get_three_plus_three . 38
get_tpi . 39
get_trialr_crm . 41
get_trialr_crm_tite . 43
get_trialr_efftox . 44
get_trialr_nbg . 45
get_trialr_nbg_tite . 47
get_wages_and_tait . 49
graph_paths . 50
is_randomising . 51
linear_follow_up_weight . 52
mean_prob_eff . 53
mean_prob_tox . 54
median_prob_eff . 54
median_prob_tox . 55
model_frame . 56
num_cohort_outcomes . 57
num_doses . 57
num_dose_path_nodes . 58
num_eff . 59
num_patients . 60
num_tox . 60
n_at_dose . 61
n_at_recommended_dose . 62
parse_phase1_2_outcomes . 62
parse_phase1_outcomes . 63
PatientSample . 65
phase1_2_outcomes_to_cohorts . 67
phase1_outcomes_to_cohorts . 69
prob_administer . 70
prob_eff_quantile . 70
prob_recommend . 71
prob_tox_exceeds . 72
prob_tox_quantile . 73
prob_tox_samples . 74
recommended_dose . 75
selector . 76
selector_factory . 79
select_boin12_obd . 80
select_boin_mtd . 82
select_dose_by_cibp . 83
select_mtpi2_mtd . 84

4 escalation-package

select_mtpi_mtd . 86
select_tpi_mtd . 88
simulate_compare . 90
simulate_trials . 94
simulations . 97
simulations_collection . 99
simulation_function . 100
spread_paths . 100
stack_sims_vert . 101
stop_at_n . 102
stop_when_n_at_dose . 104
stop_when_too_toxic . 105
stop_when_tox_ci_covered . 106
supports_sampling . 108
three_plus_three . 109
tox . 110
tox_at_dose . 110
tox_limit . 111
tox_target . 112
trial_duration . 112
try_rescue_dose . 113
utility . 114
weight . 115

Index 116

escalation-package The ’escalation’ package.

Description

escalation provides methods for working with dose-finding clinical trials. We provide implemen-
tations of many dose-finding clinical trial designs, ncluding the continual reassessment method
(CRM) by O’Quigley et al. (1990) <doi:10.2307/2531628>, the toxicity probability interval (TPI)
design by Ji et al. (2007) <doi:10.1177/1740774507079442>, the modified TPI (mTPI) design by
Ji et al. (2010) <doi:10.1177/1740774510382799>, the Bayesian optimal interval design (BOIN) by
Liu & Yuan (2015) <doi:10.1111/rssc.12089>, EffTox by Thall & Cook (2004) <doi:10.1111/j.0006-
341X.2004.00218.x>; the design of Wages & Tait (2015) <doi:10.1080/10543406.2014.920873>,
and the 3+3 described by Korn et al. (1994) <doi:10.1002/sim.4780131802>. All designs are imple-
mented with a common interface. We also offer optional additional classes to tailor the behaviour
of all designs, including avoiding skipping doses, stopping after n patients have been treated at the
recommended dose, stopping when a toxicity condition is met, or demanding that n patients are
treated before stopping is allowed. By daisy-chaining together these classes using the pipe operator
from ’magrittr’, it is simple to tailor the behaviour of a dose-finding design so it behaves how the
trialist wants. Having provided a flexible interface for specifying designs, we then provide functions
to run simulations and calculate dose-paths for future cohorts of patients.

as_tibble.dose_paths 5

as_tibble.dose_paths Cast dose_paths object to tibble.

Description

Cast dose_paths object to tibble.

Usage

S3 method for class 'dose_paths'
as_tibble(x, ...)

Arguments

x Object of class dose_finding_paths.

... Extra args passed onwards.

Value

Object of class tibble

as_tibble.selector Cast dose_selector object to tibble.

Description

Cast dose_selector object to tibble.

Usage

S3 method for class 'selector'
as_tibble(x, ...)

Arguments

x Object of class dose_selector.

... Extra args passed onwards.

Value

Object of class tibble

6 as_tibble.simulations_collection

as_tibble.simulations_collection

Convert a simulations_collection to a tibble

Description

Cumulative statistics are shown to gauge how the simulations converge.

Usage

S3 method for class 'simulations_collection'
as_tibble(x, target_dose = NULL, alpha = 0.05, ...)

Arguments

x object of type simulations_collection

target_dose numerical dose index, or NULL (default) for all doses

alpha significance level for symmetrical confidence intervals

... extra args are ignored

Value

a tibble with cols:

• dose, the dose-level

• n, cumulative inference using the first n simulated iterations

• design.x, The first design in the comparison, aka design X

• hit.x, logical showing if design X recommended dose in iterate n

• design.y, The second design in the comparison, aka design Y

• hit.x, logical showing if design Y recommended dose in iterate n

• X, cumulative sum of hit.x within dose, i.e. count of recommendations

• X2, cumulative sum of hit.x^2 within dose

• Y, cumulative sum of hit.y within dose, i.e. count of recommendations

• Y2, cumulative sum of hit.y^2 within dose

• XY, cumulative sum of hit.x * hit.y within dose

• psi1, X / n

• psi2, Y / n

• v_psi1, variance of psi1

• v_psi2, variance of psi2

• cov_psi12, covariance of psi1 and psi2

• delta, psi1 - psi2

calculate_probabilities 7

• v_delta, variance of delta

• se_delta, standard error of delta

• delta_l, delta - q * se_delta, where q is alpha / 2 normal quantile

• delta_u, delta + q * se_delta, where q is alpha / 2 normal quantile

• comparison, Label of design.x vs design.y, using design names

calculate_probabilities

Calculate dose-path probabilities

Description

Crystallise a set of dose_paths with probabilities to calculate how likely each path is. Once prob-
abilised in this way, the probabilities of the terminal nodes in this set of paths will sum to 1. This
allows users to calculate operating characteristics.

Usage

calculate_probabilities(dose_paths, true_prob_tox, true_prob_eff = NULL, ...)

Arguments

dose_paths Object of type dose_paths

true_prob_tox Numeric vector, true probability of toxicity.

true_prob_eff vector of true efficacy probabilities, optionally NULL if efficacy not analysed.

... Extra parameters

See Also

dose_paths

Examples

Phase 1 example.
Calculate dose paths for the first three cohorts in a 3+3 trial of 5 doses:
paths <- get_three_plus_three(num_doses = 5) %>%

get_dose_paths(cohort_sizes = c(3, 3, 3))

Set the true probabilities of toxicity
true_prob_tox <- c(0.12, 0.27, 0.44, 0.53, 0.57)
And calculate exact operating performance
x <- paths %>% calculate_probabilities(true_prob_tox)
prob_recommend(x)

Phase 1/2 example.
prob_select = c(0.1, 0.3, 0.5, 0.07, 0.03)
selector_factory <- get_random_selector(prob_select = prob_select,

8 cohort

supports_efficacy = TRUE)
paths <- selector_factory %>% get_dose_paths(cohort_sizes = c(2, 2))
true_prob_eff <- c(0.27, 0.35, 0.41, 0.44, 0.45)
x <- paths %>% calculate_probabilities(true_prob_tox = true_prob_tox,

true_prob_eff = true_prob_eff)
prob_recommend(x)

check_dose_selector_consistency

Check the consistency of a dose_selector instance

Description

Check the consistency of a dose_selector instance

Usage

check_dose_selector_consistency(x)

Arguments

x dose_selector

Examples

boin_fitter <- get_boin(num_doses = 5, target = 0.3)
x <- fit(boin_fitter, "1NNN")
check_dose_selector_consistency(x)

cohort Cohort numbers of evaluated patients.

Description

Get a vector of integers that reflect the cohorts to which the evaluated patients belong.

Usage

cohort(x, ...)

Arguments

x Object of type selector.

... Extra args are passed onwards.

cohorts_of_n 9

Value

an integer vector

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('1NNN 2NTN')
fit %>% cohort()

cohorts_of_n Sample times between patient arrivals using the exponential distribu-
tion.

Description

Sample times between patient arrivals using the exponential distribution.

Usage

cohorts_of_n(n = 3, mean_time_delta = 1)

Arguments

n integer, sample arrival times for this many patients.

mean_time_delta

the average gap between patient arrival times. I.e. the reciprocal of the rate
parameter in an Exponential distribution.

Value

data.frame with column time_delta containing durations of time between patient arrivals.

Examples

cohorts_of_n()
cohorts_of_n(n = 10, mean_time_delta = 5)

10 convergence_plot

continue Should this dose-finding experiment continue?

Description

Should this dose-finding experiment continue? Or have circumstances prevailed that dictate this
trial should stop? This method is critical to the automatic calculation of statistical operating char-
acteristics and dose-pathways. You add stopping behaviours to designs using calls like stop_at_n
and stop_when_too_toxic.

Usage

continue(x, ...)

Arguments

x Object of type selector.

... Extra args are passed onwards.

Value

logical

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model1 <- get_dfcrm(skeleton = skeleton, target = target)
fit1 <- model1 %>% fit('1NNN 2NTN')
fit1 %>% continue()

model2 <- get_dfcrm(skeleton = skeleton, target = target) %>%
stop_at_n(n = 6)

fit2 <- model2 %>% fit('1NNN 2NTN')
fit2 %>% continue()

convergence_plot Plot the convergence processes from a collection of simulations.

Description

Plot the convergence processes from a collection of simulations.

Usage

convergence_plot(x, ...)

CorrelatedPatientSample 11

Arguments

x object of type simulations_collection

... extra args are passed onwards to stack_sims_vert

Value

a ggplot2 plot

Examples

Not run:
See ? simulate_compare

End(Not run)

CorrelatedPatientSample

A sample of patients that experience correlated events in simulations.

Description

Class to house the latent random variables that govern toxicity and efficacy events in patients. In-
stances of this class can be used in simulation-like tasks to effectively use the same simulated
individuals in different designs, thus supporting reduced Monte Carlo error and more efficient com-
parison. This class differs from PatientSample in that the latent variables that underlie efficacy and
toxicity events, and therefore those events themselves, are correlated, e.g. for positive association, a
patient that experiences toxicity has increased probability of experiencing efficacy too. Correlated
uniformly-distributed variables are obtained by inverting bivariate normal variables. The extent to
which the events are correlated is controlled by rho, the correlation of the two normal variables.

Super class

escalation::PatientSample -> CorrelatedPatientSample

Public fields

num_patients (‘integer(1)‘)

mu (‘numeric(2)‘)

sigma (‘matrix(2, 2)‘)

12 CorrelatedPatientSample

Methods

Public methods:

• CorrelatedPatientSample$new()

• CorrelatedPatientSample$expand_to()

• CorrelatedPatientSample$clone()

Method new(): Creator.

Usage:
CorrelatedPatientSample$new(
num_patients = 0,
time_to_tox_func = function() runif(n = 1),
time_to_eff_func = function() runif(n = 1),
rho = 0

)

Arguments:

num_patients (‘integer(1)‘) Number of patients.
time_to_tox_func (‘function‘) function taking no args that returns a single time of toxicity,

given that toxicity occurs.
time_to_eff_func (‘function‘) function taking no args that returns a single time of efficacy,

given that efficacy occurs.
rho (‘integer(1)‘) correlation of toxicity and efficacy latent variables.

Returns: [CorrelatedPatientSample].

Method expand_to(): Expand sample to size at least num_patients

Usage:
CorrelatedPatientSample$expand_to(num_patients)

Arguments:

num_patients (‘integer(1)‘).

Method clone(): The objects of this class are cloneable with this method.

Usage:
CorrelatedPatientSample$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Sweeting, M., Slade, D., Jackson, D., & Brock, K. (2024). Potential outcome simulation for effi-
cient head-to-head comparison of adaptive dose-finding designs. arXiv preprint arXiv:2402.15460

crystallised_dose_paths 13

crystallised_dose_paths

Dose-paths with probabilities attached.

Description

dose_paths reflect all possible paths a dose-finding trial may take. When the probability of those
paths is calculated using an assumed set of true dose-event probabilities, in this package those paths
are said to be crysallised. Once crystallised, operating charactersitics can be calculated.

Usage

crystallised_dose_paths(
dose_paths,
true_prob_tox,
true_prob_eff = NULL,
terminal_nodes

)

Arguments

dose_paths Object of type dose_paths

true_prob_tox vector of toxicity probabilities at doses 1..n

true_prob_eff vector of efficacy probabilities at doses 1..n, optionally NULL if efficacy not
evaluated.

terminal_nodes tibble of terminal nodes on the dose-paths

Value

An object of type crystallised_dose_paths

Examples

Calculate dose paths for the first three cohorts in a 3+3 trial of 5 doses:
paths <- get_three_plus_three(num_doses = 5) %>%

get_dose_paths(cohort_sizes = c(3, 3, 3))

Set the true probabilities of toxicity
true_prob_tox <- c(0.12, 0.27, 0.44, 0.53, 0.57)
Crytallise the paths with the probabilities of toxicity
x <- paths %>% calculate_probabilities(true_prob_tox)
And then examine, for example, the probabilities of recommending each dose
at the terminal nodes of these paths:
prob_recommend(x)

14 demand_n_at_dose

demand_n_at_dose Demand there are n patients at a dose before condisdering stopping.

Description

This method continues a dose-finding trial until there are n patients at a dose. Once that condition
is met, it delegates stopping responsibility to its parent dose selector, whatever that might be. This
class is greedy in that it meets its own needs before asking any other selectors in a chain what they
want. Thus, different behaviours may be achieved by nesting dose selectors in different orders. See
examples.

Usage

demand_n_at_dose(parent_selector_factory, n, dose)

Arguments

parent_selector_factory

Object of type selector_factory.

n Continue at least until there are n at a dose.

dose 'any' to continue until there are n at any dose; 'recommended' to continue until
there are n at the recommended dose; or an integer to continue until there are n
at a particular dose-level.

Value

an object of type selector_factory that can fit a dose-finding model to outcomes.

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25

This model will demand 9 at any dose before it countenances stopping.
model1 <- get_dfcrm(skeleton = skeleton, target = target) %>%

demand_n_at_dose(n = 9, dose = 'any')

This model will recommend continuing:
model1 %>% fit('1NNT 1NNN 2TNN 2NNN') %>% continue()
It tells you to continue because there is no selector considering when
you should stop - dfcrm implements no stopping rule by default.

In contrast, we can add a stopping selector to discern the behaviour of
demand_n_at_dose. We will demand 9 are seen at the recommended dose before
stopping is permitted in model3:
model2 <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_at_n(n = 12)
model3 <- get_dfcrm(skeleton = skeleton, target = target) %>%

dont_skip_doses 15

stop_at_n(n = 12) %>%
demand_n_at_dose(n = 9, dose = 'recommended')

This model advocates stopping because 12 patients are seen in total:
model2 %>% fit('1NNN 1NNN 2TNN 2NNN') %>% continue()
But this model advocates continuing because 9 patients have not been seen
at any dose yet:
model3 %>% fit('1NNN 1NNN 2TNN 2NNN') %>% continue()
This shows how demand_n_at_dose overrides stopping behaviours that come
before it in the daisychain.

Once 9 are seen at the recommended dose, the decision to stop is made:
fit <- model3 %>% fit('1NNN 1NNN 2TNN 2NNN 2TTN')
fit %>% continue()
fit %>% recommended_dose()

dont_skip_doses Prevent skipping of doses.

Description

This method optionally prevents dose selectors from skipping doses when escalating and / or deesca-
lating. The default is that skipping when escalating is prevented but skipping when deescalating is
permitted, but both of these behaviours can be altered.

Usage

dont_skip_doses(
parent_selector_factory,
when_escalating = TRUE,
when_deescalating = FALSE

)

Arguments

parent_selector_factory

Object of type selector_factory.

when_escalating

TRUE to prevent skipping when attempting to escalate.

when_deescalating

TRUE to prevent skipping when attempting to deescalate.

Value

an object of type selector_factory that can fit a dose-finding model to outcomes.

16 doses_given

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model1 <- get_dfcrm(skeleton = skeleton, target = target) %>%

dont_skip_doses()
fit1 <- model1 %>% fit('1NNN')

model2 <- get_dfcrm(skeleton = skeleton, target = target)
fit2 <- model2 %>% fit('1NNN')

fit1 will not skip doses
fit1 %>% recommended_dose()
But fit2 will:
fit2 %>% recommended_dose()

Similar demonstration for de-escalation
model1 <- get_dfcrm(skeleton = skeleton, target = target) %>%

dont_skip_doses(when_deescalating = TRUE)
fit1 <- model1 %>% fit('1NNN 2N 3TTT')

model2 <- get_dfcrm(skeleton = skeleton, target = target)
fit2 <- model2 %>% fit('1NNN 2N 3TTT')

fit1 will not skip doses
fit1 %>% recommended_dose()
But fit2 will:
fit2 %>% recommended_dose()

doses_given Doses given to patients.

Description

Get a vector of the dose-levels that have been administered to patients.

Usage

doses_given(x, ...)

Arguments

x Object of type selector.

... Extra args are passed onwards.

Value

an integer vector

dose_admissible 17

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('1NNN 2NTN')
fit %>% doses_given()

dose_admissible Is each dose admissible?

Description

Get a vector of logical values reflecting whether each dose is admissible. Admissibility is defined
in different ways for different models, and may not be defined at all in some models. For instance,
in the TPI method, doses are inadmissible when the posterior probability is high that the toxicity
rate exceeds the target value. In contrast, admissibility is not defined in the general CRM model
(but it can be added with auxiliary classes). In this latter case, doses are implicitly considered to be
admissible, by default.

Usage

dose_admissible(x, ...)

Arguments

x Object of class selector

... arguments passed to other methods

Value

a logical vector

Examples

outcomes <- '1NNN 2TTT'

TPI example. This method defines admissibility.
fit1 <- get_tpi(num_doses = 5, target = 0.3, k1 = 1, k2 = 1.5,

exclusion_certainty = 0.95) %>%
fit(outcomes)

fit1 %>% dose_admissible()

Ordinary CRM example with no admissibility function.
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
fit2 <- get_dfcrm(skeleton = skeleton, target = target) %>%

fit(outcomes)
fit2 %>% dose_admissible()

18 dose_paths

Same CRM example with added admissibility function
fit3 <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_when_too_toxic(dose = 1, tox_threshold = target, confidence = 0.8) %>%
fit(outcomes)

fit3 %>% dose_admissible()

dose_indices Dose indices

Description

Get the integers from 1 to the number of doses under investigation.

Usage

dose_indices(x, ...)

Arguments

x Object of type selector.

... Extra args are passed onwards.

Value

an integer vector

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('1NNN 2NTN')
fit %>% dose_indices()

dose_paths Dose pathways

Description

A dose-escalation design exists to select doses in response to observed outcomes. The entire space
of possible responses can be calculated to show the behaviour of a design in response to all feasible
outcomes. The get_dose_paths function performs that task and returns an instance of this object.

Usage

dose_paths()

dose_paths_function 19

See Also

selector

Examples

Calculate dose-paths for the 3+3 design:
paths <- get_three_plus_three(num_doses = 5) %>%

get_dose_paths(cohort_sizes = c(3, 3))

dose_paths_function Get function for calculating dose pathways.

Description

This function does not need to be called by users. It is used internally.

Usage

dose_paths_function(selector_factory)

Arguments

selector_factory

Object of type selector_factory.

Value

A function.

eff Binary efficacy outcomes.

Description

Get a vector of the binary efficacy outcomes for evaluated patients.

Usage

eff(x, ...)

Arguments

x Object of type selector.

... Extra args are passed onwards.

20 eff_at_dose

Value

an integer vector

Examples

prob_select = c(0.1, 0.3, 0.5, 0.07, 0.03)
model <- get_random_selector(prob_select = prob_select,

supports_efficacy = TRUE)
x <- model %>% fit('1NTN 2EN 5BB')
eff(x)

eff_at_dose Number of toxicities seen at each dose.

Description

Get the number of toxicities seen at each dose under investigation.

Usage

eff_at_dose(x, ...)

Arguments

x Object of class selector

... arguments passed to other methods

Value

an integer vector

Examples

prob_select = c(0.1, 0.3, 0.5, 0.07, 0.03)
model <- get_random_selector(prob_select = prob_select,

supports_efficacy = TRUE)
x <- model %>% fit('1NTN 2EN 5BB')
eff_at_dose(x)

eff_limit 21

eff_limit Efficacy rate limit

Description

Get the minimum permissible efficacy rate, if supported. NULL if not.

Usage

eff_limit(x, ...)

Arguments

x Object of type selector.

... Extra args are passed onwards.

Value

numeric

Examples

efftox_priors <- trialr::efftox_priors
p <- efftox_priors(alpha_mean = -7.9593, alpha_sd = 3.5487,

beta_mean = 1.5482, beta_sd = 3.5018,
gamma_mean = 0.7367, gamma_sd = 2.5423,
zeta_mean = 3.4181, zeta_sd = 2.4406,
eta_mean = 0, eta_sd = 0.2,
psi_mean = 0, psi_sd = 1)

real_doses = c(1.0, 2.0, 4.0, 6.6, 10.0)
model <- get_trialr_efftox(real_doses = real_doses,

efficacy_hurdle = 0.5, toxicity_hurdle = 0.3,
p_e = 0.1, p_t = 0.1,
eff0 = 0.5, tox1 = 0.65,
eff_star = 0.7, tox_star = 0.25,
priors = p, iter = 1000, chains = 1, seed = 2020)

x <- model %>% fit('1N 2E 3B')
eff_limit(x)

22 empiric_tox_rate

empiric_eff_rate Observed efficacy rate at each dose.

Description

Get the empirical or observed efficacy rate seen at each dose under investigation. This is simply the
number of efficacies divded by the number of patients evaluated.

Usage

empiric_eff_rate(x, ...)

Arguments

x Object of class selector

... arguments passed to other methods

Value

a numerical vector

Examples

prob_select = c(0.1, 0.3, 0.5, 0.07, 0.03)
model <- get_random_selector(prob_select = prob_select,

supports_efficacy = TRUE)
x <- model %>% fit('1NTN 2EN 5BB')
empiric_tox_rate(x)

empiric_tox_rate Observed toxicity rate at each dose.

Description

Get the empirical or observed toxicity rate seen at each dose under investigation. This is simply the
number of toxicities divded by the number of patients evaluated.

Usage

empiric_tox_rate(x, ...)

Arguments

x Object of class selector

... arguments passed to other methods

enforce_three_plus_three 23

Value

a numerical vector

Examples

CRM example
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
outcomes <- '1NNN 2NTN'
fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% empiric_tox_rate()

enforce_three_plus_three

Enforce that a trial path has followed the 3+3 method.

Description

This function stops with en error if it detects that outcomes describing a trial path have diverged
from that advocated by the 3+3 method.

Usage

enforce_three_plus_three(outcomes, allow_deescalate = FALSE)

Arguments

outcomes Outcomes observed. See parse_phase1_outcomes.
allow_deescalate

TRUE to allow de-escalation, as described by Korn et al. Default is FALSE.

Value

Nothing. Function stops if problem detected.

Examples

Not run:
enforce_three_plus_three('1NNN 2NTN 2NNN') # OK
enforce_three_plus_three('1NNN 2NTN 2N') # OK too, albeit in-progress cohort
enforce_three_plus_three('1NNN 1N') # Not OK because should have escalated

End(Not run)

24 follow_path

fit Fit a dose-finding model.

Description

Fit a dose-finding model to some outcomes.

Usage

fit(selector_factory, outcomes, ...)

Arguments

selector_factory

Object of type selector_factory.

outcomes Outcome string. See parse_phase1_outcomes.

... Extra args are passed onwards.

Value

Object of generic type selector.

See Also

selector, selector_factory

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('1NNN 2NTN')
fit %>% recommended_dose() # Etc

follow_path Follow a pre-determined dose administration path.

Description

This method creates a dose selector that will follow a pre-specified trial path. Whilst the trial path is
matched by realised outcomes, the selector will recommend the next dose in the desired sequence.
As soon as the observed outcomes diverge from the desired path, the selector stops giving dose
recommendations. This makes it possible, for instance, to specify a fixed escalation plan that should
be followed until the first toxicity is seen. This tactic is used by some model-based designs to get
rapidly to the doses where the action is. See, for example, the dfcrm package and Cheung (2011).

get_boin 25

Usage

follow_path(path)

Arguments

path Follow this outcome path. See parse_phase1_outcomes.

Value

an object of type selector_factory that can fit a dose-finding model to outcomes.

References

Cheung. Dose Finding by the Continual Reassessment Method. 2011. Chapman and Hall/CRC.
ISBN 9781420091519

Examples

model1 <- follow_path(path = '1NNN 2NNN 3NNN 4NNN')

fit1 <- model1 %>% fit('1NNN 2N')
fit1 %>% recommended_dose()
fit1 %>% continue()
The model recommends continuing at dose 2 because the observed outcomes
perfectly match the desired escalation path.

fit2 <- model1 %>% fit('1NNN 2NT')
fit2 %>% recommended_dose()
fit2 %>% continue()
Uh oh. Toxicity has now been seen, the outcomes diverge from the sought
path, hence this class recommends no dose now.
At this point, we can hand over dose selection decisions to another class
by chaining them together, like:
model2 <- follow_path(path = '1NNN 2NNN 3NNN 4NNN') %>%

get_dfcrm(skeleton = c(0.05, 0.1, 0.25, 0.4, 0.6), target = 0.25)
fit3 <- model2 %>% fit('1NNN 2NT')
Now the CRM model is using all of the outcomes to calculate the next dose:
fit3 %>% recommended_dose()
fit3 %>% continue()

get_boin Get an object to fit the BOIN model using the BOIN package.

Description

Get an object to fit the BOIN model using the BOIN package.

Usage

get_boin(num_doses, target, use_stopping_rule = TRUE, ...)

26 get_boin12

Arguments

num_doses Number of doses under investigation.

target We seek a dose with this probability of toxicity.
use_stopping_rule

TRUE to use the toxicity stopping rule described in Yan et al. (2019). FALSE
to suppress the authors’ stopping rule, with the assumption being that you will
test the necessity to stop early in some other way.

... Extra args are passed to get.boundary.

Value

an object of type selector_factory that can fit the BOIN model to outcomes.

References

Yan, F., Pan, H., Zhang, L., Liu, S., & Yuan, Y. (2019). BOIN: An R Package for Designing Single-
Agent and Drug-Combination Dose-Finding Trials Using Bayesian Optimal Interval Designs. Jour-
nal of Statistical Software, 27(November 2017), 0–35. https://doi.org/10.18637/jss.v000.i00

Liu, S., & Yuan, Y. (2015). Bayesian optimal designs for Phase I clinical trials. J. R. Stat. Soc. C,
64, 507–523. https://doi.org/10.1111/rssc.12089

Examples

target <- 0.25
model1 <- get_boin(num_doses = 5, target = target)

outcomes <- '1NNN 2NTN'
model1 %>% fit(outcomes) %>% recommended_dose()

get_boin12 Get an object to fit the BOIN12 model for phase I/II dose-finding.

Description

This function returns an object that can be used to fit the BOIN12 model for phase I/II dose-finding,
i.e. it selects doses according to efficacy and toxicity outcomes.

Usage

get_boin12(
num_doses,
phi_t,
phi_e,
u1 = 100,
u2,

get_boin12 27

u3,
u4 = 0,
n_star = 6,
c_t = 0.95,
c_e = 0.9,
start_dose = 1,
prior_alpha = 1,
prior_beta = 1,
...

)

Arguments

num_doses integer, num of doses under investigation

phi_t Probability of toxicity threshold

phi_e Probability of efficacy threshold

u1 utility of efficacy without toxicity, 100 by default

u2 utility of no efficacy and no toxicity, between u1 and u4

u3 utility of efficacy and toxicity, between u1 and u4

u4 utility of toxicity without efficacy , 0 by default

n_star when tox is within bounds, stop exploring higher doses when n at dose is greater
than or equal to this value. 6 by default.

c_t certainty required to flag excess toxicity, 0.95 by default

c_e certainty required to flag deficient efficacy, 0.9 by default

start_dose index of starting dose, 1 by default (i.e. lowest dose)

prior_alpha first shape param for prior on beta prior, 1 by default

prior_beta second shape param for prior on beta prior, 1 by default

... Extra args are passed onwards.

Value

an object of type selector_factory that can fit the BOIN12 model to outcomes.

References

Lin, R., Zhou, Y., Yan, F., Li, D., & Yuan, Y. (2020). BOIN12: Bayesian optimal interval phase I/II
trial design for utility-based dose finding in immunotherapy and targeted therapies. JCO precision
oncology, 4, 1393-1402.

Examples

Examples in Lin et al.
model <- get_boin12(num_doses = 5, phi_t = 0.35, phi_e = 0.25,

u2 = 40, u3 = 60, n_star = 6)
fit <- model %>% fit('1NNN 2ENT 3ETT 2EEN')
fit %>% recommended_dose()

28 get_dfcrm

fit %>% continue()
fit %>% is_randomising()
fit %>% dose_admissible()
fit %>% prob_administer()

get_dfcrm Get an object to fit the CRM model using the dfcrm package.

Description

This function returns an object that can be used to fit a CRM model using methods provided by the
dfcrm package.

Dose selectors are designed to be daisy-chained together to achieve different behaviours. This class
is a **resumptive** selector, meaning it carries on when the previous dose selector, where present,
has elected not to continue. For example, this allows instances of this class to be preceded by a se-
lector that follows a fixed path in an initial escalation plan, such as that provided by follow_path.
In this example, when the observed trial outcomes deviate from that initial plan, the selector fol-
lowing the fixed path elects not to continue and responsibility passes to this class. See Examples.

The time-to-event variant, TITE-CRM, is used via the dfcrm::titecrm function when you specify
tite = TRUE. This weights the observations to allow dose-selections based on partially observed
outcomes.

Usage

get_dfcrm(parent_selector_factory = NULL, skeleton, target, tite = FALSE, ...)

Arguments

parent_selector_factory

optional object of type selector_factory that is in charge of dose selection
before this class gets involved. Leave as NULL to just use CRM from the start.

skeleton Dose-toxicity skeleton, a non-decreasing vector of probabilities.

target We seek a dose with this probability of toxicity.

tite FALSE to use regular CRM; TRUE to use TITE-CRM. See Description.

... Extra args are passed to crm.

Value

an object of type selector_factory that can fit the CRM model to outcomes.

get_dfcrm_tite 29

References

Cheung, K. 2019. dfcrm: Dose-Finding by the Continual Reassessment Method. R package version
0.2-2.1. https://CRAN.R-project.org/package=dfcrm

Cheung, K. 2011. Dose Finding by the Continual Reassessment Method. Chapman and Hall/CRC.
ISBN 9781420091519

O’Quigley J, Pepe M, Fisher L. Continual reassessment method: a practical design for phase 1
clinical trials in cancer. Biometrics. 1990;46(1):33-48. doi:10.2307/2531628

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model1 <- get_dfcrm(skeleton = skeleton, target = target)

By default, dfcrm fits the empiric model:
outcomes <- '1NNN 2NTN'
model1 %>% fit(outcomes) %>% recommended_dose()

But we can provide extra args to get_dfcrm that are than passed onwards to
the call to dfcrm::crm to override the defaults. For example, if we want
the one-parameter logistic model:
model2 <- get_dfcrm(skeleton = skeleton, target = target, model = 'logistic')
model2 %>% fit(outcomes) %>% recommended_dose()
dfcrm does not offer a two-parameter logistic model but other classes do.

We can use an initial dose-escalation plan, a pre-specified path that
should be followed until trial outcomes deviate, at which point the CRM
model takes over. For instance, if we want to use two patients at each of
the first three doses in the absence of toxicity, irrespective the model's
advice, we would run:
model1 <- follow_path('1NN 2NN 3NN') %>%

get_dfcrm(skeleton = skeleton, target = target)

If outcomes match the desired path, the path is followed further:
model1 %>% fit('1NN 2N') %>% recommended_dose()

But when the outcomes diverge:
model1 %>% fit('1NN 2T') %>% recommended_dose()

Or the pre-specified path comes to an end:
model1 %>% fit('1NN 2NN 3NN') %>% recommended_dose()
The CRM model takes over.

get_dfcrm_tite Get an object to fit the TITE-CRM model using the dfcrm package.

30 get_dfcrm_tite

Description

Get an object to fit the TITE-CRM model using the dfcrm package.

Usage

get_dfcrm_tite(parent_selector_factory = NULL, skeleton, target, ...)

Arguments

parent_selector_factory

optional object of type selector_factory that is in charge of dose selection
before this class gets involved. Leave as NULL to just use CRM from the start.

skeleton Dose-toxicity skeleton, a non-decreasing vector of probabilities.

target We seek a dose with this probability of toxicity.

... Extra args are passed to crm.

Details

This function is a short-cut to get_dfcrm(tite = TRUE). See get_dfcrm for full details.

Value

an object of type selector_factory that can fit the CRM model to outcomes.

References

Cheung, K. 2019. dfcrm: Dose-Finding by the Continual Reassessment Method. R package version
0.2-2.1. https://CRAN.R-project.org/package=dfcrm

Cheung, K. 2011. Dose Finding by the Continual Reassessment Method. Chapman and Hall/CRC.
ISBN 9781420091519

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model1 <- get_dfcrm_tite(skeleton = skeleton, target = target)
outcomes <- data.frame(

dose = c(1, 1, 2, 2, 3, 3),
tox = c(0, 0, 0, 0, 1, 0),
weight = c(1, 1, 1, 0.9, 1, 0.5),
cohort = c(1, 2, 3, 4, 5, 6)

)
fit <- model1 %>% fit(outcomes)

get_dose_paths 31

get_dose_paths Calculate future dose paths.

Description

A dose-escalation design exists to select doses in response to observed outcomes. The entire space
of possible responses can be calculated to show the behaviour of a design in response to all feasible
outcomes. This function performs that task.

Usage

get_dose_paths(selector_factory, cohort_sizes, ...)

Arguments

selector_factory

Object of type selector_factory.
cohort_sizes Integer vector representing sizes of
... Extra args are passed onwards.

Value

Object of type dose_paths.

Examples

Calculate paths for a 3+3 design for the next two cohorts of three patients
paths <- get_three_plus_three(num_doses = 5) %>%

get_dose_paths(cohort_sizes = c(3, 3))

get_empiric_crm_skeleton_weights

Get posterior model weights for several empiric CRM skeletons.

Description

Get posterior model weights for several empiric CRM skeletons, assuming a normal prior on the
beta model parameter

Usage

get_empiric_crm_skeleton_weights(
skeletons,
events_at_dose,
n_at_dose,
prior = rep(1, nrow(skeletons))

)

32 get_mtpi

Arguments

skeletons matrix with one skeleton per row, so that the number of columns is the number
of doses under investigation.

events_at_dose integer vector of number of events at doses

n_at_dose integer vector of number of patients at doses

prior vector of prior model weights. Length should be same as number of rows in
skeletons. Default is equal weighting.

Value

numerical vector, posterior weights of the skeletons.

get_mtpi Get an object to fit the mTPI dose-finding model.

Description

The modified toxicity probability interval (mTPI)is a dose-escalation design by Ji et al. As the name
suggests, it is an adaptation of the TPI design.

Usage

get_mtpi(
parent_selector_factory = NULL,
num_doses,
target,
epsilon1,
epsilon2,
exclusion_certainty,
alpha = 1,
beta = 1,
...

)

Arguments

parent_selector_factory

Object of type selector_factory.

num_doses Number of doses under investigation.

target We seek a dose with this probability of toxicity.

epsilon1 This parameter determines the lower bound of the equivalence interval. See
Details.

epsilon2 This parameter determines the upper bound of the equivalence interval. See
Details.

get_mtpi 33

exclusion_certainty

Numeric, threshold posterior certainty required to exclude a dose for being ex-
cessively toxic. The authors discuss values in the range 0.7 - 0.95. Set to a value
> 1 to suppress the dose exclusion mechanism. The authors use the Greek letter
xi for this parameter.

alpha First shape parameter of the beta prior distribution on the probability of toxicity.

beta Second shape parameter of the beta prior distribution on the probability of toxi-
city.

... Extra args are passed onwards.

Value

an object of type selector_factory that can fit the TPI model to outcomes.

Details

The design seeks a dose with probability of toxicity pi close to a target probability pT by iteratively
calculating the interval

pT − ϵ1 < pi < pT + ϵ2

In this model, ϵ1 and ϵ2 are specified constants. pi is estimated by a Bayesian beta-binomial conju-
gate model

pi|data ∼ Beta(α+ x1, β + ni − xi),

where xi is the number of toxicities observed and ni is the number of patients treated at dose i, and
α and β are hyperparameters for the beta prior on pi. A dose is excluded as inadmissible if

P (pi > pT |data) > ξ

The trial commences at a starting dose, possibly dose 1. If dose i has just been evaluated in pa-
tient(s), dose selection decisions proceed by calculating the unit probability mass of the true toxicity
rate at dose i using the partition of the probability space pi < pT − ϵ1, pT − ϵ1 < pi < pT + ϵ2,
and pi > pT + ϵ2. The unit probability mass (UPM) of an interval is the posterior probability
that the true toxicity rate belongs to the interval divided by the width of the interval. The interval
with maximal UPM determines the recommendation for the next patient(s), with the intervals cor-
responding to decisions tp escalate, stay, and de-escalate dose, respectively. Further to this are rules
that prevent escalation to an inadmissible dose. In their paper, the authors demonstrate acceptable
operating performance using α = β = 1, K1 = 1, K2 = 1.5 and ξ = 0.95. See the publications
for full details.

References

Ji, Y., Liu, P., Li, Y., & Bekele, B. N. (2010). A modified toxicity probability interval method for
dose-finding trials. Clinical Trials, 7(6), 653-663. https://doi.org/10.1177/1740774510382799

Ji, Y., & Yang, S. (2017). On the Interval-Based Dose-Finding Designs, 1-26. Retrieved from
https://arxiv.org/abs/1706.03277

34 get_mtpi2

Examples

target <- 0.25
model1 <- get_mtpi(num_doses = 5, target = target, epsilon1 = 0.05,

epsilon2 = 0.05, exclusion_certainty = 0.95)

outcomes <- '1NNN 2NTN'
model1 %>% fit(outcomes) %>% recommended_dose()

get_mtpi2 Get an object to fit the mTPI-2 dose-finding model.

Description

The modified toxicity probability interval 2 (mTPI-2) is a dose-escalation design by Guo et al. As
the name suggests, it is an adaptation of the mTPI design.

Usage

get_mtpi2(
parent_selector_factory = NULL,
num_doses,
target,
epsilon1,
epsilon2,
exclusion_certainty,
alpha = 1,
beta = 1,
...

)

Arguments

parent_selector_factory

Object of type selector_factory.

num_doses Number of doses under investigation.

target We seek a dose with this probability of toxicity.

epsilon1 This parameter determines the lower bound of the equivalence interval. See
Details.

epsilon2 This parameter determines the upper bound of the equivalence interval. See
Details.

exclusion_certainty

Numeric, threshold posterior certainty required to exclude a dose for being ex-
cessively toxic. The authors discuss values in the range 0.7 - 0.95. Set to a value
> 1 to suppress the dose exclusion mechanism. The authors use the Greek letter
xi for this parameter.

get_mtpi2 35

alpha First shape parameter of the beta prior distribution on the probability of toxicity.

beta Second shape parameter of the beta prior distribution on the probability of toxi-
city.

... Extra args are passed onwards.

Value

an object of type selector_factory that can fit the mTPI-2 model to outcomes.

Details

The design seeks a dose with probability of toxicity pi close to a target probability pT by iteratively
calculating the interval

pT − ϵ1 < pi < pT + ϵ2

In this model, ϵ1 and ϵ2 are specified constants. pi is estimated by a Bayesian beta-binomial conju-
gate model

pi|data ∼ Beta(α+ x1, β + ni − xi),

where xi is the number of toxicities observed and ni is the number of patients treated at dose i, and
α and β are hyperparameters for the beta prior on pi. A dose is excluded as inadmissible if

P (pi > pT |data) > ξ

The trial commences at a starting dose, possibly dose 1. If dose i has just been evaluated in pa-
tient(s), dose selection decisions proceed by calculating the unit probability mass of the true tox-
icity rate at dose i using the partition of the probability space into subintervals with equal length
given by(ϵ1 + ϵ2). EI is the equivalence interval pT − epsilon1, pT − epsilon2, with LI the set
of all intervals below, and HI the set of all intervals above. The unit probability mass (UPM) of
an interval is the posterior probability that the true toxicity rate belongs to the interval divided by
the width of the interval. The interval with maximal UPM determines the recommendation for the
next patient(s), with the intervals corresponding to decisions to escalate, stay, and de-escalate dose,
respectively. Further to this are rules that prevent escalation to an inadmissible dose. In the original
mTPI paper, the authors demonstrate acceptable operating performance using α = β = 1, K1 = 1,
K2 = 1.5 and ξ = 0.95. The authors of the mTPI-2 approach show desirable performance as
compared to the original mTPI method, under particular parameter choices. See the publications
for full details.

References

Ji, Y., Liu, P., Li, Y., & Bekele, B. N. (2010). A modified toxicity probability interval method for
dose-finding trials. Clinical Trials, 7(6), 653–663. https://doi.org/10.1177/1740774510382799

Ji, Y., & Yang, S. (2017). On the Interval-Based Dose-Finding Designs, 1–26. Retrieved from
https://arxiv.org/abs/1706.03277

Guo, W., Wang, SJ., Yang, S., Lynn, H., Ji, Y. (2017). A Bayesian Interval Dose-Finding Design
Addressing Ockham’s Razor: mTPI-2. https://doi.org/10.1016/j.cct.2017.04.006

36 get_potential_outcomes

Examples

target <- 0.25
model1 <- get_mtpi2(num_doses = 5, target = target, epsilon1 = 0.05,

epsilon2 = 0.05, exclusion_certainty = 0.95)

outcomes <- '1NNN 2NTN'
model1 %>% fit(outcomes) %>% recommended_dose()

get_potential_outcomes

Get potential outcomes from a list of PatientSamples

Description

An instance of PatientSample, or one of its subclasses like CorrelatedPatientSample, reflects
one particular state of the world, where patient i would reliably experience a toxicity or efficacy
event if treated at a particular dose. This function, given true toxicity and efficacy probabilities
at doses 1, ..., num_doses, calculates 0/1 matrices to reflect whether the patients in those samples
would have experienced toxicity and efficacy at the doses, had they been dosed as such. Using the
vernacular of causal inference, these are _potential outcomes_. At any single instant, a patient can
only be dosed at one dose, so only one of the outcomes for a patient would in reality have been
observed; the rest are counterfactual.

Usage

get_potential_outcomes(patient_samples, true_prob_tox, true_prob_eff)

Arguments

patient_samples

list of PatientSample objects, or subclass thereof.

true_prob_tox vector of probabilities of toxicity outcomes at doses

true_prob_eff vector of probabilities of efficacy outcomes at doses

Value

a list of lists, with names tox and eff, each mapping to a matrix of the potential outcomes.

Examples

num_sims <- 10
ps <- lapply(1:num_sims, function(x) PatientSample$new())
Set tox_u and eff_u for each simulation
set.seed(2024)
lapply(1:num_sims, function(x) {

tox_u_new <- runif(n = 20)
eff_u_new <- runif(n = 20)

get_random_selector 37

ps[[x]]$set_eff_and_tox(tox_u = tox_u_new, eff_u = eff_u_new)
})
true_prob_tox <- c(0.05, 0.10, 0.15, 0.18, 0.45)
true_prob_eff <- c(0.40, 0.50, 0.52, 0.53, 0.53)
get_potential_outcomes(

patient_samples = ps,
true_prob_tox = true_prob_tox,
true_prob_eff = true_prob_eff

)

get_random_selector Get an object to fit a dose-selector that randomly selects doses.

Description

Get an object to fit a dose-selector that randomly selects doses. Whilst this design is unlikely to
pass the ethical hurdles when investigating truly experimental treatments, this class is useful for
illustrating methods and can be useful for benchmarking.

Usage

get_random_selector(
parent_selector_factory = NULL,
prob_select,
supports_efficacy = FALSE,
...

)

Arguments

parent_selector_factory

optional object of type selector_factory that is in charge of dose selection
before this class gets involved. Leave as NULL to just select random doses
from the start.

prob_select vector of probabilities, the probability of selecting dose 1...n

supports_efficacy

TRUE to monitor toxicity and efficacy outcomes; FALSE (by default) to just
monitor toxicity outcomes.

... Extra args are ignored.

Value

an object of type selector_factory.

38 get_three_plus_three

Examples

prob_select = c(0.1, 0.3, 0.5, 0.07, 0.03)
model <- get_random_selector(prob_select = prob_select)
fit <- model %>% fit('1NTN')
fit %>% recommended_dose() # This is random
We could also precede this selector with a set path:
model <- follow_path('1NN 2NN 3NN') %>%

get_random_selector(prob_select = prob_select)
fit <- model %>% fit('1NN')
fit %>% recommended_dose() # This is not-random; it comes from the path.
fit <- model %>% fit('1NN 2NT')
fit %>% recommended_dose() # This is random; the path is discarded.

get_three_plus_three Get an object to fit the 3+3 model.

Description

Get an object to fit the 3+3 model.

Usage

get_three_plus_three(num_doses, allow_deescalate = FALSE, ...)

Arguments

num_doses Number of doses under investigation.

allow_deescalate

TRUE to allow de-escalation, as described by Korn et al. Default is FALSE.

... Extra args are not currently used.

Value

an object of type selector_factory that can fit the 3+3 model to outcomes.

References

Storer BE. Design and Analysis of Phase I Clinical Trials. Biometrics. 1989;45(3):925-937.
doi:10.2307/2531693

Korn EL, Midthune D, Chen TT, Rubinstein LV, Christian MC, Simon RM. A comparison of two
phase I trial designs. Statistics in Medicine. 1994;13(18):1799-1806. doi:10.1002/sim.4780131802

get_tpi 39

Examples

model <- get_three_plus_three(num_doses = 5)

fit1 <- model %>% fit('1NNN 2NTN')
fit1 %>% recommended_dose()
fit1 %>% continue()

fit2 <- model %>% fit('1NNN 2NTN 2NNT')
fit2 %>% recommended_dose()
fit2 %>% continue()

get_tpi Get an object to fit the TPI dose-finding model.

Description

The toxicity probability interval (TPI)is a dose-escalation design by Ji et al.

Usage

get_tpi(
num_doses,
target,
k1,
k2,
exclusion_certainty,
alpha = 0.005,
beta = 0.005,
...

)

Arguments

num_doses Number of doses under investigation.

target We seek a dose with this probability of toxicity.

k1 The K1 parameter in TPI determines the upper bound of the equivalence interval.
See Details.

k2 The K2 parameter in TPI determines the lower bound of the equivalence interval.
See Details.

exclusion_certainty

Numeric, threshold posterior certainty required to exclude a dose for being ex-
cessively toxic. The authors discuss values in the range 0.7 - 0.95. Set to a value
> 1 to suppress the dose exclusion mechanism. The authors use the Greek letter
xi for this parameter.

alpha First shape parameter of the beta prior distribution on the probability of toxicity.

40 get_tpi

beta Second shape parameter of the beta prior distribution on the probability of toxi-
city.

... Extra args are passed onwards.

Value

an object of type selector_factory that can fit the TPI model to outcomes.

Details

The design seeks a dose with probability of toxicity pi close to a target probability pT by iteratively
calculating the interval

pT −K2σi < pi < pT +K1σi

In this model, K1 and K2 are specified constants and σi is the standard deviation of pi arising from
a Bayesian beta-binomial conjugate model

pi|data ∼ Beta(α+ xi, β + ni − xi),

where xi is the number of toxicities observed and ni is the number of patients treated at dose i, and
α and β are hyperparameters for the beta prior on pi. A dose is excluded as inadmissible if

P (pi > pT |data) > ξ

The trial commences at a starting dose, possibly dose 1. If dose i has just been evaluated in pa-
tient(s), dose selection decisions proceed by calculating the posterior probability that the true tox-
icity rate at dose i belongs to the three partition regions pi < pT − K2σi, pT − K2σi < pi <
pT +K1σi, and pi > pT +K2σi, corresponding to decisions escalate, stay, and de-escalate dose,
respectively. Further to this are rules that prevent escalation to an inadmissible dose. In their pa-
per, the authors demonstrate acceptable operating performance using α = β = 0.005, K1 = 1,
K2 = 1.5 and ξ = 0.95. See the publications for full details.

References

Ji, Y., Li, Y., & Bekele, B. N. (2007). Dose-finding in phase I clinical trials based on toxicity
probability intervals. Clinical Trials, 4(3), 235–244. https://doi.org/10.1177/1740774507079442

Ji, Y., & Yang, S. (2017). On the Interval-Based Dose-Finding Designs, 1–26. Retrieved from
https://arxiv.org/abs/1706.03277

Examples

target <- 0.25
model1 <- get_tpi(num_doses = 5, target = target, k1 = 1, k2 = 1.5,

exclusion_certainty = 0.95)

outcomes <- '1NNN 2NTN'
model1 %>% fit(outcomes) %>% recommended_dose()

get_trialr_crm 41

get_trialr_crm Get an object to fit the CRM model using the trialr package.

Description

This function returns an object that can be used to fit a CRM model using methods provided by the
trialr package.

Dose selectors are designed to be daisy-chained together to achieve different behaviours. This class
is a **resumptive** selector, meaning it carries on when the previous dose selector, where present,
has elected not to continue. For example, this allows instances of this class to be preceded by a se-
lector that follows a fixed path in an initial escalation plan, such as that provided by follow_path.
In this example, when the observed trial outcomes deviate from that initial plan, the selector fol-
lowing the fixed path elects not to continue and responsibility passes to this class. See Examples.

The time-to-event variant, TITE-CRM, is used when you specify tite = TRUE. This weights the
observations to allow dose-selections based on partially observed outcomes.

Usage

get_trialr_crm(
parent_selector_factory = NULL,
skeleton,
target,
model,
tite = FALSE,
...

)

Arguments

parent_selector_factory

optional object of type selector_factory that is in charge of dose selection
before this class gets involved. Leave as NULL to just use CRM from the start.

skeleton Dose-toxicity skeleton, a non-decreasing vector of probabilities.

target We seek a dose with this probability of toxicity.

model character string identifying which model form to use. Options include empiric,
logistic, logistic2. The model form chosen determines which prior hyperparam-
eters are required. See stan_crm for more details.

tite FALSE to use regular CRM; TRUE to use TITE-CRM. See Description.

... Extra args are passed to stan_crm.

Value

an object of type selector_factory that can fit the CRM model to outcomes.

42 get_trialr_crm

References

Kristian Brock (2020). trialr: Clinical Trial Designs in ’rstan’. R package version 0.1.5. https://github.com/brockk/trialr

Kristian Brock (2019). trialr: Bayesian Clinical Trial Designs in R and Stan. arXiv preprint
arXiv:1907.00161.

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
The model to use must be specified in trialr:
model1 <- get_trialr_crm(skeleton = skeleton, target = target,

model = 'empiric', beta_sd = 1.34)
Refer to the trialr documentation for more details on model forms.
outcomes <- '1NNN 2NTN'
model1 %>% fit(outcomes) %>% recommended_dose()

But we can provide extra args to trialr that are than passed onwards to
the call to trialr::stan_crm to override the defaults.
For example, if we want the one-parameter logistic model, we run:
model2 <- get_trialr_crm(skeleton = skeleton, target = target,

model = 'logistic', a0 = 3,
beta_mean = 0, beta_sd = 1)

model2 %>% fit(outcomes) %>% recommended_dose()
And, if we want the two-parameter logistic model, we run:
model3 <- get_trialr_crm(skeleton = skeleton, target = target,

model = 'logistic2',
alpha_mean = 0, alpha_sd = 2,
beta_mean = 0, beta_sd = 1)

model3 %>% fit(outcomes) %>% recommended_dose()

We can use an initial dose-escalation plan, a pre-specified path that
should be followed until trial outcomes deviate, at which point the CRM
model takes over. For instance, if we want to use two patients at each of
the first three doses in the absence of toxicity, irrespective the model's
advice, we would run:
model1 <- follow_path('1NN 2NN 3NN') %>%

get_trialr_crm(skeleton = skeleton, target = target, model = 'empiric',
beta_sd = 1.34)

If outcomes match the desired path, the path is followed further:
model1 %>% fit('1NN 2N') %>% recommended_dose()

But when the outcomes diverge:
model1 %>% fit('1NN 2T') %>% recommended_dose()

Or the pre-specified path comes to an end:
model1 %>% fit('1NN 2NN 3NN') %>% recommended_dose()
...the CRM model takes over.

get_trialr_crm_tite 43

get_trialr_crm_tite Get an object to fit the TITE-CRM model using the trialr package.

Description

Get an object to fit the TITE-CRM model using the trialr package.

Usage

get_trialr_crm_tite(
parent_selector_factory = NULL,
skeleton,
target,
model,
...

)

Arguments

parent_selector_factory

optional object of type selector_factory that is in charge of dose selection
before this class gets involved. Leave as NULL to just use CRM from the start.

skeleton Dose-toxicity skeleton, a non-decreasing vector of probabilities.

target We seek a dose with this probability of toxicity.

model character string identifying which model form to use. Options include empiric,
logistic, logistic2. The model form chosen determines which prior hyperparam-
eters are required. See stan_crm for more details.

... Extra args are passed to stan_crm.

Details

This function is a short-cut to get_trialr_crm(tite = TRUE). See get_trialr_crm for full de-
tails.

Value

an object of type selector_factory that can fit the CRM model to outcomes.

Examples

TODO

44 get_trialr_efftox

get_trialr_efftox Get an object to fit the EffTox model using the trialr package.

Description

This function returns an object that can be used to fit the EffTox model for phase I/II dose-finding
using methods provided by the trialr package.

Usage

get_trialr_efftox(
parent_selector_factory = NULL,
real_doses,
efficacy_hurdle,
toxicity_hurdle,
p_e,
p_t,
eff0,
tox1,
eff_star,
tox_star,
priors,
...

)

Arguments

parent_selector_factory

optional object of type selector_factory that is in charge of dose selection
before this class gets involved. Leave as NULL to just use EffTox from the start.

real_doses A vector of numbers, the doses under investigation. They should be ordered
from lowest to highest and be in consistent units. E.g. to conduct a dose-finding
trial of doses 10mg, 20mg and 50mg, use c(10, 20, 50).

efficacy_hurdle

Minimum acceptable efficacy probability. A number between 0 and 1.
toxicity_hurdle

Maximum acceptable toxicity probability. A number between 0 and 1.

p_e Certainty required to infer a dose is acceptable with regards to being probably
efficacious; a number between 0 and 1.

p_t Certainty required to infer a dose is acceptable with regards to being probably
tolerable; a number between 0 and 1.

eff0 Efficacy probability required when toxicity is impossible; a number between 0
and 1 (see Details).

tox1 Toxicity probability permitted when efficacy is guaranteed; a number between 0
and 1 (see Details).

get_trialr_nbg 45

eff_star Efficacy probability of an equi-utility third point (see Details).

tox_star Toxicity probability of an equi-utility third point (see Details).

priors instance of class efftox_priors, the hyperparameters for normal priors on the
six model parameters.

... Extra args are passed to stan_efftox.

Value

an object of type selector_factory that can fit the EffTox model to outcomes.

References

Thall, P., & Cook, J. (2004). Dose-Finding Based on Efficacy-Toxicity Trade-Offs. Biometrics,
60(3), 684-693. https://doi.org/10.1111/j.0006-341X.2004.00218.x

Thall, P., Herrick, R., Nguyen, H., Venier, J., & Norris, J. (2014). Effective sample size for com-
puting prior hyperparameters in Bayesian phase I-II dose-finding. Clinical Trials, 11(6), 657-666.
https://doi.org/10.1177/1740774514547397

Brock, K. (2020). trialr: Clinical Trial Designs in ’rstan’. R package version 0.1.5. https://github.com/brockk/trialr

Brock, K. (2019). trialr: Bayesian Clinical Trial Designs in R and Stan. arXiv preprint arXiv:1907.00161.

Examples

efftox_priors <- trialr::efftox_priors
p <- efftox_priors(alpha_mean = -7.9593, alpha_sd = 3.5487,

beta_mean = 1.5482, beta_sd = 3.5018,
gamma_mean = 0.7367, gamma_sd = 2.5423,
zeta_mean = 3.4181, zeta_sd = 2.4406,
eta_mean = 0, eta_sd = 0.2,
psi_mean = 0, psi_sd = 1)

real_doses = c(1.0, 2.0, 4.0, 6.6, 10.0)
model <- get_trialr_efftox(real_doses = real_doses,

efficacy_hurdle = 0.5, toxicity_hurdle = 0.3,
p_e = 0.1, p_t = 0.1,
eff0 = 0.5, tox1 = 0.65,
eff_star = 0.7, tox_star = 0.25,
priors = p, iter = 1000, chains = 1, seed = 2020)

get_trialr_nbg Get an object to fit the NBG dose-finding model using the trialr pack-
age.

Description

This function returns an object that can be used to fit a Neuenschwander, Branson and Gsponer
(NBG) model for dose-finding using methods provided by the trialr package.

46 get_trialr_nbg

Usage

get_trialr_nbg(
parent_selector_factory = NULL,
real_doses,
d_star,
target,
alpha_mean,
alpha_sd,
beta_mean,
beta_sd,
tite = FALSE,
...

)

Arguments

parent_selector_factory

optional object of type selector_factory that is in charge of dose selection
before this class gets involved. Leave as NULL to just use this model from the
start.

real_doses Doses under investigation, a non-decreasing vector of numbers.

d_star Numeric, reference dose for calculating the covariate log(dose / d_star) when
fitting the model. Sometimes (but not always) taken to be the max dose in
real_doses.

target We seek a dose with this probability of toxicity.

alpha_mean Prior mean of intercept variable for normal prior. See Details. Also see docu-
mentation for trialr package for further details.

alpha_sd Prior standard deviation of intercept variable for normal prior. See Details. Also
see documentation for trialr package for further details.

beta_mean Prior mean of gradient variable for normal prior. See Details. Also see docu-
mentation for trialr package for further details.

beta_sd Prior standard deviation of slope variable for normal prior. See Details. Also
see documentation for trialr package for further details.

tite FALSE to use regular model; TRUE to use TITE version See Description.

... Extra args are passed to stan_nbg.

Details

The model form implemented in trialr is:

F (xi, α, β) = 1/(1 + exp−(α+ exp (β)log(xi/d∗)))

with normal priors on alpha and beta.

Dose selectors are designed to be daisy-chained together to achieve different behaviours. This class
is a **resumptive** selector, meaning it carries on when the previous dose selector, where present,
has elected not to continue. For example, this allows instances of this class to be preceded by a se-
lector that follows a fixed path in an initial escalation plan, such as that provided by follow_path.

get_trialr_nbg_tite 47

In this example, when the observed trial outcomes deviate from that initial plan, the selector follow-
ing the fixed path elects not to continue and responsibility passes to this class. See examples under
get_dfcrm.

A time-to-event variant, like TITE-CRM, is used when you specify tite = TRUE. This weights the
observations to allow dose-selections based on partially observed outcomes.

Value

an object of type selector_factory that can fit the NBG model to outcomes.

References

Neuenschwander, B., Branson, M., & Gsponer, T. (2008). Critical aspects of the Bayesian approach
to phase I cancer trials. Statistics in Medicine, 27, 2420–2439. https://doi.org/10.1002/sim.3230

Brock, K. (2020). trialr: Clinical Trial Designs in ’rstan’. R package version 0.1.5. https://github.com/brockk/trialr

Brock, K. (2019). trialr: Bayesian Clinical Trial Designs in R and Stan. arXiv preprint arXiv:1907.00161.

Examples

real_doses <- c(5, 10, 25, 40, 60)
d_star <- 60
target <- 0.25

model <- get_trialr_nbg(real_doses = real_doses, d_star = d_star,
target = target,
alpha_mean = 2, alpha_sd = 1,
beta_mean = 0.5, beta_sd = 1)

Refer to the trialr documentation for more details on model & priors.
outcomes <- '1NNN 2NTN'
fit <- model %>% fit(outcomes)
fit %>% recommended_dose()
fit %>% mean_prob_tox()

get_trialr_nbg_tite Get an object to fit a TITE version of the NBG dose-finding model
using trialr

Description

Get an object to fit a TITE version of the NBG dose-finding model using trialr

48 get_trialr_nbg_tite

Usage

get_trialr_nbg_tite(
parent_selector_factory = NULL,
real_doses,
d_star,
target,
alpha_mean,
alpha_sd,
beta_mean,
beta_sd,
...

)

Arguments

parent_selector_factory

optional object of type selector_factory that is in charge of dose selection
before this class gets involved. Leave as NULL to just use this model from the
start.

real_doses Doses under investigation, a non-decreasing vector of numbers.

d_star Numeric, reference dose for calculating the covariate log(dose / d_star) when
fitting the model. Sometimes (but not always) taken to be the max dose in
real_doses.

target We seek a dose with this probability of toxicity.

alpha_mean Prior mean of intercept variable for normal prior. See Details. Also see docu-
mentation for trialr package for further details.

alpha_sd Prior standard deviation of intercept variable for normal prior. See Details. Also
see documentation for trialr package for further details.

beta_mean Prior mean of gradient variable for normal prior. See Details. Also see docu-
mentation for trialr package for further details.

beta_sd Prior standard deviation of slope variable for normal prior. See Details. Also
see documentation for trialr package for further details.

... Extra args are passed to stan_nbg.

Value

an object of type selector_factory that can fit the NBG model to outcomes.

Examples

TODO

get_wages_and_tait 49

get_wages_and_tait Get an object to fit Wages & Tait’s model for phase I/II dose-finding.

Description

This function returns an object that can be used to fit Wages & Taits model for phase I/II dose-
finding, i.e. it selects doses according to efficacy and toxicity outcomes. This function delegates
prior-to-posterior calculations to the dfcrm package.

Usage

get_wages_and_tait(
parent_selector_factory = NULL,
tox_skeleton,
eff_skeletons,
eff_skeleton_weights = rep(1, nrow(eff_skeletons)),
tox_limit,
eff_limit,
num_randomise,
...

)

Arguments

parent_selector_factory

optional object of type selector_factory that is in charge of dose selection
before this class gets involved. Leave NULL to just use this model from the
start.

tox_skeleton Dose-toxicity skeleton, a non-decreasing vector of probabilities.

eff_skeletons Matrix of dose-efficacy skeletons, with the skeletons in rows. I.e. number of
cols is equal to number of doses, and number of rows is equal to number of
efficacy skeletons under consideration.

eff_skeleton_weights

numerical vector, prior weights to efficacy skeletons. Should have length equal
to number of rows in eff_skeletons. Default is equal weights.

tox_limit We seek a dose with probability of toxicity no greater than this. Value deter-
mines the admissible set. See Wages & Tait (2015).

eff_limit We seek a dose with probability of efficacy no less than this.

num_randomise integer, maximum number of patients to use in the adaptive randomisation phase
of the trial.

... Extra args are passed onwards.

Value

an object of type selector_factory.

50 graph_paths

References

Wages, N. A., & Tait, C. (2015). Seamless Phase I/II Adaptive Design for Oncology Trials of
Molecularly Targeted Agents. Journal of Biopharmaceutical Statistics, 25(5), 903–920. https://doi.org/10.1080/10543406.2014.920873

Examples

Example in Wages & Tait (2015)
tox_skeleton = c(0.01, 0.08, 0.15, 0.22, 0.29, 0.36)
eff_skeletons = matrix(nrow=11, ncol=6)
eff_skeletons[1,] <- c(0.60, 0.50, 0.40, 0.30, 0.20, 0.10)
eff_skeletons[2,] <- c(0.50, 0.60, 0.50, 0.40, 0.30, 0.20)
eff_skeletons[3,] <- c(0.40, 0.50, 0.60, 0.50, 0.40, 0.30)
eff_skeletons[4,] <- c(0.30, 0.40, 0.50, 0.60, 0.50, 0.40)
eff_skeletons[5,] <- c(0.20, 0.30, 0.40, 0.50, 0.60, 0.50)
eff_skeletons[6,] <- c(0.10, 0.20, 0.30, 0.40, 0.50, 0.60)
eff_skeletons[7,] <- c(0.20, 0.30, 0.40, 0.50, 0.60, 0.60)
eff_skeletons[8,] <- c(0.30, 0.40, 0.50, 0.60, 0.60, 0.60)
eff_skeletons[9,] <- c(0.40, 0.50, 0.60, 0.60, 0.60, 0.60)
eff_skeletons[10,] <- c(0.50, 0.60, 0.60, 0.60, 0.60, 0.60)
eff_skeletons[11,] <- c(rep(0.60, 6))
eff_skeleton_weights = rep(1, nrow(eff_skeletons))
tox_limit = 0.33
eff_limit = 0.05
model <- get_wages_and_tait(tox_skeleton = tox_skeleton,

eff_skeletons = eff_skeletons,
tox_limit = tox_limit, eff_limit = eff_limit,
num_randomise = 20)

fit <- model %>% fit('1NN 2EN 3BE')
fit %>% recommended_dose()
fit %>% is_randomising()
fit %>% dose_admissible()
fit %>% prob_administer()

graph_paths Visualise dose-paths as a graph

Description

Visualise dose-paths as a graph

Usage

graph_paths(paths, viridis_palette = "viridis", RColorBrewer_palette = NULL)

is_randomising 51

Arguments

paths Object of type dose_paths
viridis_palette

optional name of a colour palette in the viridis package.
RColorBrewer_palette

optional name of a colour palette in the RColorBrewer package.

Details

The viridis package supports palettes: viridis, magma, plasma, inferno, and cividis. The RColor-
Brewer package supports many palettes. Refer to those packages on CRAN for more details.

Examples

paths <- get_three_plus_three(num_doses = 5) %>%
get_dose_paths(cohort_sizes = c(3, 3, 3))

Not run:
graph_paths(paths)
graph_paths(paths, viridis_palette = 'plasma')
graph_paths(paths, RColorBrewer_palette = 'YlOrRd')

End(Not run)

is_randomising Is this selector currently randomly allocating doses?

Description

Get the percentage of patients evaluated at each dose under investigation.

Usage

is_randomising(x, ...)

Arguments

x Object of class selector
... arguments passed to other methods

Value

a logical value

Examples

outcomes <- '1NNN 2NTN'
fit <- get_random_selector(prob_select = c(0.1, 0.6, 0.3)) %>%

fit(outcomes)
fit %>% is_randomising()

52 linear_follow_up_weight

linear_follow_up_weight

Weights for tolerance and toxicity events using linear function of time

Description

Weights for tolerance and toxicity events using linear function of time

Usage

linear_follow_up_weight(
now_time,
recruited_time,
tox,
max_time,
tox_has_weight_1 = TRUE

)

Arguments

now_time the time now
recruited_time vector of recruitment times for patients
tox integer vector of toxicity variables for patients, 1 means tox
max_time the maximum window of evaluation for
tox_has_weight_1

logical, TRUE to set the weight for tox to 1 identically

Value

numerical vector of weights

Examples

linear_follow_up_weight(
now_time = 10,
recruited_time = 4:7,
tox = c(0, 0, 0, 1),
max_time = 6,
tox_has_weight_1 = TRUE

)

linear_follow_up_weight(
now_time = 10,
recruited_time = 4:7,
tox = c(0, 0, 0, 1),
max_time = 6,
tox_has_weight_1 = FALSE

)

mean_prob_eff 53

mean_prob_eff Mean efficacy rate at each dose.

Description

Get the estimated mean efficacy rate at each dose under investigation. This is a set of modelled
statistics. The underlying models estimate efficacy probabilities in different ways. If no model-
based estimate of the mean is available, this function will return a vector of NAs.

Usage

mean_prob_eff(x, ...)

Arguments

x Object of class selector

... arguments passed to other methods

Value

a numerical vector

Examples

efftox_priors <- trialr::efftox_priors
p <- efftox_priors(alpha_mean = -7.9593, alpha_sd = 3.5487,

beta_mean = 1.5482, beta_sd = 3.5018,
gamma_mean = 0.7367, gamma_sd = 2.5423,
zeta_mean = 3.4181, zeta_sd = 2.4406,
eta_mean = 0, eta_sd = 0.2,
psi_mean = 0, psi_sd = 1)

real_doses = c(1.0, 2.0, 4.0, 6.6, 10.0)
model <- get_trialr_efftox(real_doses = real_doses,

efficacy_hurdle = 0.5, toxicity_hurdle = 0.3,
p_e = 0.1, p_t = 0.1,
eff0 = 0.5, tox1 = 0.65,
eff_star = 0.7, tox_star = 0.25,
priors = p, iter = 1000, chains = 1, seed = 2020)

x <- model %>% fit('1N 2E 3B')
mean_prob_eff(x)

54 median_prob_eff

mean_prob_tox Mean toxicity rate at each dose.

Description

Get the estimated mean toxicity rate at each dose under investigation. This is a set of modelled
statistics. The underlying models estimate toxicity probabilities in different ways. If no model-
based estimate of the mean is available, this function will return a vector of NAs.

Usage

mean_prob_tox(x, ...)

Arguments

x Object of class selector

... arguments passed to other methods

Value

a numerical vector

Examples

CRM example
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
outcomes <- '1NNN 2NTN'
fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% mean_prob_tox()

median_prob_eff Median efficacy rate at each dose.

Description

Get the estimated median efficacy rate at each dose under investigation. This is a set of modelled
statistics. The underlying models estimate efficacy probabilities in different ways. If no model-
based estimate of the median is available, this function will return a vector of NAs.

Usage

median_prob_eff(x, ...)

median_prob_tox 55

Arguments

x Object of class selector

... arguments passed to other methods

Value

a numerical vector

Examples

efftox_priors <- trialr::efftox_priors
p <- efftox_priors(alpha_mean = -7.9593, alpha_sd = 3.5487,

beta_mean = 1.5482, beta_sd = 3.5018,
gamma_mean = 0.7367, gamma_sd = 2.5423,
zeta_mean = 3.4181, zeta_sd = 2.4406,
eta_mean = 0, eta_sd = 0.2,
psi_mean = 0, psi_sd = 1)

real_doses = c(1.0, 2.0, 4.0, 6.6, 10.0)
model <- get_trialr_efftox(real_doses = real_doses,

efficacy_hurdle = 0.5, toxicity_hurdle = 0.3,
p_e = 0.1, p_t = 0.1,
eff0 = 0.5, tox1 = 0.65,
eff_star = 0.7, tox_star = 0.25,
priors = p, iter = 1000, chains = 1, seed = 2020)

x <- model %>% fit('1N 2E 3B')
median_prob_eff(x)

median_prob_tox Median toxicity rate at each dose.

Description

Get the estimated median toxicity rate at each dose under investigation. This is a set of modelled
statistics. The underlying models estimate toxicity probabilities in different ways. If no model-
based estimate of the median is available, this function will return a vector of NAs.

Usage

median_prob_tox(x, ...)

Arguments

x Object of class selector

... arguments passed to other methods

Value

a numerical vector

56 model_frame

Examples

CRM example
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
outcomes <- '1NNN 2NTN'
fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% median_prob_tox()

model_frame Model data-frame.

Description

Get the model data-frame for a dose-finding analysis, inlcuding columns for patient id, cohort id,
dose administered, and toxicity outcome. In some scenarios, further columns are provided.

Usage

model_frame(x, ...)

Arguments

x Object of type selector.

... Extra args are passed onwards.

Value

tibble, which acts like a data.frame.

Examples

In a toxicity-only setting:
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('1NNN 2NTN')
fit %>% model_frame()

In an efficacy-toxicity setting
prob_select = c(0.1, 0.3, 0.5, 0.07, 0.03)
model <- get_random_selector(prob_select = prob_select,

supports_efficacy = TRUE)
x <- model %>% fit('1NTN 2EN 5BB', supports_efficacy = TRUE)
fit %>% model_frame()

num_cohort_outcomes 57

num_cohort_outcomes Number of different possible outcomes for a cohort of patients

Description

Number of different possible outcomes for a cohort of patients, each of which will experience one
of a number of discrete outcomes. For instance, in a typical phase I dose-finding trial, each patient
will experience: no-toxicity (N); or toxicity (T). The number of possible outcomes per patient is
two. For a cohort of three patients, the number of cohort outcomes is four: NNN, NNT, NTT,
TTT. Consider a more complex example: in a seamless phase I/II trial with efficacy and toxicity
outcomes, an individual patient will experience one of four distinct outcomes: efficacy only (E);
toxicity only (T); both efficacy and toxicity (B) or neither. How many different outcomes are there
for a cohort of three patients? The answer is 20 but it is non-trivial to see why. This convenience
function calculates that number using the formula for the number of combinations with replacement,

Usage

num_cohort_outcomes(num_patient_outcomes, cohort_size)

Arguments

num_patient_outcomes

integer, number of distinct possible outcomes for each single patient

cohort_size integer, number of patients in the cohort

Value

integer, number of distinct possible cohort outcomes

Examples

As described in example, N or T in a cohort of three:
num_cohort_outcomes(num_patient_outcomes = 2, cohort_size = 3)
Also described in example, E, T, B or N in a cohort of three:
num_cohort_outcomes(num_patient_outcomes = 4, cohort_size = 3)

num_doses Number of doses.

Description

Get the number of doses under investigation in a dose-finding trial.

Usage

num_doses(x, ...)

58 num_dose_path_nodes

Arguments

x Object of type selector.

... Extra args are passed onwards.

Value

integer

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('1NNN 2NTN')
fit %>% num_doses()

num_dose_path_nodes Number of nodes in dose-paths analysis

Description

Number of possible nodes in an exhaustive analysis of dose-paths in a dose-finding trial. The
number of nodes at depth i is the the number of nodes at depth i-1 multiplied by the number of
possible cohort outcomes at depth i. For instance, if there were 16 nodes at the previous depth and
four possible cohort outcomes at the current depth, then there are 64 possible nodes at the current
depth. Knowing the number of nodes in a dose-paths analysis helps the analyst decide whether
simulation or dose-paths are a better tool for assessing operating characteristics of a dose-finding
design.

Usage

num_dose_path_nodes(num_patient_outcomes, cohort_sizes)

Arguments

num_patient_outcomes

integer, number of distinct possible outcomes for each single patient

cohort_sizes integer vector of cohort sizes

Value

integer vector, number of nodes at increasing depths. The total number of nodes is the sum of this
vector.

num_eff 59

Examples

In a 3+3 design, there are two possible outcomes for each patient and
patients are evaluated in cohorts of three. In an analysis of dose-paths in
the first two cohorts of three, how many nodes are there?
num_dose_path_nodes(num_patient_outcomes = 2, cohort_sizes = rep(3, 2))
In contrast, using an EffTox design there are four possible outcomes for
each patient. In a similar analysis of dose-paths in the first two cohorts
of three, how many nodes are there now?
num_dose_path_nodes(num_patient_outcomes = 4, cohort_sizes = rep(3, 2))

num_eff Total number of efficacies seen.

Description

Get the number of efficacies seen in a dose-finding trial.

Usage

num_eff(x, ...)

Arguments

x Object of type selector.

... Extra args are passed onwards.

Value

integer

Examples

prob_select = c(0.1, 0.3, 0.5, 0.07, 0.03)
model <- get_random_selector(prob_select = prob_select,

supports_efficacy = TRUE)
x <- model %>% fit('1NTN 2EN 5BB')
num_eff(x)

60 num_tox

num_patients Number of patients evaluated.

Description

Get the number of patients evaluated in a dose-finding trial.

Usage

num_patients(x, ...)

Arguments

x Object of type selector.

... Extra args are passed onwards.

Value

integer

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('1NNN 2NTN')
fit %>% num_patients()

num_tox Total number of toxicities seen.

Description

Get the number of toxicities seen in a dose-finding trial.

Usage

num_tox(x, ...)

Arguments

x Object of type selector.

... Extra args are passed onwards.

Value

integer

n_at_dose 61

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('1NNN 2NTN')
fit %>% num_tox()

n_at_dose Number of patients treated at each dose.

Description

Get the number of patients evaluated at each dose under investigation.

Usage

n_at_dose(x, ...)

Arguments

x Object of class selector

... arguments passed to other methods

Value

an integer vector

Examples

CRM example
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
outcomes <- '1NNN 2NTN'
fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% n_at_dose()

62 parse_phase1_2_outcomes

n_at_recommended_dose Number of patients treated at the recommended dose.

Description

Get the number of patients evaluated at the recommended dose.

Usage

n_at_recommended_dose(x, ...)

Arguments

x Object of class selector

... arguments passed to other methods

Value

an integer

Examples

CRM example
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
outcomes <- '1NNN 2NTN'
fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% n_at_recommended_dose()

parse_phase1_2_outcomes

Parse a string of phase I/II dose-finding outcomes to vector notation.

Description

Parse a string of phase I/II dose-finding outcomes to a binary vector notation necessary for model
invocation.

The outcome string describes the doses given, outcomes observed and groups patients into cohorts.
The format of the string is described in Brock et al. (2017). See Examples.

The letters E, T, N and B are used to represents patients that experienced (E)fficacy only, (T)oxicity
only, (B)oth efficacy and toxicity, and (N)either. These letters are concatenated after numerical
dose-levels to convey the outcomes of cohorts of patients. For instance, 2ETB represents a cohort of
three patients that were treated at dose-level 2, and experienced efficacy, toxicity and both events,
respectively. The results of cohorts are separated by spaces. Thus, 2ETB 1NN extends our previous
example, where the next cohort of two were treated at dose-level 1 and both patients experienced
neither efficacy nor toxicity. See Examples.

parse_phase1_outcomes 63

Usage

parse_phase1_2_outcomes(outcomes, as_list = TRUE)

Arguments

outcomes character string, conveying doses given and outcomes observed.

as_list TRUE (the default) to return a list; FALSE to return a data.frame

Value

If as_list == TRUE, a list with elements eff, tox, dose and num_patients. If as_list == FALSE,
a data.frame with columns eff, tox and dose.

References

Brock, K., Billingham, L., Copland, M., Siddique, S., Sirovica, M., & Yap, C. (2017). Implement-
ing the EffTox dose-finding design in the Matchpoint trial. BMC Medical Research Methodology,
17(1), 112. https://doi.org/10.1186/s12874-017-0381-x

Examples

x = parse_phase1_2_outcomes('1NNE 2EEN 3TBB')
Three cohorts of three patients. The first cohort was treated at dose 1 and
had no toxicity with one efficacy, etc.
x$num_patients # 9
x$dose # c(1, 1, 1, 2, 2, 2, 3, 3, 3)
x$eff # c(0, 0, 1, 1, 1, 0, 0, 1, 1)
sum(x$eff) # 5
x$tox # c(0, 0, 0, 0, 0, 0, 1, 1, 1)
sum(x$tox) # 3

The same information can be parsed to a data-frame:
y = parse_phase1_2_outcomes('1NNE 2EEN 3TBB', as_list = FALSE)
y

parse_phase1_outcomes Parse a string of phase I dose-finding outcomes to vector notation.

Description

Parse a string of phase I dose-finding outcomes to a binary vector notation necessary for model
invocation.

The outcome string describes the doses given, outcomes observed and groups patients into cohorts.
The format of the string is described in Brock (2019), and that itself is the phase I analogue of the
similar idea described in Brock et al. (2017). See Examples.

The letters T and N are used to represents patients that experienced (T)oxicity and (N)o toxicity.
These letters are concatenated after numerical dose-levels to convey the outcomes of cohorts of

64 parse_phase1_outcomes

patients. For instance, 2NNT represents a cohort of three patients that were treated at dose-level 2,
one of whom experienced toxicity, and two that did not. The results of cohorts are separated by
spaces. Thus, 2NNT 1NN extends our previous example, where the next cohort of two were treated at
dose-level 1 and neither experienced toxicity. See examples.

Usage

parse_phase1_outcomes(outcomes, as_list = TRUE)

Arguments

outcomes character string, conveying doses given and outcomes observed.

as_list TRUE (the default) to return a list; FALSE to return a data.frame

Value

If as_list == TRUE, a list with elements tox, doses and num_patients. If as_list == FALSE, a
data.frame with columns tox and doses.

References

Brock, K. (2019). trialr: Bayesian Clinical Trial Designs in R and Stan. arXiv:1907.00161 [stat.CO]

Brock, K., Billingham, L., Copland, M., Siddique, S., Sirovica, M., & Yap, C. (2017). Implement-
ing the EffTox dose-finding design in the Matchpoint trial. BMC Medical Research Methodology,
17(1), 112. https://doi.org/10.1186/s12874-017-0381-x

Examples

x = parse_phase1_outcomes('1NNN 2NTN 3TTT')
Three cohorts of three patients. The first cohort was treated at dose 1 and
none had toxicity. The second cohort was treated at dose 2 and one of the
three had toxicity. Finally, cohort three was treated at dose 3 and all
patients had toxicity.
x$num_patients # 9
x$doses # c(1, 1, 1, 2, 2, 2, 3, 3, 3)
x$tox # c(0, 0, 0, 0, 1, 0, 1, 1, 1)
sum(x$tox) # 4

The same information can be parsed to a data-frame:
y = parse_phase1_outcomes('1NNN 2NTN 3TTT', as_list = FALSE)
y

PatientSample 65

PatientSample A sample of patients to use in simulations.

Description

Class to house the latent random variables that govern toxicity and efficacy events in patients. In-
stances of this class can be used in simulation-like tasks to effectively use the same simulated
individuals in different designs, thus supporting reduced Monte Carlo error and more efficient com-
parison.

Public fields

num_patients (‘integer(1)‘)

tox_u (‘numeric(num_patients)‘)

time_to_tox_func (‘function‘)

tox_time (‘numeric(num_patients)‘)

eff_u (‘numeric(num_patients)‘)

time_to_eff_func (‘function‘)

eff_time (‘numeric(num_patients)‘)

can_grow (‘logical(1)‘)

Methods

Public methods:
• PatientSample$new()

• PatientSample$set_eff_and_tox()

• PatientSample$expand_to()

• PatientSample$get_tox_u()

• PatientSample$get_patient_tox()

• PatientSample$get_eff_u()

• PatientSample$get_patient_eff()

• PatientSample$clone()

Method new(): Creator.

Usage:

66 PatientSample

PatientSample$new(
num_patients = 0,
time_to_tox_func = function() runif(n = 1),
time_to_eff_func = function() runif(n = 1)

)

Arguments:

num_patients (‘integer(1)‘) Number of patients.
time_to_tox_func (‘function‘) function taking no args that returns a single time of toxicity,

given that toxicity occurs.
time_to_eff_func (‘function‘) function taking no args that returns a single time of efficacy,

given that efficacy occurs.

Returns: [PatientSample].

Method set_eff_and_tox(): Set the toxicity and efficacy latent variables that govern occur-
rence of toxicity and efficacy events. By default, instances of this class automatically grow these
latent variables to accommodate arbitrarily high sample sizes. However, when you set these latent
variables manually via this function, you override the ability of the class to self-manage, so its
ability to grow is turned off by setting the internal variable self$can_grow <- FALSE.

Usage:
PatientSample$set_eff_and_tox(
tox_u,
eff_u,
tox_time = rep(0, length(tox_u)),
eff_time = rep(0, length(eff_u))

)

Arguments:

tox_u (‘numeric()‘) Patient-level toxicity propensities.
eff_u (‘numeric()‘) Patient-level efficacy propensities.
tox_time (‘numeric()‘) Patient-level toxicity times, given that toxicity occurs.
eff_time (‘numeric()‘) Patient-level efficacy times, given that efficacy occurs.

Method expand_to(): Expand sample to size at least num_patients

Usage:
PatientSample$expand_to(num_patients)

Arguments:

num_patients (‘integer(1)‘).

Method get_tox_u(): Get toxicity latent variable for patient i

Usage:
PatientSample$get_tox_u(i)

Arguments:

i (‘integer(1)‘) patient index

Method get_patient_tox(): Get 0 or 1 event marker for whether toxicity occurred in patient i

phase1_2_outcomes_to_cohorts 67

Usage:

PatientSample$get_patient_tox(i, prob_tox, time = Inf)

Arguments:

i (‘integer(1)‘) patient index

prob_tox (‘numeric(1)‘) probability of toxicity

time (‘numeric(1)‘) at time

Method get_eff_u(): Get efficacy latent variable for patient i

Usage:

PatientSample$get_eff_u(i)

Arguments:

i (‘integer(1)‘) patient index

Method get_patient_eff(): Get 0 or 1 event marker for whether efficacy occurred in patient i

Usage:

PatientSample$get_patient_eff(i, prob_eff, time = Inf)

Arguments:

i (‘integer(1)‘) patient index

prob_eff (‘numeric(1)‘) probability of efficacy

time (‘numeric(1)‘) at time

Method clone(): The objects of this class are cloneable with this method.

Usage:

PatientSample$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Sweeting, M., Slade, D., Jackson, D., & Brock, K. (2024). Potential outcome simulation for effi-
cient head-to-head comparison of adaptive dose-finding designs. arXiv preprint arXiv:2402.15460

phase1_2_outcomes_to_cohorts

Break a phase I/II outcome string into a list of cohort parts.

68 phase1_2_outcomes_to_cohorts

Description

Break a phase I/II outcome string into a list of cohort parts.

Break a phase I/II outcome string into a list of cohort parts.

The outcome string describes the doses given, outcomes observed and the timing of analyses that
recommend a dose. The format of the string is described in Brock _et al_. (2017).

The letters E, T, N & B are used to represents patients that experienced (E)fficacy, (T)oxicity,
(N)either and (B)oth. These letters are concatenated after numerical dose-levels to convey the out-
comes of cohorts of patients. For instance, 2NET represents a cohort of three patients that were
treated at dose-level 2, one of whom experienced toxicity only, one that experienced efficacy only,
and one that had neither. The results of cohorts are separated by spaces and it is assumed that a
dose-finding decision takes place at the end of a cohort. Thus, 2NET 1NN builds on our previous
example, where the next cohort of two were treated at dose-level 1 and neither of these patients
experienced either event See examples.

Usage

phase1_2_outcomes_to_cohorts(outcomes)

Arguments

outcomes character string representing the doses given, outcomes observed, and timing of
analyses. See Description.

Value

a list with a slot for each cohort. Each cohort slot is itself a list, containing elements: * dose, the
integer dose delivered to the cohort; * outcomes, a character string representing the E, T N or B
outcomes for the patients in this cohort.

References

Brock, K., Billingham, L., Copland, M., Siddique, S., Sirovica, M., & Yap, C. (2017). Implement-
ing the EffTox dose-finding design in the Matchpoint trial. BMC Medical Research Methodology,
17(1), 112. https://doi.org/10.1186/s12874-017-0381-x

Examples

x = phase1_2_outcomes_to_cohorts('1NEN 2ENT 3TB')
length(x)
x[[1]]$dose
x[[1]]$outcomes
x[[2]]$dose
x[[2]]$outcomes
x[[3]]$dose
x[[3]]$outcomes

phase1_outcomes_to_cohorts 69

phase1_outcomes_to_cohorts

Break a phase I outcome string into a list of cohort parts.

Description

Break a phase I outcome string into a list of cohort parts.

Break a phase I outcome string into a list of cohort parts.

The outcome string describes the doses given, outcomes observed and the timing of analyses that
recommend a dose. The format of the string is described in Brock (2019), and that itself is the phase
I analogue of the similar idea described in Brock _et al_. (2017).

The letters T and N are used to represents patients that experienced (T)oxicity and (N)o toxicity.
These letters are concatenated after numerical dose-levels to convey the outcomes of cohorts of
patients. For instance, 2NNT represents a cohort of three patients that were treated at dose-level 2,
one of whom experienced toxicity, and two that did not. The results of cohorts are separated by
spaces and it is assumed that a dose-finding decision takes place at the end of a cohort. Thus, 2NNT
1NN builds on our previous example, where the next cohort of two were treated at dose-level 1 and
neither of these patients experienced toxicity. See examples.

Usage

phase1_outcomes_to_cohorts(outcomes)

Arguments

outcomes character string representing the doses given, outcomes observed, and timing of
analyses. See Description.

Value

a list with a slot for each cohort. Each cohort slot is itself a list, containing elements: * dose, the
integer dose delivered to the cohort; * outcomes, a character string representing the T or N outcomes
for the patients in this cohort.

References

Brock, K. (2019). trialr: Bayesian Clinical Trial Designs in R and Stan. arXiv:1907.00161 [stat.CO]

Brock, K., Billingham, L., Copland, M., Siddique, S., Sirovica, M., & Yap, C. (2017). Implement-
ing the EffTox dose-finding design in the Matchpoint trial. BMC Medical Research Methodology,
17(1), 112. https://doi.org/10.1186/s12874-017-0381-x

Examples

x = phase1_outcomes_to_cohorts('1NNN 2NNT 3TT')
length(x)
x[[1]]$dose

70 prob_eff_quantile

x[[1]]$outcomes
x[[2]]$dose
x[[2]]$outcomes
x[[3]]$dose
x[[3]]$outcomes

prob_administer Percentage of patients treated at each dose.

Description

Get the percentage of patients evaluated at each dose under investigation.

Usage

prob_administer(x, ...)

Arguments

x Object of class selector

... arguments passed to other methods

Value

a numerical vector

Examples

CRM example
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
outcomes <- '1NNN 2NTN'
fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% prob_administer()

prob_eff_quantile Quantile of the efficacy rate at each dose.

Description

Get the estimated quantile of the efficacy rate at each dose under investigation. This is a set of
modelled statistics. The underlying models estimate efficacy probabilities in different ways. If no
model-based estimate of the median is available, this function will return a vector of NAs.

prob_recommend 71

Usage

prob_eff_quantile(x, p, ...)

Arguments

x Object of class selector

p quantile probability, decimal value between 0 and 1

... arguments passed to other methods

Value

a numerical vector

Examples

efftox_priors <- trialr::efftox_priors
p <- efftox_priors(alpha_mean = -7.9593, alpha_sd = 3.5487,

beta_mean = 1.5482, beta_sd = 3.5018,
gamma_mean = 0.7367, gamma_sd = 2.5423,
zeta_mean = 3.4181, zeta_sd = 2.4406,
eta_mean = 0, eta_sd = 0.2,
psi_mean = 0, psi_sd = 1)

real_doses = c(1.0, 2.0, 4.0, 6.6, 10.0)
model <- get_trialr_efftox(real_doses = real_doses,

efficacy_hurdle = 0.5, toxicity_hurdle = 0.3,
p_e = 0.1, p_t = 0.1,
eff0 = 0.5, tox1 = 0.65,
eff_star = 0.7, tox_star = 0.25,
priors = p, iter = 1000, chains = 1, seed = 2020)

x <- model %>% fit('1N 2E 3B')
prob_tox_quantile(x, p = 0.9)

prob_recommend Probability of recommendation

Description

Get the probabilities that each of the doses under investigation is recommended.

Usage

prob_recommend(x, ...)

Arguments

x Object of type simulations.

... arguments passed to other methods

72 prob_tox_exceeds

Value

vector of probabilities

Examples

true_prob_tox <- c(0.12, 0.27, 0.44, 0.53, 0.57)
sims <- get_three_plus_three(num_doses = 5) %>%

simulate_trials(num_sims = 50, true_prob_tox = true_prob_tox)
sims %>% prob_recommend

prob_tox_exceeds Probability that the toxicity rate exceeds some threshold.

Description

Get the probability that the toxicity rate at each dose exceeds some threshold.

Get the probability that the efficacy rate at each dose exceeds some threshold.

Usage

prob_tox_exceeds(x, threshold, ...)

prob_eff_exceeds(x, threshold, ...)

Arguments

x Object of type selector

threshold Probability that efficacy rate exceeds what?

... arguments passed to other methods

Value

numerical vector of probabilities

numerical vector of probabilities

Examples

CRM example
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
outcomes <- '1NNN 2NTN'
fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
What is probability that tox rate at each dose exceeds target by >= 10%?
fit %>% prob_tox_exceeds(threshold = target + 0.1)
efftox_priors <- trialr::efftox_priors
p <- efftox_priors(alpha_mean = -7.9593, alpha_sd = 3.5487,

beta_mean = 1.5482, beta_sd = 3.5018,

prob_tox_quantile 73

gamma_mean = 0.7367, gamma_sd = 2.5423,
zeta_mean = 3.4181, zeta_sd = 2.4406,
eta_mean = 0, eta_sd = 0.2,
psi_mean = 0, psi_sd = 1)

real_doses = c(1.0, 2.0, 4.0, 6.6, 10.0)
model <- get_trialr_efftox(real_doses = real_doses,

efficacy_hurdle = 0.5, toxicity_hurdle = 0.3,
p_e = 0.1, p_t = 0.1,
eff0 = 0.5, tox1 = 0.65,
eff_star = 0.7, tox_star = 0.25,
priors = p, iter = 1000, chains = 1, seed = 2020)

x <- model %>% fit('1N 2E 3B')
prob_tox_exceeds(x, threshold = 0.45)

prob_tox_quantile Quantile of the toxicity rate at each dose.

Description

Get the estimated quantile of the toxicity rate at each dose under investigation. This is a set of
modelled statistics. The underlying models estimate toxicity probabilities in different ways. If no
model-based estimate of the median is available, this function will return a vector of NAs.

Usage

prob_tox_quantile(x, p, ...)

Arguments

x Object of class selector

p quantile probability, decimal value between 0 and 1

... arguments passed to other methods

Value

a numerical vector

Examples

CRM example
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
outcomes <- '1NNN 2NTN'
fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% prob_tox_quantile(p = 0.9)

74 prob_tox_samples

prob_tox_samples Get samples of the probability of toxicity.

Description

Get samples of the probability of toxicity. For instance, a Bayesian approach that supports sampling
would be expected to return posterior samples of the probability of toxicity. If this class does not
support sampling, this function will raise an error. You can check whether this class supports
sampling by calling supports_sampling.

Get samples of the probability of efficacy For instance, a Bayesian approach that supports sampling
would be expected to return posterior samples of the probability of toxicity. If this class does
not support sampling, this function will raise an error. You can check whether this class supports
sampling by calling supports_sampling.

Usage

prob_tox_samples(x, tall = FALSE, ...)

prob_eff_samples(x, tall = FALSE, ...)

Arguments

x Object of type selector

tall logical, if FALSE, a wide data-frame is returned with columns pertaining to
the doses and column names the dose indices. If TRUE, a tall data-frame is
returned with data for all doses stacked vertically. In this mode, column names
will include dose and prob_eff.

... arguments passed to other methods

Value

data-frame like object

data-frame like object

Examples

CRM example
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
outcomes <- '1NNN 2NTN'
fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% prob_tox_samples()
fit %>% prob_tox_samples(tall = TRUE)
efftox_priors <- trialr::efftox_priors
p <- efftox_priors(alpha_mean = -7.9593, alpha_sd = 3.5487,

beta_mean = 1.5482, beta_sd = 3.5018,
gamma_mean = 0.7367, gamma_sd = 2.5423,

recommended_dose 75

zeta_mean = 3.4181, zeta_sd = 2.4406,
eta_mean = 0, eta_sd = 0.2,
psi_mean = 0, psi_sd = 1)

real_doses = c(1.0, 2.0, 4.0, 6.6, 10.0)
model <- get_trialr_efftox(real_doses = real_doses,

efficacy_hurdle = 0.5, toxicity_hurdle = 0.3,
p_e = 0.1, p_t = 0.1,
eff0 = 0.5, tox1 = 0.65,
eff_star = 0.7, tox_star = 0.25,
priors = p, iter = 1000, chains = 1, seed = 2020)

x <- model %>% fit('1N 2E 3B')
prob_tox_samples(x, tall = TRUE)

recommended_dose Recommended dose for next patient or cohort.

Description

Get the dose recommended for the next patient or cohort in a dose-finding trial.

Usage

recommended_dose(x, ...)

Arguments

x Object of type selector.

... Extra args are passed onwards.

Value

integer

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('1NNN 2NTN')
fit %>% recommended_dose()

76 selector

selector Dose selector.

Description

This is a core class in this package. It encapsulates that an object (e.g. a CRM model, a 3+3 model)
is able to recommend doses, keep track of how many patients have been treated at what doses,
what toxicity outcomes have been seen, and whether a trial should continue. It offers a consistent
interface to many dose-finding methods, including CRM, TPI, mTPI, BOIN, EffTox, 3+3, and more.

Once you have a standardised interface, modularisation offers a powerful way to adorn dose-finding
methods with extra desirable behaviour. selector objects can be daisy-chained togther using
magrittr’s pipe operator. For instance, the CRM fitting method in dfcrm is fantastic because it
runs quickly and is simple to call. However, it does not recommend that a trial stops if a dose is too
toxic or if n patients have already been treated at the recommended dose. Each of these behaviours
can be bolted on via additional selectors. Furthermore, those behaviours and more can be bolted on
to any dose selector because of the modular approach implemented in escalation. See Examples.

selector objects are obtained by calling the fit function on a selector_factory object. A
selector_factory object is obtained by initially calling a function like get_dfcrm, get_three_plus_three
or get_boin. Users may then add desired extra behaviour with subsequent calls to functions like
stop_when_n_at_dose or stop_when_too_toxic.

The selector class also supports that an object will be able to perform inferential calculations on
the rates of toxicity via functions like mean_prob_tox, median_prob_tox, and prob_tox_exceeds.
However, naturally the sophistication of those calculations will vary by model implementation. For
example, a full MCMC method will be able to quantify any probability you like by working with
posterior samples. In contrast, a method like the crm function in dfcrm that uses the plug-in method
to estimate posterior dose-toxicity curves cannot natively estimate the median probability of tox.

Usage

selector()

Details

Every selector object implements the following functions:

• tox_target

• num_patients

• cohort

• doses_given

• tox

• num_tox

• model_frame

• num_doses

• dose_indices

selector 77

• recommended_dose

• continue

• n_at_dose

• n_at_recommended_dose

• is_randomising

• prob_administer

• tox_at_dose

• empiric_tox_rate

• mean_prob_tox

• median_prob_tox

• dose_admissible

• prob_tox_quantile

• prob_tox_exceeds

• supports_sampling

• prob_tox_samples

Some selectors also add:

• tox_limit

• eff_limit

• eff

• num_eff

• eff_at_dose

• empiric_eff_rate

• mean_prob_eff

• median_prob_eff

• prob_eff_quantile

• prob_eff_exceeds

• prob_eff_samples

See Also

selector_factory

Examples

Start with a simple CRM model
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model1 <- get_dfcrm(skeleton = skeleton, target = target)

Add a rule to stop when 9 patients are treated at the recommended dose
model2 <- get_dfcrm(skeleton = skeleton, target = target) %>%

78 selector

stop_when_n_at_dose(n = 9, dose = 'recommended')

Add a rule to stop if toxicity rate at lowest dose likely exceeds target
model3 <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_when_n_at_dose(n = 9, dose = 'recommended') %>%
stop_when_too_toxic(dose = 1, tox_threshold = target, confidence = 0.5)

We now have three CRM models that differ in their stopping behaviour.
Let's fit each to some outcomes to see those differences:

outcomes <- '1NNN 2NTT 1NNT'
fit1 <- model1 %>% fit(outcomes)
fit2 <- model2 %>% fit(outcomes)
fit3 <- model3 %>% fit(outcomes)

fit1 %>% recommended_dose()
fit1 %>% continue()

fit2 %>% recommended_dose()
fit2 %>% continue()

fit3 %>% recommended_dose()
fit3 %>% continue()
Already model3 wants to stop because of excessive toxicity.

Let's carry on with models 1 and 2 by adding another cohort:

outcomes <- '1NNN 2NTT 1NNT 1NNN'
fit1 <- model1 %>% fit(outcomes)
fit2 <- model2 %>% fit(outcomes)

fit1 %>% recommended_dose()
fit1 %>% continue()

fit2 %>% recommended_dose()
fit2 %>% continue()

Model1 wants to continue - in fact it will never stop.
In contrast, model2 has seen 9 at dose 1 so, rather than suggest dose 1
again, it suggests the trial should stop.

For contrast, let us consider a BOIN model on the same outcomes
boin_fitter <- get_boin(num_doses = length(skeleton), target = target)
fit4 <- boin_fitter %>% fit(outcomes)
fit4 %>% recommended_dose()
fit4 %>% continue()

Full selector interface:
fit <- fit2
fit %>% tox_target()
fit %>% num_patients()
fit %>% cohort()
fit %>% doses_given()

selector_factory 79

fit %>% tox()
fit %>% weight()
fit %>% num_tox()
fit %>% model_frame()
fit %>% num_doses()
fit %>% dose_indices()
fit %>% recommended_dose()
fit %>% continue()
fit %>% n_at_dose()
fit %>% n_at_recommended_dose()
fit %>% is_randomising()
fit %>% prob_administer()
fit %>% tox_at_dose()
fit %>% empiric_tox_rate()
fit %>% mean_prob_tox()
fit %>% median_prob_tox()
fit %>% dose_admissible()
fit %>% prob_tox_quantile(0.9)
fit %>% prob_tox_exceeds(0.5)
fit %>% supports_sampling()
fit %>% prob_tox_samples()

selector_factory Dose selector factory.

Description

Along with selector, this is the second core class in the escalation package. It exists to do one
thing: fit outcomes from dose-finding trials to the models we use to select doses.

A selector_factory object is obtained by initially calling a function like get_dfcrm, get_three_plus_three
or get_boin. Users may then add desired extra behaviour with subsequent calls to functions like
stop_when_n_at_dose or stop_when_too_toxic. selector objects are obtained by calling the
fit function on a selector_factory object. Refer to examples to see how this works.

Usage

selector_factory()

See Also

selector

Examples

Start with a simple CRM model
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model1 <- get_dfcrm(skeleton = skeleton, target = target)

80 select_boin12_obd

Add a rule to stop when 9 patients are treated at the recommended dose
model2 <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_when_n_at_dose(n = 9, dose = 'recommended')

Add a rule to stop if toxicity rate at lowest dose likely exceeds target
model3 <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_when_n_at_dose(n = 9, dose = 'recommended') %>%
stop_when_too_toxic(dose = 1, tox_threshold = target, confidence = 0.5)

We now have three CRM models that differ in their stopping behaviour.
Let's fit each to some outcomes to see those differences:

outcomes <- '1NNN 2NTT 1NNT'
fit1 <- model1 %>% fit(outcomes)
fit2 <- model2 %>% fit(outcomes)
fit3 <- model3 %>% fit(outcomes)

fit1 %>% recommended_dose()
fit1 %>% continue()

fit2 %>% recommended_dose()
fit2 %>% continue()

fit3 %>% recommended_dose()
fit3 %>% continue()
Already model3 wants to stop because of excessive toxicity.

Let's carry on with models 1 and 2 by adding another cohort:

outcomes <- '1NNN 2NTT 1NNT 1NNN'
fit1 <- model1 %>% fit(outcomes)
fit2 <- model2 %>% fit(outcomes)

fit1 %>% recommended_dose()
fit1 %>% continue()

fit2 %>% recommended_dose()
fit2 %>% continue()

Model1 wants to continue - in fact it will never stop.
In contrast, model2 has seen 9 at dose 1 so, rather than suggest dose 1
again, it suggests the trial should stop.

For contrast, let us consider a BOIN model on the same outcomes
boin_fitter <- get_boin(num_doses = length(skeleton), target = target)
fit4 <- boin_fitter %>% fit(outcomes)
fit4 %>% recommended_dose()
fit4 %>% continue()

select_boin12_obd Select dose by BOIN12’s OBD-choosing algorithm.

select_boin12_obd 81

Description

This method selects dose by the algorithm for identifying the optimal biological dose (OBD) de-
scribed in Lin et al. (2020). This class is intended to be used when a BOIN12 trial has reached
its maximum sample size. Thus, it intends to make the final dose recommendation after the reg-
ular BOIN12 dose selection algorithm, as implemented by get_boin12, has gracefully concluded
a dose-finding trial. However, the class can be used in any scenario where there is a limit toxicity
rate. See Examples. Note - this class will not override the parent dose selector when the parent is
advocating no dose. Thus this class will not reinstate a dangerous dose.

Usage

select_boin12_obd(
parent_selector_factory,
when = c("finally", "always"),
tox_limit = NULL,
...

)

Arguments

parent_selector_factory

Object of type selector_factory.

when Either of: ’finally’ to select dose only when the parent dose-selector has fin-
ished, by returning continue() == FALSE; or ’always’ to use this dose-selection
algorithm for every dose decision. As per the authors’ original intentions, the
default is ’finally’.

tox_limit We seek a dose with toxicity probability no greater than. If not provided, the
value will be sought from the parent dose-selector.

... Extra args are ignored.

Value

an object of type selector_factory.

References

Lin, R., Zhou, Y., Yan, F., Li, D., & Yuan, Y. (2020). BOIN12: Bayesian optimal interval phase I/II
trial design for utility-based dose finding in immunotherapy and targeted therapies. JCO precision
oncology, 4, 1393-1402.

Examples

This class is intended to make the final dose selection in a BOIN12 trial:
tox_limit <- 0.35
model <- get_boin12(num_doses = 5, phi_t = 0.35, phi_e = 0.25,

u2 = 40, u3 = 60, n_star = 6) %>%
stop_at_n(n = 12) %>%
select_boin12_obd()

82 select_boin_mtd

outcomes <- '1NNN 2NTN 2NNN 3NTT'
model %>% fit(outcomes) %>% recommended_dose()

However, since behaviour is modular in this package, we can use this method
to select dose at every dose decision:
model2 <- get_boin12(num_doses = 5, phi_t = 0.35, phi_e = 0.25,

u2 = 40, u3 = 60, n_star = 6) %>%
select_boin12_obd(when = 'always')

model2 %>% fit('1NNT') %>% recommended_dose()
model2 %>% fit('1NNN 2NNT') %>% recommended_dose()

select_boin_mtd Select dose by BOIN’s MTD-choosing algorithm.

Description

This method selects dose by the algorithm for identifying the maximum tolerable dose (MTD)
described in Yan et al. (2019). This class is intended to be used when a BOIN trial has reached its
maximum sample size. Thus, it intends to make the final dose recommendation after the regular
BOIN dose selection algorithm, as implemented by get_boin, including any additional behaviours
that govern stopping (etc), has gracefully concluded a dose-finding trial. However, the class can be
used in any scenario where there is a target toxicity rate. See Examples. Note - this class will not
override the parent dose selector when the parent is advocating no dose. Thus this class will not
reinstate a dangerous dose.

Usage

select_boin_mtd(
parent_selector_factory,
when = c("finally", "always"),
target = NULL,
...

)

Arguments

parent_selector_factory

Object of type selector_factory.

when Either of: ’finally’ to select dose only when the parent dose-selector has fin-
ished, by returning continue() == FALSE; or ’always’ to use this dose-selection
algorithm for every dose decision. As per the authors’ original intentions, the
default is ’finally’.

target We seek a dose with this probability of toxicity. If not provided, the value will
be sought from the parent dose-selector.

... Extra args are passed to select.mtd.

select_dose_by_cibp 83

Value

an object of type selector_factory.

References

Yan, F., Pan, H., Zhang, L., Liu, S., & Yuan, Y. (2019). BOIN: An R Package for Designing Single-
Agent and Drug-Combination Dose-Finding Trials Using Bayesian Optimal Interval Designs. Jour-
nal of Statistical Software, 27(November 2017), 0–35. https://doi.org/10.18637/jss.v000.i00

Examples

This class is intended to make the final dose selection in a BOIN trial:
target <- 0.25
model <- get_boin(num_doses = 5, target = target) %>%

stop_at_n(n = 12) %>%
select_boin_mtd()

outcomes <- '1NNN 2NTN 2NNN 3NTT'
model %>% fit(outcomes) %>% recommended_dose()

However, since behaviour is modular in this package, we can use this method
to select dose at every dose decision if we wanted:
model2 <- get_boin(num_doses = 5, target = target) %>%

select_boin_mtd(when = 'always')
model2 %>% fit('1NNT') %>% recommended_dose()
model2 %>% fit('1NNN 2NNT') %>% recommended_dose()

and with any underlying model:
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
model3 <- get_dfcrm(skeleton = skeleton, target = target) %>%

select_boin_mtd(when = 'always')
model3 %>% fit('1NNT') %>% recommended_dose()
model3 %>% fit('1NNN 2NNT') %>% recommended_dose()

select_dose_by_cibp Select dose by the CIBP selection criterion.

Description

This method selects dose by the convex infinite bounds penalisation (CIBP) criterion of Mozgunov
& Jaki. Their method is mindful of the uncertainty in the estimates of the probability of toxicity
and uses an asymmetry parameter to penalise escalation to risky doses.

Usage

select_dose_by_cibp(parent_selector_factory, a, target = NULL)

84 select_mtpi2_mtd

Arguments

parent_selector_factory

Object of type selector_factory.

a Number between 0 and 2, the asymmetry parameter. See References.

target We seek a dose with this probability of toxicity. If not provided, the value will
be sought from the parent dose-selector.

Value

an object of type selector_factory that can fit a dose-finding model to outcomes.

References

Mozgunov P, Jaki T. Improving safety of the continual reassessment method via a modified alloca-
tion rule. Statistics in Medicine.1-17. doi:10.1002/sim.8450

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.33

Let's compare escalation behaviour of a CRM model without CIBP criterion:
model1 <- get_dfcrm(skeleton = skeleton, target = target)
To one with the CIBP criterion:
model2 <- get_dfcrm(skeleton = skeleton, target = target) %>%

select_dose_by_cibp(a = 0.3)

Despite one-in-three tox at first dose, regular model is ready to escalate:
model1 %>% fit('1NTN') %>% recommended_dose()
But the model using CIBP is more risk averse:
model2 %>% fit('1NTN') %>% recommended_dose()

select_mtpi2_mtd Select dose by mTPI2’s MTD-choosing algorithm.

Description

This method selects dose by the algorithm for identifying the maximum tolerable dose (MTD) de-
scribed in Guo et al. (2017). This class is intended to be used when a mTPI2 trial has reached
its maximum sample size. Thus, it intends to make the final dose recommendation after the regu-
lar mTPI2 dose selection algorithm, as implemented by get_mtpi2, including any additional be-
haviours that govern stopping (etc), has gracefully concluded a dose-finding trial. However, the
class can be used in any scenario where there is a target toxicity rate. See Examples. Note - this
class will not override the parent dose selector when the parent is advocating no dose. Thus this
class will not reinstate a dangerous dose.

select_mtpi2_mtd 85

Usage

select_mtpi2_mtd(
parent_selector_factory,
when = c("finally", "always"),
target = NULL,
exclusion_certainty,
alpha = 1,
beta = 1,
...

)

Arguments

parent_selector_factory

Object of type selector_factory.

when Either of: ’finally’ to select dose only when the parent dose-selector has fin-
ished, by returning continue() == FALSE; or ’always’ to use this dose-selection
algorithm for every dose decision. As per the authors’ original intentions, the
default is ’finally’.

target We seek a dose with this probability of toxicity. If not provided, the value will
be sought from the parent dose-selector.

exclusion_certainty

Numeric, threshold posterior certainty required to exclude a dose for being ex-
cessively toxic. The authors discuss values in the range 0.7 - 0.95. Set to a value
> 1 to suppress the dose exclusion mechanism. The authors use the Greek letter
xi for this parameter.

alpha First shape parameter of the beta prior distribution on the probability of toxicity.

beta Second shape parameter of the beta prior distribution on the probability of toxi-
city.

... Extra args are passed onwards.

Value

an object of type selector_factory.

References

Guo, W., Wang, SJ., Yang, S., Lynn, H., Ji, Y. (2017). A Bayesian Interval Dose-Finding Design
Addressing Ockham’s Razor: mTPI-2. https://doi.org/10.1016/j.cct.2017.04.006

Examples

This class is intended to make the final dose selection in a mTPI2 trial:
target <- 0.25
model <- get_mtpi2(num_doses = 5, target = target,

epsilon1 = 0.05, epsilon2 = 0.05,
exclusion_certainty = 0.95) %>%

stop_at_n(n = 12) %>%

86 select_mtpi_mtd

select_mtpi2_mtd(exclusion_certainty = 0.95)

outcomes <- '1NNN 2NTN 2NNN 3NTT'
model %>% fit(outcomes) %>% recommended_dose()

However, since behaviour is modular in this package, we can use this method
to select dose at every dose decision if we wanted:
model2 <- get_mtpi2(num_doses = 5, target = target,

epsilon1 = 0.05, epsilon2 = 0.05,
exclusion_certainty = 0.95) %>%

select_mtpi2_mtd(when = 'always', exclusion_certainty = 0.95)
model2 %>% fit('1NNT') %>% recommended_dose()
model2 %>% fit('1NNN 2NNT') %>% recommended_dose()

and with any underlying model:
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
model3 <- get_dfcrm(skeleton = skeleton, target = target) %>%

select_mtpi2_mtd(when = 'always', exclusion_certainty = 0.95)
model3 %>% fit('1NNT') %>% recommended_dose()
model3 %>% fit('1NNN 2NNT') %>% recommended_dose()

select_mtpi_mtd Select dose by mTPI’s MTD-choosing algorithm.

Description

This method selects dose by the algorithm for identifying the maximum tolerable dose (MTD)
described in Ji et al. (2010). This class is intended to be used when a mTPI trial has reached its
maximum sample size. Thus, it intends to make the final dose recommendation after the regular
mTPI dose selection algorithm, as implemented by get_mtpi, including any additional behaviours
that govern stopping (etc), has gracefully concluded a dose-finding trial. However, the class can be
used in any scenario where there is a target toxicity rate. See Examples. Note - this class will not
override the parent dose selector when the parent is advocating no dose. Thus this class will not
reinstate a dangerous dose.

Usage

select_mtpi_mtd(
parent_selector_factory,
when = c("finally", "always"),
target = NULL,
exclusion_certainty,
alpha = 1,
beta = 1,
...

)

select_mtpi_mtd 87

Arguments

parent_selector_factory

Object of type selector_factory.

when Either of: ’finally’ to select dose only when the parent dose-selector has fin-
ished, by returning continue() == FALSE; or ’always’ to use this dose-selection
algorithm for every dose decision. As per the authors’ original intentions, the
default is ’finally’.

target We seek a dose with this probability of toxicity. If not provided, the value will
be sought from the parent dose-selector.

exclusion_certainty

Numeric, threshold posterior certainty required to exclude a dose for being ex-
cessively toxic. The authors discuss values in the range 0.7 - 0.95. Set to a value
> 1 to suppress the dose exclusion mechanism. The authors use the Greek letter
xi for this parameter.

alpha First shape parameter of the beta prior distribution on the probability of toxicity.

beta Second shape parameter of the beta prior distribution on the probability of toxi-
city.

... Extra args are passed onwards.

Value

an object of type selector_factory.

References

Ji, Y., Liu, P., Li, Y., & Bekele, B. N. (2010). A modified toxicity probability interval method for
dose-finding trials. Clinical Trials, 7(6), 653-663. https://doi.org/10.1177/1740774510382799

Ji, Y., & Yang, S. (2017). On the Interval-Based Dose-Finding Designs, 1-26. Retrieved from
https://arxiv.org/abs/1706.03277

Examples

This class is intended to make the final dose selection in a mTPI trial:
target <- 0.25
model <- get_mtpi(num_doses = 5, target = target,

epsilon1 = 0.05, epsilon2 = 0.05,
exclusion_certainty = 0.95) %>%

stop_at_n(n = 12) %>%
select_mtpi_mtd(exclusion_certainty = 0.95)

outcomes <- '1NNN 2NTN 2NNN 3NTT'
model %>% fit(outcomes) %>% recommended_dose()

However, since behaviour is modular in this package, we can use this method
to select dose at every dose decision if we wanted:
model2 <- get_mtpi(num_doses = 5, target = target,

epsilon1 = 0.05, epsilon2 = 0.05,
exclusion_certainty = 0.95) %>%

88 select_tpi_mtd

select_mtpi_mtd(when = 'always', exclusion_certainty = 0.95)
model2 %>% fit('1NNT') %>% recommended_dose()
model2 %>% fit('1NNN 2NNT') %>% recommended_dose()

and with any underlying model:
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
model3 <- get_dfcrm(skeleton = skeleton, target = target) %>%

select_mtpi_mtd(when = 'always', exclusion_certainty = 0.95)
model3 %>% fit('1NNT') %>% recommended_dose()
model3 %>% fit('1NNN 2NNT') %>% recommended_dose()

select_tpi_mtd Select dose by TPI’s MTD-choosing algorithm.

Description

This method selects dose by the algorithm for identifying the maximum tolerable dose (MTD)
described in Ji et al. (2007). This class is intended to be used when a TPI trial has reached its
maximum sample size. Thus, it intends to make the final dose recommendation after the regular
TPI dose selection algorithm, as implemented by get_tpi, including any additional behaviours that
govern stopping (etc), has gracefully concluded a dose-finding trial. However, the class can be used
in any scenario where there is a target toxicity rate. See Examples. Note - this class will not override
the parent dose selector when the parent is advocating no dose. Thus this class will not reinstate a
dangerous dose.

Usage

select_tpi_mtd(
parent_selector_factory,
when = c("finally", "always"),
target = NULL,
exclusion_certainty,
alpha = 1,
beta = 1,
...

)

Arguments

parent_selector_factory

Object of type selector_factory.

when Either of: ’finally’ to select dose only when the parent dose-selector has fin-
ished, by returning continue() == FALSE; or ’always’ to use this dose-selection
algorithm for every dose decision. As per the authors’ original intentions, the
default is ’finally’.

target We seek a dose with this probability of toxicity. If not provided, the value will
be sought from the parent dose-selector.

select_tpi_mtd 89

exclusion_certainty

Numeric, threshold posterior certainty required to exclude a dose for being ex-
cessively toxic. The authors discuss values in the range 0.7 - 0.95. Set to a value
> 1 to suppress the dose exclusion mechanism. The authors use the Greek letter
xi for this parameter.

alpha First shape parameter of the beta prior distribution on the probability of toxicity.

beta Second shape parameter of the beta prior distribution on the probability of toxi-
city.

... Extra args are passed onwards.

Value

an object of type selector_factory.

References

Ji, Y., Li, Y., & Bekele, B. N. (2007). Dose-finding in phase I clinical trials based on toxicity
probability intervals. Clinical Trials, 4(3), 235–244. https://doi.org/10.1177/1740774507079442

Examples

This class is intended to make the final dose selection in a mTPI2 trial:
target <- 0.25
model <- get_tpi(num_doses = 5, target = target,

k1 = 1, k2 = 1.5,
exclusion_certainty = 0.95) %>%

stop_at_n(n = 12) %>%
select_tpi_mtd(exclusion_certainty = 0.95)

outcomes <- '1NNN 2NTN 2NNN 3NTT'
model %>% fit(outcomes) %>% recommended_dose()

However, since behaviour is modular in this package, we can use this method
to select dose at every dose decision if we wanted:
model2 <- get_tpi(num_doses = 5, target = target,

k1 = 1, k2 = 1.5,
exclusion_certainty = 0.95) %>%

select_tpi_mtd(when = 'always', exclusion_certainty = 0.95)
model2 %>% fit('1NNT') %>% recommended_dose()
model2 %>% fit('1NNN 2NNT') %>% recommended_dose()

and with any underlying model:
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
model3 <- get_dfcrm(skeleton = skeleton, target = target) %>%

select_tpi_mtd(when = 'always', exclusion_certainty = 0.95)
model3 %>% fit('1NNT') %>% recommended_dose()
model3 %>% fit('1NNN 2NNT') %>% recommended_dose()

90 simulate_compare

simulate_compare Simulate clinical trials for several designs using common patients.

Description

This function takes a list of several selector_factorys, such as those returned by get_dfcrm,
get_boin or get_three_plus_three, and conducts many notional clinical trials. The simulated
patients in the trials are common across designs. For example, in a comparison of the three designs
mentioned above, the first simulated CRM trial uses the same notional patients as the first simulated
BOIN trial, etc. Using common patients within iterate across designs reduces MCMC errors of
comparisons, so this method is efficient for comparing designs. See Sweeting et al. for full details.

Usage

simulate_compare(
designs,
num_sims,
true_prob_tox,
true_prob_eff = NULL,
patient_samples = NULL,
rho = NULL,
return_patient_samples = FALSE,
...

)

Arguments

designs list, mapping design names to objects of type selector_factory.

num_sims integer, number of trial iterations to simulate.

true_prob_tox numeric vector of true but unknown toxicity probabilities

true_prob_eff numeric vector of true but unknown efficacy probabilities. NULL if efficacy not
analysed.

patient_samples

Optional list of length num_sims, where each element is an instance of PatientSample
or a subclass like CorrelatedPatientSample. These objects control the occur-
rence of toxicity and efficacy events in patients. They are specifiable to allow
fine-grained control to users. See the vignette on Simulation.

rho Optional correlation between -1 and 1 for the latent uniform variables that de-
termine toxicity and efficacy events. Non-correlated events is the default.

return_patient_samples

TRUE to get the list of patient sample objects returned in the patient_samples
attribute of the retured object.

... Extra args are passed onwards.

simulate_compare 91

Details

By default, dose decisions in simulated trials are made after each cohort of 3 patients. This can
be changed by providing a function by the sample_patient_arrivals parameter that simulates
the arrival of new patients. The new patients will be added to the existing patients and the model
will be fit to the set of all patients. The function that simulates patient arrivals should take as a
single parameter a data-frame with one row for each existing patient and columns including cohort,
patient, dose, tox, time (and possibly also eff and weight, if a phase I/II or time-to-event method
is used). The provision of data on the existing patients allows the patient sampling function to be
adaptive. The function should return a data-frame with a row for each new patient and a column for
time_delta, the time between the arrival of this patient and the previous, as in cohorts_of_n. See
Examples.

This method can simulate the culmination of trials that are partly completed. We just have to specify
the outcomes already observed via the previous_outcomes parameter. Each simulated trial will
commence from those outcomes seen thus far. See Examples.

We can specify the immediate next dose by specifying next_dose. If omitted, the next dose is
calculated by invoking the model on the outcomes seen thus far.

Designs must eventually choose to stop the trial. Some designs, like 3+3, have intrinsic stop-
ping rules. However, some selectors like those derived from get_dfcrm offer no default stopping
method. You may need to append stopping behaviour to your selector via something like stop_at_n
or stop_when_n_at_dose, etc. To safeguard against simulating runaway trials that never end, the
function will halt a simulated trial after 30 invocations of the dose-selection decision. To breach
this limit, specify i_like_big_trials = TRUE in the function call. However, when you forego the
safety net, the onus is on you to write selectors that will eventually stop the trial! See Examples.

The model is fit to the prevailing data at each dose selection point. By default, only the final model
fit for each simulated trial is retained. This is done to conserve memory. With a high number of sim-
ulated trials, storing many model fits per trial may cause the executing machine to run out of mem-
ory. However, you can force this method to retain all model fits by specifying return_all_fits =
TRUE. See Examples.

Value

object of type simulations_collection

References

Sweeting, M., Slade, D., Jackson, D., & Brock, K. (2024). Potential outcome simulation for effi-
cient head-to-head comparison of adaptive dose-finding designs. arXiv preprint arXiv:2402.15460

See Also

simulations

selector_factory

get_dfcrm

get_boin

get_three_plus_three

cohorts_of_n

92 simulate_compare

Examples

Not run:
Don't run on build because they exceed CRAN time limit

In a five-dose scenario, we have assumed probabilities for Prob(tox):
true_prob_tox <- c(0.05, 0.10, 0.15, 0.18, 0.45)
and Prob(eff):
true_prob_eff <- c(0.40, 0.50, 0.52, 0.53, 0.53)

Let us compare two BOIN12 variants that differ in their stopping params:
designs <- list(

"BOIN12 v1" = get_boin12(num_doses = 5,
phi_t = 0.35, phi_e = 0.25,
u2 = 40, u3 = 60,
c_t = 0.95, c_e = 0.9) %>%

stop_at_n(n = 36),
"BOIN12 v2" = get_boin12(num_doses = 5,

phi_t = 0.35, phi_e = 0.25,
u2 = 40, u3 = 60,
c_t = 0.5, c_e = 0.5) %>%

stop_at_n(n = 36)
)
For illustration we run only 10 iterates:
x <- simulate_compare(

designs,
num_sims = 10,
true_prob_tox,
true_prob_eff

)
To compare toxicity-only designs like CRM etc, we would omit true_prob_eff.

We might be interested in the absolute dose recommendation probabilities:
convergence_plot(x)

library(dplyr)
library(ggplot2)
and, perhaps more importantly, how they compare:
as_tibble(x) %>%

ggplot(aes(x = n, y = delta)) +
geom_point(size = 0.4) +
geom_linerange(aes(ymin = delta_l, ymax = delta_u)) +
geom_hline(yintercept = 0, linetype = "dashed", col = "red") +
facet_grid(comparison ~ dose,
labeller = labeller(

.rows = label_both,

.cols = label_both)
)

Simulations for each design are available by name:
sims <- x$`BOIN12 v1`
And the usual functions are available on the sims objects:
sims %>% num_patients()

simulate_compare 93

sims %>% num_doses()
sims %>% dose_indices()
sims %>% n_at_dose()
etc
See ? simulate_trials

As with simulate_trials, which examines one design, we also have options to
tweak the simulation process.

By default, dose decisions are made after each cohort of 3 patients. To
override, specify an alternative function via the sample_patient_arrivals
parameter. E.g. to use cohorts of 2, we run:
patient_arrivals_func <- function(current_data) cohorts_of_n(n = 2)
x <- simulate_compare(

designs,
num_sims = 10,
true_prob_tox,
true_prob_eff,
sample_patient_arrivals = patient_arrivals_func

)

To simulate the culmination of trials that are partly completed, specify
the outcomes already observed via the previous_outcomes parameter. Imagine
one cohort has already been evaluated, returning outcomes 1NTN. We can
simulate the remaining part of that trial with:
x <- simulate_compare(

designs,
num_sims = 10,
true_prob_tox,
true_prob_eff,
previous_outcomes = '1NTN'

)

Outcomes can be described by the above outcome string method or data-frame:
previous_outcomes <- data.frame(

patient = 1:3,
cohort = c(1, 1, 1),
tox = c(0, 1, 0),
eff = c(1, 1, 0),
dose = c(1, 1, 1)

)
x <- simulate_compare(

designs,
num_sims = 10,
true_prob_tox,
true_prob_eff,
previous_outcomes = previous_outcomes

)

We can specify the immediate next dose:
x <- simulate_compare(

designs,
num_sims = 10,

94 simulate_trials

true_prob_tox,
true_prob_eff,
next_dose = 5

)

By default, the method will stop simulated trials after 30 dose selections.
To suppress this, specify i_like_big_trials = TRUE. However, please take
care to specify selectors that will eventually stop! Our designs above use
stop_at_n so they will not proceed ad infinitum.
x <- simulate_compare(

designs,
num_sims = 10,
true_prob_tox,
true_prob_eff,
i_like_big_trials = TRUE

)

By default, only the final model fit is retained for each simulated trial.
To retain all interim model fits, specify return_all_fits = TRUE.
x <- simulate_compare(

designs,
num_sims = 10,
true_prob_tox,
true_prob_eff,
return_all_fits = TRUE

)

End(Not run)

simulate_trials Simulate clinical trials.

Description

This function takes a selector_factory, such as that returned by get_dfcrm, get_boin or get_three_plus_three,
and conducts many notional clinical trials. We conduct simulations to learn about the operating
characteristics of adaptive trial designs.

Usage

simulate_trials(
selector_factory,
num_sims,
true_prob_tox,
true_prob_eff = NULL,
...

)

simulate_trials 95

Arguments

selector_factory

Object of type selector_factory.

num_sims integer, number of trial iterations to simulate.

true_prob_tox numeric vector of true but unknown toxicity probabilities

true_prob_eff numeric vector of true but unknown efficacy probabilities. NULL if efficacy not
analysed.

... Extra args are passed onwards.

Details

By default, dose decisions in simulated trials are made after each cohort of 3 patients. This can
be changed by providing a function by the sample_patient_arrivals parameter that simulates
the arrival of new patients. The new patients will be added to the existing patients and the model
will be fit to the set of all patients. The function that simulates patient arrivals should take as a
single parameter a data-frame with one row for each existing patient and columns including cohort,
patient, dose, tox, time (and possibly also eff and weight, if a phase I/II or time-to-event method
is used). The provision of data on the existing patients allows the patient sampling function to be
adaptive. The function should return a data-frame with a row for each new patient and a column for
time_delta, the time between the arrival of this patient and the previous, as in cohorts_of_n. See
Examples.

This method can simulate the culmination of trials that are partly completed. We just have to specify
the outcomes already observed via the previous_outcomes parameter. Each simulated trial will
commence from those outcomes seen thus far. See Examples.

We can specify the immediate next dose by specifying next_dose. If omitted, the next dose is
calculated by invoking the model on the outcomes seen thus far.

Designs must eventually choose to stop the trial. Some designs, like 3+3, have intrinsic stop-
ping rules. However, some selectors like those derived from get_dfcrm offer no default stopping
method. You may need to append stopping behaviour to your selector via something like stop_at_n
or stop_when_n_at_dose, etc. To safeguard against simulating runaway trials that never end, the
function will halt a simulated trial after 30 invocations of the dose-selection decision. To breach
this limit, specify i_like_big_trials = TRUE in the function call. However, when you forego the
safety net, the onus is on you to write selectors that will eventually stop the trial! See Examples.

The model is fit to the prevailing data at each dose selection point. By default, only the final model
fit for each simulated trial is retained. This is done to conserve memory. With a high number of sim-
ulated trials, storing many model fits per trial may cause the executing machine to run out of mem-
ory. However, you can force this method to retain all model fits by specifying return_all_fits =
TRUE. See Examples.

Value

Object of type simulations.

See Also

simulations

96 simulate_trials

selector_factory

get_dfcrm

get_boin

get_three_plus_three

cohorts_of_n

Examples

In a five-dose scenario, we have assumed probabilities for Prob(tox):
true_prob_tox <- c(0.12, 0.27, 0.44, 0.53, 0.57)

Simulate ten 3+3 trials:
sims <- get_three_plus_three(num_doses = 5) %>%

simulate_trials(num_sims = 10, true_prob_tox = true_prob_tox)
Likewise, simulate 10 trials using a continual reassessment method:
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
sims <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_at_n(n = 12) %>%
simulate_trials(num_sims = 10, true_prob_tox = true_prob_tox)

Lots of useful information is contained in the returned object:
sims %>% num_patients()
sims %>% num_doses()
sims %>% dose_indices()
sims %>% n_at_dose()
sims %>% n_at_recommended_dose()
sims %>% tox_at_dose()
sims %>% num_tox()
sims %>% recommended_dose()
sims %>% prob_administer()
sims %>% prob_recommend()
sims %>% trial_duration()

By default, dose decisions are made after each cohort of 3 patients. See
Details. To override, specify an alternative function via the
sample_patient_arrivals parameter. E.g. to use cohorts of 2, we run:
patient_arrivals_func <- function(current_data) cohorts_of_n(n = 2)
sims <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_at_n(n = 12) %>%
simulate_trials(num_sims = 10, true_prob_tox = true_prob_tox,
sample_patient_arrivals = patient_arrivals_func)

To simulate the culmination of trials that are partly completed, specify
the outcomes already observed via the previous_outcomes parameter. Imagine
one cohort has already been evaluated, returning outcomes 1NTN. We can
simulate the remaining part of the trial with:
sims <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_at_n(n = 12) %>%
simulate_trials(num_sims = 10, true_prob_tox = true_prob_tox,

previous_outcomes = '1NTN')

simulations 97

Outcomes can be described by the above outcome string method or data-frame:
previous_outcomes <- data.frame(
patient = 1:3,
cohort = c(1, 1, 1),
tox = c(0, 1, 0),
dose = c(1, 1, 1)

)
sims <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_at_n(n = 12) %>%
simulate_trials(num_sims = 10, true_prob_tox = true_prob_tox,

previous_outcomes = previous_outcomes)

We can specify the immediate next dose:
sims <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_at_n(n = 12) %>%
simulate_trials(num_sims = 10, true_prob_tox = true_prob_tox,

next_dose = 5)

By default, the method will stop simulated trials after 30 dose selections.
To suppress this, specify i_like_big_trials = TRUE. However, please take
care to specify selectors that will eventually stop!
sims <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_at_n(n = 99) %>%
simulate_trials(num_sims = 1, true_prob_tox = true_prob_tox,

i_like_big_trials = TRUE)

By default, only the final model fit is retained for each simulated trial.
To retain all interim model fits, specify return_all_fits = TRUE.
sims <- get_three_plus_three(num_doses = 5) %>%

simulate_trials(num_sims = 10, true_prob_tox = true_prob_tox,
return_all_fits = TRUE)

Verify that there are now many analyses per trial with:
sapply(sims$fits, length)

simulations Simulated trials.

Description

This class encapsulates that many notional or virtual trials can be simulated. Each recommends a
dose (or doses), keeps track of how many patients have been treated at what doses, what toxicity
outcomes have been seen, and whether a trial advocates continuing, etc. We run simulations to learn
about the operating characteristics of a trial design.

Computationally, the simulations class supports much of the same interface as selector, and a
little more. Thus, many of the same generic functions are supported - see Examples. However,
compared to selectors, the returned objects reflect that there are many trials instead of one, e.g.
num_patients(sims), returns as an integer vector the number of patients used in the simulated
trials.

98 simulations

Usage

simulations(fits, true_prob_tox, true_prob_eff = NULL, ...)

Arguments

fits Simulated model fits, arranged as list of lists.

true_prob_tox vector of true toxicity probabilities

true_prob_eff vector of true efficacy probabilities, optionally NULL if efficacy not analysed.

... Extra args

Details

The simulations object implements the following functions:

• num_patients

• num_doses

• dose_indices

• n_at_dose

• tox_at_dose

• num_tox

• recommended_dose

• prob_administer

• prob_recommend

• trial_duration

Value

list with slots: fits containing model fits; and true_prob_tox, contianing the assumed true prob-
ability of toxicity.

See Also

selector

simulate_trials

Examples

Simulate performance of the 3+3 design:
true_prob_tox <- c(0.12, 0.27, 0.44, 0.53, 0.57)
sims <- get_three_plus_three(num_doses = 5) %>%

simulate_trials(num_sims = 10, true_prob_tox = true_prob_tox)
The returned object has type 'simulations'. The supported interface is:
sims %>% num_patients()
sims %>% num_doses()
sims %>% dose_indices()
sims %>% n_at_dose()

simulations_collection 99

sims %>% tox_at_dose()
sims %>% num_tox()
sims %>% recommended_dose()
sims %>% prob_administer()
sims %>% prob_recommend()
sims %>% trial_duration()

Access the list of model fits for the ith simulated trial using:
i <- 1
sims$fits[[i]]
and the jth model fit for the ith simulated trial using:
j <- 1
sims$fits[[i]][[j]]
and so on.

simulations_collection

Make an instance of type simulations_collection

Description

This object can be cast to a tibble with as_tibble to generate useful pairwise comparisons of the
probability of recommending each dose for each pair of designs investigated. See as_tibble.simulations_collection
for a description.

Usage

simulations_collection(sim_map)

Arguments

sim_map list, character -> simulations object

Value

object of class simulations_collection, inheriting from list

References

Sweeting, M., Slade, D., Jackson, D., & Brock, K. (2024). Potential outcome simulation for effi-
cient head-to-head comparison of adaptive dose-finding designs. arXiv preprint arXiv:2402.15460

100 spread_paths

simulation_function Get function for simulating trials.

Description

This function does not need to be called by users. It is used internally.

Usage

simulation_function(selector_factory)

Arguments

selector_factory

Object of type selector_factory.

Value

A function.

spread_paths Spread the information in dose_finding_paths object to a wide
data.frame format.

Description

Spread the information in dose_finding_paths object to a wide data.frame format.

Usage

spread_paths(df = NULL, dose_finding_paths = NULL, max_depth = NULL)

Arguments

df Optional data.frame like that returned by as_tibble(dose_finding_paths). Columns
.depth, .node, .parent are required. All other columns are spread with a suffix
reflecting depth.

dose_finding_paths

Optional instance of dose_finding_paths. Required if ‘df‘ is null.

max_depth integer, maximum depth of paths to traverse.

Value

A data.frame

stack_sims_vert 101

Examples

Not run:
Calculate paths for the first two cohorts of three patients a CRM trial
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
cohort_sizes <- c(3, 3)
paths <- get_dfcrm(skeleton = skeleton, target = target) %>%

get_dose_paths(cohort_sizes = cohort_sizes)

End(Not run)

stack_sims_vert Stack simulations_collection results vertically

Description

Stack simulations_collection results vertically

Usage

stack_sims_vert(sim_map, target_dose = NULL, alpha = 0.05)

Arguments

sim_map object of type simulations_collection

target_dose optional integer vector, the dose of interest. All doses are analysed if omitted,
which is the default.

alpha confidence level for asymptotic normal confidence intervals. The default value
is 0.05 to get 95 percent confidence intervals.

Value

a data.frame

Examples

In a five-dose scenario, we have assumed probabilities for Prob(tox):
true_prob_tox <- c(0.05, 0.10, 0.15, 0.18, 0.45)
and Prob(eff):
true_prob_eff <- c(0.40, 0.50, 0.52, 0.53, 0.53)

Let us compare two BOIN12 variants that differ in their stopping params:
designs <- list(

"BOIN12 v1" = get_boin12(num_doses = 5,
phi_t = 0.35, phi_e = 0.25,
u2 = 40, u3 = 60,
c_t = 0.95, c_e = 0.9) %>%

stop_at_n(n = 36),

102 stop_at_n

"BOIN12 v2" = get_boin12(num_doses = 5,
phi_t = 0.35, phi_e = 0.25,
u2 = 40, u3 = 60,
c_t = 0.5, c_e = 0.5) %>%

stop_at_n(n = 36)
)
For illustration we run only 10 iterates:
x <- simulate_compare(

designs,
num_sims = 10,
true_prob_tox,
true_prob_eff

)
stack_sims_vert(x)

stop_at_n Stop when there are n patients in total.

Description

This function adds a restriction to stop a trial when n patients have been evaluated. It does this by
adding together the number of patients treated at all doses and stopping when that total exceeds n.

Dose selectors are designed to be daisy-chained together to achieve different behaviours. This class
is a **greedy** selector, meaning that it prioritises its own behaviour over the behaviour of other
selectors in the chain. That is, it will advocate stopping when the condition has been met, even
if the selectors further up the chain would advocate to keep going. In can be interpreted as an
overriding selector. This allows the decision to stop to be executed as soon as it is warranted. Be
aware though, that there are other selectors that can be placed after this class that will override the
stopping behaviour. See Examples.

Usage

stop_at_n(parent_selector_factory, n)

Arguments

parent_selector_factory

Object of type selector_factory.

n Stop when there are this many patients.

Value

an object of type selector_factory that can fit a dose-finding model to outcomes.

stop_at_n 103

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25

Create CRM model that will stop when 15 patients are evaluated:
model1 <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_at_n(n = 15)

With 12 patients, this trial should not stop:
fit1 <- model1 %>% fit('1NNN 2NTN 2TNN 2NNN')
fit1 %>% recommended_dose()
fit1 %>% continue()

With 15 patients, this trial should stop:
fit2 <- model1 %>% fit('1NNN 2NTN 2TNN 2NNN 2NTT')
fit2 %>% recommended_dose()
fit2 %>% continue()

The stopping behaviour can be overruled by the order of selectors.
In model2, demanding 9 at recommended dose will trump stopping at 12:
model2 <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_at_n(n = 12) %>%
demand_n_at_dose(dose = 'recommended', n = 9)

In model3, stopping at 12 will trump demanding 9 at recommended dose:
model3 <- get_dfcrm(skeleton = skeleton, target = target) %>%

demand_n_at_dose(dose = 'recommended', n = 9) %>%
stop_at_n(n = 12)

This model will continue because 9 have not been seen at recommended dose.
fit3 <- model2 %>% fit('1NNN 2NNN 2NNN 3NNN')
fit3 %>% recommended_dose()
fit3 %>% continue()

This model will stop because 12 have been seen.
fit4 <- model3 %>% fit('1NNN 2NNN 2NNN 3NNN')
fit4 %>% recommended_dose()
fit4 %>% continue()

With enough observations though, both models will advise stopping because
both conditions have been met:
fit5 <- model2 %>% fit('1NNN 2NNN 2NNN 5NNN 5NNN 5NNN')
fit5 %>% recommended_dose()
fit5 %>% continue()

fit6 <- model3 %>% fit('1NNN 2NNN 2NNN 5NNN 5NNN 5NNN')
fit6 %>% recommended_dose()
fit6 %>% continue()

104 stop_when_n_at_dose

stop_when_n_at_dose Stop when there are n patients at a dose.

Description

This method stops a dose-finding trial when there are n patients at a dose. It can stop when the rule
is triggered at the recommended dose, at a particular dose, or at any dose.

Usage

stop_when_n_at_dose(parent_selector_factory, n, dose)

Arguments

parent_selector_factory

Object of type selector_factory.

n Stop when there are n at a dose.

dose 'any' to stop when there are n at any dose; 'recommended' to stop when there
are n at the recommended dose; or an integer to stop when there are n at a
particular dose-level.

Value

an object of type selector_factory that can fit a dose-finding model to outcomes.

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25

This model will stop when 12 are seen at any dose:
model1 <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_when_n_at_dose(n = 12, dose = 'any')

This model fit will not stop:
model1 %>% fit('1NNN 2NTN 2TNN 2NNN') %>% continue()
But this model fit will stop:
model1 %>% fit('1NNN 2NTN 2TNN 2NNN 2NTT') %>% continue()

This model will stop when 12 are seen at the recommended dose:
model2 <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_when_n_at_dose(n = 12, dose = 'recommended')

This model fit will not stop:
fit2 <- model2 %>% fit('1NNN 2NTN 2TNN 2NNN')
fit2 %>% recommended_dose()
fit2 %>% continue()
But this model fit will stop:
fit3 <- model2 %>% fit('1NNN 2NTN 2TNN 2NNN 2NNT')

stop_when_too_toxic 105

fit3 %>% recommended_dose()
fit3 %>% continue()

stop_when_too_toxic Stop trial and recommend no dose when a dose is too toxic.

Description

This method stops a dose-finding trial and recommends no dose when sufficient probabilistic con-
fidence is reached that the rate of toxicity at a dose exceeds some threshold. In other words, it stops
when it is likely that a dose is too toxic. It can stop when the rule is triggered at the recommended
dose, at a particular dose, or at any dose. See Details.

Usage

stop_when_too_toxic(parent_selector_factory, dose, tox_threshold, confidence)

Arguments

parent_selector_factory

Object of type selector_factory.

dose 'any' to stop when any dose is too toxic; 'recommended' to stop when the
recommended dose is too toxic; or an integer to stop when a particular dose-
level is too toxic.

tox_threshold We are interested in toxicity probabilities greater than this threshold.

confidence Stop when there is this much total probability mass supporting that the toxicity
rate exceeds the threshold.

Details

The method for calculating probability mass for toxicity rates will ultimately be determined by the
dose-finding model used and the attendant inferential mechanism. For instance, the crm function
in the dfcrm package calculates the posterior expected mean and variance of the slope parameter
in a CRM model. It does not use MCMC to draw samples from the posterior distribution. Thus,
to perform inference on the posterior probability of toxicity, this package assumes the dfcrm slope
parameter follows a normal distribution with the mean and variance calculated by dfcrm. In contrast,
the stan_crm function in the trialr package needs no such assumption because it samples from
the posterior parameter distribution and uses those samples to infer on the posterior probability of
toxicity at each dose, dependent on the chosen model for the dose-toxicity curve.

Value

an object of type selector_factory that can fit a dose-finding model to outcomes.

106 stop_when_tox_ci_covered

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25

We compare a CRM model without a toxicity stopping rule to one with it:
model1 <- get_dfcrm(skeleton = skeleton, target = target)
model2 <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_when_too_toxic(dose = 'any', tox_threshold = 0.5, confidence = 0.7)

outcomes <- '1NNN 2NNN 3NNT 3NNN 3TNT 2NNN'
fit1 <- model1 %>% fit(outcomes)
fit2 <- model2 %>% fit(outcomes)

Naturally the first does not advocate stopping:
fit1 %>% recommended_dose()
fit1 %>% continue()

However, after the material toxicity at dose 3, ithe rule is fired:
fit2 %>% recommended_dose()
fit2 %>% continue()
To verify the requirement to stop, let's calculate the probability that the
toxicity rate exceeds 50%
fit2 %>% prob_tox_exceeds(0.5)

stop_when_tox_ci_covered

Stop when uncertainty interval of prob tox is covered.

Description

This method stops a dose-finding trial when the symmetric uncertainty interval for the probability
of toxicity falls within a range. This allows trials to be stopped when sufficient precision on the
pobability of toxicity has been achieved. See Details.

Usage

stop_when_tox_ci_covered(
parent_selector_factory,
dose,
lower,
upper,
width = 0.9

)

Arguments

parent_selector_factory

Object of type selector_factory.

stop_when_tox_ci_covered 107

dose 'any' to stop when the interval for any dose is covered; 'recommended' to stop
when the interval for the recommended dose is covered ; or an integer to stop
when the interval for a particular dose-level is covered.

lower Stop when lower interval bound exceeds this value

upper Stop when upper interval bound is less than this value

width Width of the uncertainty interval. Default is 0.9, i.e. a range from the 5th to the
95th percentiles.

Details

The method for calculating probability mass for toxicity rates will ultimately be determined by the
dose-finding model used and the attendant inferential mechanism. For instance, the crm function
in the dfcrm package calculates the posterior expected mean and variance of the slope parameter
in a CRM model. It does not use MCMC to draw samples from the posterior distribution. Thus,
to perform inference on the posterior probability of toxicity, this package assumes the dfcrm slope
parameter follows a normal distribution with the mean and variance calculated by dfcrm. In contrast,
the stan_crm function in the trialr package needs no such assumption because it samples from
the posterior parameter distribution and uses those samples to infer on the posterior probability of
toxicity at each dose, dependent on the chosen model for the dose-toxicity curve.

Value

an object of type selector_factory that can fit a dose-finding model to outcomes.

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25

We compare a CRM model without this stopping rule:
model1 <- get_dfcrm(skeleton = skeleton, target = target)
To two with it, the first demanding a relatively tight CI:
model2 <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_when_tox_ci_covered(dose = 'recommended', lower = 0.15, upper = 0.35)
and the second demanding a relatively loose CI:
model3 <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_when_tox_ci_covered(dose = 'recommended', lower = 0.05, upper = 0.45)

outcomes <- '1NNN 2NNN 3NNT 3NNN 3TNT 2NNN'
fit1 <- model1 %>% fit(outcomes)
fit2 <- model2 %>% fit(outcomes)
fit3 <- model3 %>% fit(outcomes)

Naturally the first does not advocate stopping:
fit1 %>% recommended_dose()
fit1 %>% continue()

The second does not advocate stopping either:
fit2 %>% recommended_dose()
fit2 %>% continue()

108 supports_sampling

This is because the CI is too wide:
fit2 %>% prob_tox_quantile(p = 0.05)
fit2 %>% prob_tox_quantile(p = 0.95)

However, the third design advocates stopping because the CI at the
recommended dose is covered:
fit3 %>% recommended_dose()
fit3 %>% continue()
To verify the veracity, inspect the quantiles:
fit3 %>% prob_tox_quantile(p = 0.05)
fit3 %>% prob_tox_quantile(p = 0.95)

supports_sampling Does this selector support sampling of outcomes?

Description

Learn whether this selector supports sampling of outcomes. For instance, is it possible to get pos-
terior samples of the probability of toxicity at each dose? If true, prob_tox_samples will return a
data-frame of samples.

Usage

supports_sampling(x, ...)

Arguments

x Object of type selector

... arguments passed to other methods

Value

logical

Examples

CRM example
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
outcomes <- '1NNN 2NTN'
fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% supports_sampling()

three_plus_three 109

three_plus_three Fit the 3+3 model to some outcomes.

Description

Fit the 3+3 model to some outcomes.

Usage

three_plus_three(
outcomes,
num_doses,
allow_deescalate = FALSE,
strict_mode = TRUE

)

Arguments

outcomes Outcomes observed. See parse_phase1_outcomes.

num_doses Number of doses under investigation.

allow_deescalate

TRUE to allow de-escalation, as described by Korn et al. Default is FALSE.

strict_mode TRUE to raise errors if it is detected that the 3+3 algorithm has not been fol-
lowed.

Value

lits containing recommended_dose and a logical value continue saying whether the trial should
continue.

References

Storer BE. Design and Analysis of Phase I Clinical Trials. Biometrics. 1989;45(3):925-937.
doi:10.2307/2531693

Korn EL, Midthune D, Chen TT, Rubinstein LV, Christian MC, Simon RM. A comparison of two
phase I trial designs. Statistics in Medicine. 1994;13(18):1799-1806. doi:10.1002/sim.4780131802

Examples

three_plus_three('2NNN 3NNT', num_doses = 7)

110 tox_at_dose

tox Binary toxicity outcomes.

Description

Get a vector of the binary toxicity outcomes for evaluated patients.

Usage

tox(x, ...)

Arguments

x Object of type selector.

... Extra args are passed onwards.

Value

an integer vector

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('1NNN 2NTN')
fit %>% tox()

tox_at_dose Number of toxicities seen at each dose.

Description

Get the number of toxicities seen at each dose under investigation.

Usage

tox_at_dose(x, ...)

Arguments

x Object of class selector

... arguments passed to other methods

Value

an integer vector

tox_limit 111

Examples

CRM example
skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
outcomes <- '1NNN 2NTN'
fit <- get_dfcrm(skeleton = skeleton, target = target) %>% fit(outcomes)
fit %>% tox_at_dose()

tox_limit Toxicity rate limit

Description

Get the maximum permissible toxicity rate, if supported. NULL if not.

Usage

tox_limit(x, ...)

Arguments

x Object of type selector.

... Extra args are passed onwards.

Value

numeric

Examples

efftox_priors <- trialr::efftox_priors
p <- efftox_priors(alpha_mean = -7.9593, alpha_sd = 3.5487,

beta_mean = 1.5482, beta_sd = 3.5018,
gamma_mean = 0.7367, gamma_sd = 2.5423,
zeta_mean = 3.4181, zeta_sd = 2.4406,
eta_mean = 0, eta_sd = 0.2,
psi_mean = 0, psi_sd = 1)

real_doses = c(1.0, 2.0, 4.0, 6.6, 10.0)
model <- get_trialr_efftox(real_doses = real_doses,

efficacy_hurdle = 0.5, toxicity_hurdle = 0.3,
p_e = 0.1, p_t = 0.1,
eff0 = 0.5, tox1 = 0.65,
eff_star = 0.7, tox_star = 0.25,
priors = p, iter = 1000, chains = 1, seed = 2020)

x <- model %>% fit('1N 2E 3B')
tox_limit(x)

112 trial_duration

tox_target Target toxicity rate

Description

Get the target toxicity rate, if supported. NULL if not.

Usage

tox_target(x, ...)

Arguments

x Object of type selector.

... Extra args are passed onwards.

Value

numeric

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('1NNN 2NTN')
fit %>% tox_target()

trial_duration Duration of trials.

Description

Get the length of time that trials take to recruit all patients.

Usage

trial_duration(x, ...)

Arguments

x Object of type simulations.

... arguments passed to other methods

Value

vector of numerical times

try_rescue_dose 113

Examples

true_prob_tox <- c(0.12, 0.27, 0.44, 0.53, 0.57)
sims <- get_three_plus_three(num_doses = 5) %>%

simulate_trials(num_sims = 50, true_prob_tox = true_prob_tox)
sims %>% trial_duration

try_rescue_dose Demand that a rescue dose is tried before stopping is permitted.

Description

This method continues a dose-finding trial until a safety dose has been given to n patients. Once that
condition is met, it delegates dose selelcting and stopping responsibility to its parent dose selector,
whatever that might be. This class is greedy in that it meets its own needs before asking any other
selectors higher in the chain what they want. Thus, different behaviours may be achieved by nesting
dose selectors in different orders. See examples.

Usage

try_rescue_dose(parent_selector_factory, n, dose)

Arguments

parent_selector_factory

Object of type selector_factory.

n Continue at least until there are n at a dose.

dose an integer to identify the sought rescue dose-level.

Value

an object of type selector_factory that can fit a dose-finding model to outcomes.

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25

This model will demand the lowest dose is tried in at least two patients
before the trial is stopped for excess toxicity
model1 <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_when_too_toxic(dose = 1, tox_threshold = 0.35, confidence = 0.8) %>%
try_rescue_dose(dose = 1, n = 2)

In contrast, this model will stop for excess toxicity without trying dose 1
model2 <- get_dfcrm(skeleton = skeleton, target = target) %>%

stop_when_too_toxic(dose = 1, tox_threshold = 0.35, confidence = 0.8)

For non-toxic outcomes, both designs will continue at sensible doses:

114 utility

fit1 <- model1 %>% fit('2NNN')
fit1 %>% recommended_dose()
fit1 %>% continue()

fit2 <- model2 %>% fit('2NNN')
fit2 %>% recommended_dose()
fit2 %>% continue()

For toxic outcomes, the design 1 will use dose 1 before stopping is allowed
fit1 <- model1 %>% fit('2TTT')
fit1 %>% recommended_dose()
fit1 %>% continue()

For toxic outcomes, however, design 2 will stop despite dose 1 being
untested:
fit2 <- model2 %>% fit('2TTT')
fit2 %>% recommended_dose()
fit2 %>% continue()

After dose 1 is given the requisite number of times, dose recommendation
and stopping revert to being determined by the underlying dose selector:
fit1 <- model1 %>% fit('2TTT 1T')
fit1 %>% recommended_dose()
fit1 %>% continue()

fit1 <- model1 %>% fit('2TTT 1TT')
fit1 %>% recommended_dose()
fit1 %>% continue()

utility Utility score of each dose.

Description

Get the derived utility score of each dose under investigation. Some models, particularly phase I/II
models or efficacy-toxicity designs, specify algorithms to calculate utility. If no utility algorithm is
specified for a design, this function will return a vector of NAs.

Usage

utility(x, ...)

Arguments

x Object of class selector

... arguments passed to other methods

Value

a numerical vector

weight 115

Examples

efftox_priors <- trialr::efftox_priors
p <- efftox_priors(alpha_mean = -7.9593, alpha_sd = 3.5487,

beta_mean = 1.5482, beta_sd = 3.5018,
gamma_mean = 0.7367, gamma_sd = 2.5423,
zeta_mean = 3.4181, zeta_sd = 2.4406,
eta_mean = 0, eta_sd = 0.2,
psi_mean = 0, psi_sd = 1)

real_doses = c(1.0, 2.0, 4.0, 6.6, 10.0)
model <- get_trialr_efftox(real_doses = real_doses,

efficacy_hurdle = 0.5, toxicity_hurdle = 0.3,
p_e = 0.1, p_t = 0.1,
eff0 = 0.5, tox1 = 0.65,
eff_star = 0.7, tox_star = 0.25,
priors = p, iter = 1000, chains = 1, seed = 2020)

x <- model %>% fit('1N 2E 3B')
utility(x)

weight Outcome weights.

Description

Get a vector of the weights attached to outcomes for evaluated patients.

Usage

weight(x, ...)

Arguments

x Object of type selector.

... Extra args are passed onwards.

Value

a numerical vector

Examples

skeleton <- c(0.05, 0.1, 0.25, 0.4, 0.6)
target <- 0.25
model <- get_dfcrm(skeleton = skeleton, target = target)
fit <- model %>% fit('1NNN 2NTN')
fit %>% weight()

Index

as_tibble.dose_paths, 5
as_tibble.selector, 5
as_tibble.simulations_collection, 6, 99

calculate_probabilities, 7
check_dose_selector_consistency, 8
cohort, 8, 76
cohorts_of_n, 9, 91, 95, 96
continue, 10, 77
convergence_plot, 10
CorrelatedPatientSample, 11, 36, 90
crm, 28, 30, 76, 105, 107
crystallised_dose_paths, 13

demand_n_at_dose, 14
dont_skip_doses, 15
dose_admissible, 17, 77
dose_indices, 18, 76, 98
dose_paths, 5, 7, 13, 18, 31, 51
dose_paths_function, 19
doses_given, 16, 76

eff, 19, 77
eff_at_dose, 20, 77
eff_limit, 21, 77
efftox_priors, 45
empiric_eff_rate, 22, 77
empiric_tox_rate, 22, 77
enforce_three_plus_three, 23
escalation (escalation-package), 4
escalation-package, 4
escalation::PatientSample, 11

fit, 24, 76, 79
follow_path, 24, 28, 41, 46

get.boundary, 26
get_boin, 25, 76, 79, 82, 90, 91, 94, 96
get_boin12, 26, 81
get_dfcrm, 28, 30, 47, 76, 79, 90, 91, 94–96
get_dfcrm_tite, 29

get_dose_paths, 18, 31
get_empiric_crm_skeleton_weights, 31
get_mtpi, 32, 86
get_mtpi2, 34, 84
get_potential_outcomes, 36
get_random_selector, 37
get_three_plus_three, 38, 76, 79, 90, 91,

94, 96
get_tpi, 39, 88
get_trialr_crm, 41, 43
get_trialr_crm_tite, 43
get_trialr_efftox, 44
get_trialr_nbg, 45
get_trialr_nbg_tite, 47
get_wages_and_tait, 49
graph_paths, 50

is_randomising, 51, 77

linear_follow_up_weight, 52

mean_prob_eff, 53, 77
mean_prob_tox, 54, 76, 77
median_prob_eff, 54, 77
median_prob_tox, 55, 76, 77
model_frame, 56, 76

n_at_dose, 61, 77, 98
n_at_recommended_dose, 62, 77
num_cohort_outcomes, 57
num_dose_path_nodes, 58
num_doses, 57, 76, 98
num_eff, 59, 77
num_patients, 60, 76, 98
num_tox, 60, 76, 98

parse_phase1_2_outcomes, 62
parse_phase1_outcomes, 23–25, 63, 109
PatientSample, 11, 36, 65, 90
phase1_2_outcomes_to_cohorts, 67
phase1_outcomes_to_cohorts, 69

116

INDEX 117

prob_administer, 70, 77, 98
prob_eff_exceeds, 77
prob_eff_exceeds (prob_tox_exceeds), 72
prob_eff_quantile, 70, 77
prob_eff_samples, 77
prob_eff_samples (prob_tox_samples), 74
prob_recommend, 71, 98
prob_tox_exceeds, 72, 76, 77
prob_tox_quantile, 73, 77
prob_tox_samples, 74, 77

recommended_dose, 75, 77, 98

select.mtd, 82
select_boin12_obd, 80
select_boin_mtd, 82
select_dose_by_cibp, 83
select_mtpi2_mtd, 84
select_mtpi_mtd, 86
select_tpi_mtd, 88
selector, 8, 10, 16–22, 24, 51, 53–56, 58–62,

70–75, 76, 79, 97, 98, 108, 110–112,
114, 115

selector_factory, 14, 15, 19, 24–28, 30–35,
37, 38, 40, 41, 43–49, 76, 77, 79, 79,
81–85, 87–91, 94–96, 100, 102,
104–107, 113

simulate_compare, 90
simulate_trials, 94, 98
simulation_function, 100
simulations, 71, 91, 95, 97, 99, 112
simulations_collection, 6, 11, 91, 99, 101
spread_paths, 100
stack_sims_vert, 101
stan_crm, 41, 43
stan_efftox, 45
stan_nbg, 46, 48
stop_at_n, 10, 91, 95, 102
stop_when_n_at_dose, 76, 79, 91, 95, 104
stop_when_too_toxic, 10, 76, 79, 105
stop_when_tox_ci_covered, 106
supports_sampling, 74, 77, 108

three_plus_three, 109
tibble, 5, 56
tox, 76, 110
tox_at_dose, 77, 98, 110
tox_limit, 77, 111
tox_target, 76, 112

trial_duration, 98, 112
try_rescue_dose, 113

utility, 114

weight, 115

	escalation-package
	as_tibble.dose_paths
	as_tibble.selector
	as_tibble.simulations_collection
	calculate_probabilities
	check_dose_selector_consistency
	cohort
	cohorts_of_n
	continue
	convergence_plot
	CorrelatedPatientSample
	crystallised_dose_paths
	demand_n_at_dose
	dont_skip_doses
	doses_given
	dose_admissible
	dose_indices
	dose_paths
	dose_paths_function
	eff
	eff_at_dose
	eff_limit
	empiric_eff_rate
	empiric_tox_rate
	enforce_three_plus_three
	fit
	follow_path
	get_boin
	get_boin12
	get_dfcrm
	get_dfcrm_tite
	get_dose_paths
	get_empiric_crm_skeleton_weights
	get_mtpi
	get_mtpi2
	get_potential_outcomes
	get_random_selector
	get_three_plus_three
	get_tpi
	get_trialr_crm
	get_trialr_crm_tite
	get_trialr_efftox
	get_trialr_nbg
	get_trialr_nbg_tite
	get_wages_and_tait
	graph_paths
	is_randomising
	linear_follow_up_weight
	mean_prob_eff
	mean_prob_tox
	median_prob_eff
	median_prob_tox
	model_frame
	num_cohort_outcomes
	num_doses
	num_dose_path_nodes
	num_eff
	num_patients
	num_tox
	n_at_dose
	n_at_recommended_dose
	parse_phase1_2_outcomes
	parse_phase1_outcomes
	PatientSample
	phase1_2_outcomes_to_cohorts
	phase1_outcomes_to_cohorts
	prob_administer
	prob_eff_quantile
	prob_recommend
	prob_tox_exceeds
	prob_tox_quantile
	prob_tox_samples
	recommended_dose
	selector
	selector_factory
	select_boin12_obd
	select_boin_mtd
	select_dose_by_cibp
	select_mtpi2_mtd
	select_mtpi_mtd
	select_tpi_mtd
	simulate_compare
	simulate_trials
	simulations
	simulations_collection
	simulation_function
	spread_paths
	stack_sims_vert
	stop_at_n
	stop_when_n_at_dose
	stop_when_too_toxic
	stop_when_tox_ci_covered
	supports_sampling
	three_plus_three
	tox
	tox_at_dose
	tox_limit
	tox_target
	trial_duration
	try_rescue_dose
	utility
	weight
	Index

