
Package ‘erify’
June 30, 2024

Type Package

Title Check Arguments and Generate Readable Error Messages

Version 0.6.0

Author Renfei Mao

Maintainer Renfei Mao <renfeimao@gmail.com>

Description Provides several validator functions for checking if arguments
passed by users have valid types, lengths, etc. and for generating
informative and well-formatted error messages in a consistent style. Also
provides tools for users to create their own validator functions. The
error message style used is adopted from
<https://style.tidyverse.org/error-messages.html>.

License MIT + file LICENSE

URL https://github.com/flujoo/erify, https://flujoo.github.io/erify/

Encoding UTF-8

RoxygenNote 7.3.1

Imports glue

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2024-06-30 09:30:05 UTC

Contents
back_quote . 2
check_binary_classes . 3
check_bool . 4
check_class . 6
check_classes . 7
check_content . 8

1

https://style.tidyverse.org/error-messages.html
https://github.com/flujoo/erify
https://flujoo.github.io/erify/

2 back_quote

check_contents . 10
check_interval . 11
check_intervals . 13
check_length . 14
check_lengths . 15
check_n . 17
check_positive . 19
check_string . 20
check_type . 22
check_types . 23
join . 25
throw . 25

Index 27

back_quote Back Quote Object

Description

Convert an R object to character and add back quotations.

Usage

back_quote(x, recursive = TRUE, as_double = TRUE)

Arguments

x An R object.
recursive Optional. TRUE or FALSE which indicates if to back quote each item of x or to

back quote x as a whole, when x is a vector. The default value is TRUE.
as_double Optional. TRUE or FALSE which indicates if to differentiate between type double

and integer. The default value is TRUE, which means integers are handled as
doubles.

Value

A character vector.

Examples

back_quote(1:3)

back_quote(1:3, recursive = FALSE)

back_quote(1:3, as_double = FALSE)

back_quote(NULL)

back_quote(list(c, 1:3, "a"))

check_binary_classes 3

check_binary_classes Check Binary Operator’s Arguments’ Classes

Description

Check if the arguments of a binary operator have valid classes, and if not, generate an error message.

Usage

check_binary_classes(
x,
y,
valid_x,
valid_y = NULL,
operator = NULL,
commutative = NULL,
general = NULL,
specific = NULL,
supplement = NULL,
...

)

Arguments

x, y The argument to check, which can be any object.
valid_x, valid_y

A character vector which contains the valid classes. valid_y is assigned valid_x,
if not specified.

operator Optional. A single character which represents the binary operator.

commutative TRUE or FALSE which indicates if arguments x and y can be swapped around.
The default value is TRUE.

general Optional. A single character which is used to give a general statement of the
error incurred. By default, this is generated automatically.

specific Optional. A single character which gives a detailed description of the error.
glue::glue() syntax can be used, see "Examples" section. By default, this is
generated automatically.

supplement Optional. A (named) character vector which gives some additional information
about the error. The names are used to create bullets, see throw(). By default,
this is left empty.

... Optional. Additional arguments which can be retrieved with tryCatch().

Value

returns an invisible NULL if the argument is valid, or generates an error message.

4 check_bool

See Also

"Examples" section in check_type() for how to customize error message and how to add and
retrieve additional arguments.

vignette("erify") for a gentle introduction to this package.

Examples

Not run:
x <- 1
class(x) <- c("a", "b")

y <- 2
class(y) <- c("c", "d")

check_binary_classes(x, y, c("d", "e"))
check_binary_classes(x, y, c("d", "e"), operator = "+")

check_binary_classes(x, y, c("d", "e"), c("a", "f"))
check_binary_classes(x, y, c("d", "e"), c("a", "f"), commutative = FALSE)

customize error message with `glue::glue()` syntax
check_binary_classes(

x, y, c("d", "e"),
specific = "Left: {feature_x[1]}, {feature_x[2]}.",
supplement = "Right: {feature_y[1]}, {feature_y[2]}."

)

End(Not run)

check_bool Check If Argument Is Single Logical

Description

Check if an argument is TRUE or FALSE, and if not, generate an error message.

Usage

check_bool(
x,
name = NULL,
general = NULL,
specific = NULL,
supplement = NULL,
...

)

check_bool 5

Arguments

x The argument to check, which can be any object.

name A single character which gives the argument’s name. The name is used in the
error message. By default, the name of the argument passed to argument x is
captured automatically.

general Optional. A single character which is used to give a general statement of the
error incurred. By default, this is generated automatically.

specific Optional. A single character which gives a detailed description of the error. By
default, this is generated automatically.

supplement Optional. A (named) character vector which gives some additional information
about the error. The names are used to create bullets, see throw(). By default,
this is left empty.

... Optional. Additional arguments which can be retrieved with tryCatch().

Value

returns an invisible NULL if the argument is valid, or generates an error message.

See Also

"Examples" section in check_type() for how to customize error message and how to add and
retrieve additional arguments.

vignette("erify") for a gentle introduction to this package.

Examples

x <- TRUE
check_bool(x)

Not run:
`x` must have type logical
x <- 1
check_bool(x)

`x` must have length 1
x <- c(TRUE, FALSE)
check_bool(x)

`x` must not be `NA`
x <- NA
check_bool(x)

End(Not run)

6 check_class

check_class Check Argument’s Class

Description

Check if an argument has valid class, and if not, generate an error message.

Usage

check_class(
x,
valid,
name = NULL,
general = NULL,
specific = NULL,
supplement = NULL,
...

)

Arguments

x The argument to check, which can be any object.

valid A character vector which contains valid classes.

name A single character which gives the argument’s name. The name is used in the
error message. By default, the name of the argument passed to argument x is
captured automatically.

general Optional. A single character which is used to give a general statement of the
error incurred. By default, this is generated automatically.

specific Optional. A single character which gives a detailed description of the error.
glue::glue() syntax can be used, see "Examples" section. By default, this is
generated automatically.

supplement Optional. A (named) character vector which gives some additional information
about the error. The names are used to create bullets, see throw(). By default,
this is left empty.

... Optional. Additional arguments which can be retrieved with tryCatch().

Value

returns an invisible NULL if the argument is valid, or generates an error message.

See Also

"Examples" section in check_type() for how to customize error message and how to add and
retrieve additional arguments.

vignette("erify") for a gentle introduction to this package.

check_classes 7

Examples

x <- 1
class(x) <- c("a", "b")

check_class(x, c("a", "c"))

Not run:
check_class(x, c("c", "d"))

customize error message with `glue::glue()` syntax
specific <- "Unbelievable! The first class of `{name}` is {feature[1]}."
check_class(x, c("c", "d"), specific = specific)

End(Not run)

check_classes Check Each Item’s Class

Description

Check if each item of an argument has valid class, and if not, generate an error message.

Usage

check_classes(
x,
valid,
name = NULL,
general = NULL,
specific = NULL,
supplement = NULL,
...

)

Arguments

x The argument to check, which must be a list.

valid A character vector which contains valid classes.

name A single character which gives the argument’s name. The name is used in the
error message. By default, the name of the argument passed to argument x is
captured automatically.

general Optional. A single character which is used to give a general statement of the
error incurred. By default, this is generated automatically.

specific Optional. A single character which gives a detailed description of the error.
glue::glue() syntax can be used, see "Examples" section. By default, this is
generated automatically.

8 check_content

supplement Optional. A (named) character vector which gives some additional information
about the error. The names are used to create bullets, see throw(). By default,
this is left empty.

... Optional. Additional arguments which can be retrieved with tryCatch().

Value

returns an invisible NULL if the argument is valid, or generates an error message.

See Also

"Examples" section in check_type() for how to customize error message and how to add and
retrieve additional arguments.

vignette("erify") for a gentle introduction to this package.

Examples

argument to check
arg <- lapply(1:10, function(x) {class(x) <- c("a", "b"); x})

check_classes(arg, "a")

Not run:
check_classes(arg, c("x", "y"))

End(Not run)

check_content Check Argument’s Content

Description

Check if an argument is from some given choices or satisfies some requirement, and if not, generate
an error message.

Usage

check_content(
x,
valid,
name = NULL,
general = NULL,
specific = NULL,
supplement = NULL,
as_double = TRUE,
...

)

check_content 9

Arguments

x The argument to check, which can be any object.

valid can be

1. a function, which takes x as argument and returns TRUE or FALSE,
2. an expression, which contains x and evaluates to TRUE or FALSE,
3. a string of R code, which evaluates to TRUE or FALSE, or
4. a non-empty atomic vector, which contains the valid choices.

name A single character which gives the argument’s name. The name is used in the
error message. By default, the name of the argument passed to argument x is
captured automatically.

general Optional. A single character which is used to give a general statement of the
error incurred. By default, this is generated automatically.

specific Optional. A single character which gives a detailed description of the error. By
default, this is generated automatically.

supplement Optional. A (named) character vector which gives some additional information
about the error. The names are used to create bullets, see throw(). By default,
this is left empty.

as_double Optional. TRUE or FALSE which indicates if to differentiate between type double
and integer. The default value is TRUE, which means integers are handled as
doubles.

... Optional. Additional arguments which can be retrieved with tryCatch().

Value

returns an invisible NULL if the argument is valid, or generates an error message.

See Also

"Examples" section in check_type() for how to customize error message and how to add and
retrieve additional arguments.

vignette("erify") for a gentle introduction to this package.

Examples

valid <- c(1, 2, 3)

x <- 2L
check_content(x, valid)

Not run:
`x` must have the same type with `valid`
x <- "a"
check_content(x, valid)

`x` must have length 1
x <- c(1, 2)

10 check_contents

check_content(x, valid)

differentiate between type double and integer
x <- 2L
check_content(x, valid, as_double = FALSE)

`valid` can be a function
check_content(x, is.na, general = "`x` must be `NA`.")

`valid` can be a string of R code
check_content(x, "is.na(x)", general = "`x` must be `NA`.")

End(Not run)

check_contents Check Each Item’s Content

Description

Check if each item of an argument is from some given choices or satisfies some requirement, and if
not, generate an error message.

Usage

check_contents(
x,
valid,
name = NULL,
general = NULL,
specific = NULL,
supplement = NULL,
as_double = TRUE,
...

)

Arguments

x The argument to check, which can be any object.

valid can be

1. a function, which takes x as argument and returns TRUE or FALSE,
2. an expression, which contains x and evaluates to TRUE or FALSE,
3. a string of R code, which evaluates to TRUE or FALSE, or
4. a non-empty atomic vector, which contains the valid choices.

name A single character which gives the argument’s name. The name is used in the
error message. By default, the name of the argument passed to argument x is
captured automatically.

check_interval 11

general Optional. A single character which is used to give a general statement of the
error incurred. By default, this is generated automatically.

specific Optional. A single character which gives a detailed description of the error. By
default, this is generated automatically.

supplement Optional. A (named) character vector which gives some additional information
about the error. The names are used to create bullets, see throw(). By default,
this is left empty.

as_double Optional. TRUE or FALSE which indicates if to differentiate between type double
and integer. The default value is TRUE, which means integers are handled as
doubles.

... Optional. Additional arguments which can be retrieved with tryCatch().

Value

returns an invisible NULL if the argument is valid, or generates an error message.

See Also

"Examples" section in check_type() for how to customize error message and how to add and
retrieve additional arguments.

vignette("erify") for a gentle introduction to this package.

Examples

Not run:
x <- c(1, 2, 3)

check_contents(x, c(4, 5))

general = "Each item of `x` must be `NA`."

`valid` can be a function or R code
check_contents(x, is.na, general = general)
check_contents(x, "is.na(x_i)", general = general)

End(Not run)

check_interval Check If Argument Is in Interval

Description

Check if an argument is a number in an interval, and if not, generate an error message.

12 check_interval

Usage

check_interval(
x,
valid,
name = NULL,
general = NULL,
specific = NULL,
supplement = NULL,
...

)

Arguments

x The argument to check, which can be any object.

valid A numeric vector of length 2, which represents the valid closed interval. If
valid is an integer vector, x must also be an integer. valid can contain NA. For
example, c(1, NA) means x must be no less than 1.

name A single character which gives the argument’s name. The name is used in the
error message. By default, the name of the argument passed to argument x is
captured automatically.

general Optional. A single character which is used to give a general statement of the
error incurred. By default, this is generated automatically.

specific Optional. A single character which gives a detailed description of the error.
glue::glue() syntax can be used, see "Examples" section. By default, this is
generated automatically.

supplement Optional. A (named) character vector which gives some additional information
about the error. The names are used to create bullets, see throw(). By default,
this is left empty.

... Optional. Additional arguments which can be retrieved with tryCatch().

Value

returns an invisible NULL if the argument is valid, or generates an error message.

See Also

vignette("erify") for a gentle introduction to this package.

Examples

x <- 3.3

check_interval(x, c(1, 5))

Not run:
check_interval(x, c(1L, 5L))
check_interval(x, c(4, NA))
check_interval(x, c(NA, 2))

check_intervals 13

End(Not run)

check_intervals Check If Each Item Is in Interval

Description

Check if each item of an argument is a number in an interval, and if not, generate an error message.

Usage

check_intervals(
x,
valid,
name = NULL,
general = NULL,
specific = NULL,
supplement = NULL,
...

)

Arguments

x The argument to check.

valid A numeric vector of length 2, which represents the valid closed interval. If
valid is an integer vector, x must also be an integer. valid can contain NA. For
example, c(1, NA) means x must be no less than 1.

name A single character which gives the argument’s name. The name is used in the
error message. By default, the name of the argument passed to argument x is
captured automatically.

general Optional. A single character which is used to give a general statement of the
error incurred. By default, this is generated automatically.

specific Optional. A single character which gives a detailed description of the error.
glue::glue() syntax can be used, see "Examples" section. By default, this is
generated automatically.

supplement Optional. A (named) character vector which gives some additional information
about the error. The names are used to create bullets, see throw(). By default,
this is left empty.

... Optional. Additional arguments which can be retrieved with tryCatch().

Value

returns an invisible NULL if the argument is valid, or generates an error message.

14 check_length

See Also

"Examples" section in check_type() for how to customize error message and how to add and
retrieve additional arguments.

vignette("erify") for a gentle introduction to this package.

Examples

x <- c(1, 3, 5)
check_intervals(x, c(0, 6))

Not run:
check_intervals(x, c(2, 4))

End(Not run)

check_length Check Argument’s Length

Description

Check if an argument has valid length, and if not, generate an error message.

Usage

check_length(
x,
valid,
name = NULL,
general = NULL,
specific = NULL,
supplement = NULL,
interval = NULL,
...

)

Arguments

x The argument to check, which can be any object.

valid A numeric vector which contains non-negative integers and NA, used with argu-
ment interval to indicate the valid lengths.

name A single character which gives the argument’s name. The name is used in the
error message. By default, the name of the argument passed to argument x is
captured automatically.

general Optional. A single character which is used to give a general statement of the
error incurred. By default, this is generated automatically.

check_lengths 15

specific Optional. A single character which gives a detailed description of the error.
glue::glue() syntax can be used, see "Examples" section. By default, this is
generated automatically.

supplement Optional. A (named) character vector which gives some additional information
about the error. The names are used to create bullets, see throw(). By default,
this is left empty.

interval Optional. TRUE or FALSE which indicates if argument valid is interpreted as
an interval or as single lengths. For example, c(1, 10) is interpreted as "larger
than 1 and smaller than 10" if interval is TRUE, but as "1 or 10" if FALSE. NA
can be used in valid when treated as interval. For example, c(0, NA) means
"larger than 0". By default, interval is inferred from valid. For example, if
valid has length unequal to 2, it’s treated as single lengths.

... Optional. Additional arguments which can be retrieved with tryCatch().

Value

returns an invisible NULL if the argument is valid, or generates an error message.

See Also

"Examples" section in check_type() for how to customize error message and how to add and
retrieve additional arguments.

vignette("erify") for a gentle introduction to this package.

Examples

Not run:
x <- c(1, 2)

`valid` as interval
check_length(x, c(1, 3), interval = TRUE)
check_length(x, c(NA, 2))

`valid` as single lengths
check_length(x, c(1, 3), interval = FALSE)

customize error message with `glue::glue()` syntax
specific <- "Oh my god! `{name}`'s length is {feature}."
check_length(x, 3, specific = specific)

End(Not run)

check_lengths Check Each Item’s Length

Description

Check if each item of an argument has valid length, and if not, generate an error message.

16 check_lengths

Usage

check_lengths(
x,
valid,
name = NULL,
general = NULL,
specific = NULL,
supplement = NULL,
interval = NULL,
...

)

Arguments

x The argument to check, which must be a list.

valid A numeric vector which contains non-negative integers and NA, used with argu-
ment interval to indicate the valid lengths.

name A single character which gives the argument’s name. The name is used in the
error message. By default, the name of the argument passed to argument x is
captured automatically.

general Optional. A single character which is used to give a general statement of the
error incurred. By default, this is generated automatically.

specific Optional. A single character which gives a detailed description of the error.
glue::glue() syntax can be used, see "Examples" section. By default, this is
generated automatically.

supplement Optional. A (named) character vector which gives some additional information
about the error. The names are used to create bullets, see throw(). By default,
this is left empty.

interval Optional. TRUE or FALSE which indicates if argument valid is interpreted as
an interval or as single lengths. For example, c(1, 10) is interpreted as "larger
than 1 and smaller than 10" if interval is TRUE, but as "1 or 10" if FALSE. NA
can be used in valid when treated as interval. For example, c(0, NA) means
"larger than 0". By default, interval is inferred from valid. For example, if
valid has length unequal to 2, it’s treated as single lengths.

... Optional. Additional arguments which can be retrieved with tryCatch().

Value

returns an invisible NULL if the argument is valid, or generates an error message.

See Also

"Examples" section in check_type() for how to customize error message and how to add and
retrieve additional arguments.

vignette("erify") for a gentle introduction to this package.

check_n 17

Examples

Not run:
x <- list(1, c(1, 2), c(1, 2, 3))

check_lengths(x, c(1, NA))

specific = "Item {i} has length {feature}."
check_lengths(x, c(1, NA), specific = specific)

End(Not run)

check_n Check If Argument Is Single Natural Number

Description

Check if an argument is a single natural number, and if not, generate an error message.

Can be used to check indices, for example.

Usage

check_n(
x,
name = NULL,
general = NULL,
specific = NULL,
supplement = NULL,
zero = FALSE,
...

)

is_n(x, zero = FALSE)

Arguments

x The argument to check, which can be any object.

name A single character which gives the argument’s name. The name is used in the
error message. By default, the name of the argument passed to argument x is
captured automatically.

general Optional. A single character which is used to give a general statement of the
error incurred. By default, this is generated automatically.

specific Optional. A single character which gives a detailed description of the error. By
default, this is generated automatically.

supplement Optional. A (named) character vector which gives some additional information
about the error. The names are used to create bullets, see throw(). By default,
this is left empty.

18 check_n

zero Optional. TRUE or FALSE which indicates if zero is acceptable. The default value
is FALSE.

... Optional. Additional arguments which can be retrieved with tryCatch().

Value

check_n() returns an invisible NULL if the argument is valid, or it generates an error message.

is_n() returns TRUE or FALSE.

See Also

"Examples" section in check_type() for how to customize error message and how to add and
retrieve additional arguments.

vignette("erify") for a gentle introduction to this package.

Examples

x <- 1
check_n(x)

x <- 1L
check_n(x)

sapply(c(1, 2.1, 0, Inf, NA, -9), is_n)

Not run:
`x` must be a numeric
x <- "1"
check_n(x)

`x` must have length 1
x <- 1:2
check_n(x)

`x` must not be `NA`
x <- NA_integer_
check_n(x)

`x` must be larger than 0
x <- -1
check_n(x)

`x` must be an integer in a mathematical sense
x <- 1.1
check_n(x)

make `0` acceptable
x <- 0
check_n(x)
check_n(x, zero = TRUE)

check_positive 19

End(Not run)

check_positive Check If Argument Is Single Positive Number

Description

Check if an argument is a single positive number, and if not, generate an error message.

Usage

check_positive(
x,
name = NULL,
general = NULL,
specific = NULL,
supplement = NULL,
zero = FALSE,
...

)

Arguments

x The argument to check, which can be any object.
name A single character which gives the argument’s name. The name is used in the

error message. By default, the name of the argument passed to argument x is
captured automatically.

general Optional. A single character which is used to give a general statement of the
error incurred. By default, this is generated automatically.

specific Optional. A single character which gives a detailed description of the error. By
default, this is generated automatically.

supplement Optional. A (named) character vector which gives some additional information
about the error. The names are used to create bullets, see throw(). By default,
this is left empty.

zero Optional. TRUE or FALSE which indicates if zero is acceptable. The default value
is FALSE.

... Optional. Additional arguments which can be retrieved with tryCatch().

Value

returns an invisible NULL if the argument is valid, or generates an error message.

See Also

"Examples" section in check_type() for how to customize error message and how to add and
retrieve additional arguments.

vignette("erify") for a gentle introduction to this package.

20 check_string

Examples

x <- 1.1
check_positive(x)

x <- 1L
check_positive(x)

Not run:
`x` must be a numeric
x <- "1"
check_positive(x)

`x` must have length 1
x <- 1:2
check_positive(x)

`x` must not be `NA`
x <- NA_integer_
check_positive(x)

`x` must be larger than 0
x <- -1
check_positive(x)

make `0` acceptable
x <- 0
check_positive(x)
check_positive(x, zero = TRUE)

End(Not run)

check_string Check If Argument Is Single Character

Description

Check if an argument is a single character. and if not, generate an error message.

Can be used to check argument names, for example.

Usage

check_string(
x,
name = NULL,
general = NULL,
specific = NULL,
supplement = NULL,
...

)

check_string 21

is_string(x)

Arguments

x The argument to check, which can be any object.

name A single character which gives the argument’s name. The name is used in the
error message. By default, the name of the argument passed to argument x is
captured automatically.

general Optional. A single character which is used to give a general statement of the
error incurred. By default, this is generated automatically.

specific Optional. A single character which gives a detailed description of the error. By
default, this is generated automatically.

supplement Optional. A (named) character vector which gives some additional information
about the error. The names are used to create bullets, see throw(). By default,
this is left empty.

... Optional. Additional arguments which can be retrieved with tryCatch().

Value

returns an invisible NULL if the argument is valid, or generates an error message.

See Also

"Examples" section in check_type() for how to customize error message and how to add and
retrieve additional arguments.

vignette("erify") for a gentle introduction to this package.

Examples

x <- "a"
check_string(x)

Not run:
`x` must have type character
x <- c
check_string(x)

`x` must have length 1
x <- c("a", "b")
check_string(x)

`NA_character_` is not acceptable
x <- NA_character_
check_string(x)

End(Not run)

22 check_type

check_type Check Argument’s Type

Description

Check if an argument has valid type, and if not, generate an error message.

Usage

check_type(
x,
valid,
name = NULL,
general = NULL,
specific = NULL,
supplement = NULL,
...

)

Arguments

x The argument to check, which can be any object.

valid A character vector which contains the valid types.

name A single character which gives the argument’s name. The name is used in the
error message. By default, the name of the argument passed to argument x is
captured automatically.

general Optional. A single character which is used to give a general statement of the
error incurred. By default, this is generated automatically.

specific Optional. A single character which gives a detailed description of the error.
glue::glue() syntax can be used, see "Examples" section. By default, this is
generated automatically.

supplement Optional. A (named) character vector which gives some additional information
about the error. The names are used to create bullets, see throw(). By default,
this is left empty.

... Optional. Additional arguments which can be retrieved with tryCatch().

Value

returns an invisible NULL if the argument is valid, or generates an error message.

See Also

vignette("erify") for a gentle introduction to this package.

check_types 23

Examples

argument to check
arg <- 10

returns silently if the argument has valid type
check_type(arg, "double")

Not run:
check_type(arg, "character")

specify argument's name
check_type(arg, "character", name = "x")

specify argument `specific` with `glue::glue()` syntax
specific <- "`{name}`'s type is {feature}, which is wrong."
check_type(arg, "character", specific = specific)

specify argument `supplement`
supplement <- c("You're wrong.", i = "Check your code.")
check_type(arg, "character", supplement = supplement)

turn off `specific`
check_type(arg, "character", specific = character())

End(Not run)

add and retrieve additional argument
tryCatch(

{check_type(arg, "character", your_arg = "your data")},
error = function(e) e$your_arg

)

check_types Check Each Item’s Type

Description

Check if each item of an argument has valid type, and if not, generate an error message.

Usage

check_types(
x,
valid,
name = NULL,
general = NULL,
specific = NULL,
supplement = NULL,
...

)

24 check_types

Arguments

x The argument to check, which must be a list.

valid A character vector which contains the valid types.

name A single character which gives the argument’s name. The name is used in the
error message. By default, the name of the argument passed to argument x is
captured automatically.

general Optional. A single character which is used to give a general statement of the
error incurred. By default, this is generated automatically.

specific Optional. A single character which gives a detailed description of the error.
glue::glue() syntax can be used, see "Examples" section. By default, this is
generated automatically.

supplement Optional. A (named) character vector which gives some additional information
about the error. The names are used to create bullets, see throw(). By default,
this is left empty.

... Optional. Additional arguments which can be retrieved with tryCatch().

Value

returns an invisible NULL if the argument is valid, or generates an error message.

See Also

"Examples" section in check_type() for how to customize error message and how to add and
retrieve additional arguments.

vignette("erify") for a gentle introduction to this package.

Examples

Not run:
argument to check
arg <- as.list(1:10)

check_types(arg, "character")

customize error message with `glue::glue()` syntax
specific <- "`{name}[[{i}]]` is an {feature}, oh my god!"
check_types(arg, "character", specific = specific)

End(Not run)

join 25

join Connect Words with Conjunction

Description

Connect given words with a conjunction, e.g. "and" and "or".

Usage

join(words, conjunction = "or")

Arguments

words A vector of list whose items can be converted to characters.

conjunction A single character which represents a conjunction word. The default value is
"or".

Value

If has length 1 or less, words is returned. Or items of words are concatenated and returned.

Examples

words <- c("apple", "orange", "Pink Floyd")
join(words, "and")

throw Generate and Signal Condition

Description

Generate and signal a condition.

Usage

throw(general, specifics = NULL, env = NULL, as = "error", class = NULL, ...)

Arguments

general A single character which gives a general statement of the condition.

specifics Optional. A character vector which gives a list of details of the condition. If
is character(0), throw() will return silently. If is a named vector, the names
are used to create bullets. If the name is "x" or "i", the bullet will be colored
and bold. The default name is "x". You can customize bullets with option
erify.bullets.

26 throw

env Optional. An environment or named list which is used to evaluate the R code in
the above arguments. See glue::glue().

as Optional. "error", "warning" or "message" which indicates how to signal the
condition. The default value is "error".

class Optional. A character vector which assigns classes to the condition.

... Optional. Additional arguments which are stored in the condition and can be
retrieved with tryCatch().

Value

If specifics is character(0), returns an invisible NULL. Or signals an error, a warning, or a
message.

Examples

general <- "You are wrong."

returns silently
throw(general, character(0))

Not run:
throw(general)

specifics <- c("Detail 1.", i = "Detail 2.")
throw(general, specifics)

embed R code with glue syntax
throw("`x` is {x}.", env = list(x = 1))

End(Not run)

add and retrieve additional argument
tryCatch(

{ throw(general, arg = "I'm an additional argument.") },
error = function(e) e$arg

)

Index

back_quote, 2

check_binary_classes, 3
check_bool, 4
check_class, 6
check_classes, 7
check_content, 8
check_contents, 10
check_interval, 11
check_intervals, 13
check_length, 14
check_lengths, 15
check_n, 17
check_positive, 19
check_string, 20
check_type, 22
check_type(), 4–6, 8, 9, 11, 14–16, 18, 19,

21, 24
check_types, 23

glue::glue(), 3, 6, 7, 12, 13, 15, 16, 22, 24,
26

is_n (check_n), 17
is_string (check_string), 20

join, 25

throw, 25
throw(), 3, 5, 6, 8, 9, 11–13, 15–17, 19, 21,

22, 24
tryCatch(), 3, 5, 6, 8, 9, 11–13, 15, 16, 18,

19, 21, 22, 24, 26

27

	back_quote
	check_binary_classes
	check_bool
	check_class
	check_classes
	check_content
	check_contents
	check_interval
	check_intervals
	check_length
	check_lengths
	check_n
	check_positive
	check_string
	check_type
	check_types
	join
	throw
	Index

