Package 'emhawkes'

February 2, 2023

Title Exponential Multivariate Hawkes Model

Version 0.9.7

Maintainer Kyungsub Lee <kyungsub@gmail.com>

Description Simulate and fitting exponential multivariate Hawkes model.

This package simulates a multivariate Hawkes model, intro-

duced by Hawkes (1971) <doi:10.2307/2334319>, with an exponential kernel and fits the parameters from the data.

Models with the constant parameters, as well as complex dependent structures, can also be simulated and estimated.

The estimation is based on the maximum likelihood method, introduced by introduced by Ozaki (1979) <doi:10.1007/BF02480272>, with 'maxLik' package.

Depends R (>= 3.4.0)

License GPL (≥ 2)

Encoding UTF-8

RoxygenNote 7.2.3

Imports methods, maxLik

Collate 'harrival.R' 'hspec.R' 'hmoment.R' 'hllf.R' 'hfit.R' 'utilities.R' 'hgfit.R' 'hreal.R' 'hsim.R' 'script.R'

Suggests knitr, rmarkdown, miscTools, V8

VignetteBuilder knitr

NeedsCompilation no

Author Kyungsub Lee [aut, cre]

Repository CRAN

Date/Publication 2023-02-02 09:10:02 UTC

R topics documented:

hfit	•																									2
hreal																										5
hsim															•							•				6
hspec-class		•	•							•			•	•	•				•			•	•			7

hvol																		8
infer_lambda													 		•			9
logLik,hspec-method													 		•			11
residual_process													 					12
																		14

Index

hfit

Perform maximum likelihood estimation

Description

Generic function hfit. A method for estimating the parameters of the exponential Hawkes model. The reason for being constructed as the S4 method is as follows. First, to represent the structure of the model as an hspec object. There are numerous variations on the multivariate marked Hawkes model. Second, to convey the starting point of numerical optimization. The parameter values assigned to the hspec slots become initial values. This function uses maxLik for the optimizer.

Usage

```
hfit(
  object,
  inter_arrival = NULL,
  type = NULL,
  mark = NULL,
 N = NULL,
 Nc = NULL,
  lambda_component0 = NULL,
 N0 = NULL,
 mylogLik = NULL,
  reduced = TRUE,
  grad = NULL,
 hess = NULL,
  constraint = NULL,
 method = "BFGS",
  verbose = FALSE,
  . . .
)
## S4 method for signature 'hspec'
hfit(
  object,
  inter_arrival = NULL,
  type = NULL,
 mark = NULL,
 N = NULL,
 Nc = NULL,
  lambda_component0 = NULL,
```

```
N0 = NULL,
mylogLik = NULL,
reduced = TRUE,
grad = NULL,
hess = NULL,
constraint = NULL,
method = "BFGS",
verbose = FALSE,
....)
```

Arguments

object	hspec-class. This object includes the parameter values
inter_arrival	Inter-arrival times of events which includes inter-arrival for events that occur in all dimensions. Start with zero.
type	A vector of dimensions. Distinguished by numbers, 1, 2, 3, and so on. Start with zero.
mark	A vector of mark (jump) sizes. Start with zero.
Ν	A matrix of counting processes.
Nc	A matrix of counting processes weighted by mark.
lambda_compone	nt0
	Initial values of lambda component. It must have the same dimensional matrix (n by n) with object.
NØ	Initial values of N.
mylogLik	User defined log-likelihood function. mylogLik function should have object argument consistent with object.
reduced	When TRUE, reduced estimation performed.
grad	A Gradient matrix for the likelihood function. For more information, see maxLik.
hess	A Hessian matrix for the likelihood function. For more information, see maxLik.
constraint	Constraint matrices. For more information, see maxLik.
method	A Method for optimization. For more information, see maxLik.
verbose	If TRUE, print the progress of the estimation.
	Other parameters for optimization. For more information, see maxLik.

Value

maxLik object

See Also

hspec-class, hsim, hspec-method

hfit

Examples

4

```
# example 1
mu <- c(0.1, 0.1)
alpha <- matrix(c(0.2, 0.1, 0.1, 0.2), nrow=2, byrow=TRUE)
beta <- matrix(c(0.9, 0.9, 0.9, 0.9), nrow=2, byrow=TRUE)</pre>
h <- new("hspec", mu=mu, alpha=alpha, beta=beta)</pre>
res <- hsim(h, size=100)</pre>
summary(hfit(h, inter_arrival=res$inter_arrival, type=res$type))
# example 2
mu <- matrix(c(0.08, 0.08, 0.05, 0.05), nrow = 4)
alpha <- function(param = c(alpha11 = 0, alpha12 = 0.4, alpha33 = 0.5, alpha34 = 0.3)){
 matrix(c(param["alpha11"], param["alpha12"], 0, 0,
           param["alpha12"], param["alpha11"], 0, 0,
           0, 0, param["alpha33"], param["alpha34"],
           0, 0, param["alpha34"], param["alpha33"]), nrow = 4, byrow = TRUE)
beta <- matrix(c(rep(0.6, 8), rep(1.2, 8)), nrow = 4, byrow = TRUE)
impact <- function(param = c(alpha1n=0, alpha1w=0.2, alpha2n=0.001, alpha2w=0.1),
                   n=n, N=N, ...){
 Psi <- matrix(c(0, 0, param['alpha1w'], param['alpha1n'],</pre>
                  0, 0, param['alpha1n'], param['alpha1w'],
                  param['alpha2w'], param['alpha2n'], 0, 0,
                  param['alpha2n'], param['alpha2w'], 0, 0), nrow=4, byrow=TRUE)
 ind <- N[,"N1"][n] - N[,"N2"][n] > N[,"N3"][n] - N[,"N4"][n] + 0.5
 km <- matrix(c(!ind, !ind, !ind, !ind,</pre>
                 ind, ind, ind, ind,
                 ind, ind, ind, ind,
                 !ind, !ind, !ind), nrow = 4, byrow = TRUE)
 km * Psi
}
h <- new("hspec",</pre>
         mu = mu, alpha = alpha, beta = beta, impact = impact)
hr <- hsim(h, size=100)</pre>
plot(hr$arrival, hr$N[,'N1'] - hr$N[,'N2'], type='s')
lines(hr$N[,'N3'] - hr$N[,'N4'], type='s', col='red')
fit <- hfit(h, hr$inter_arrival, hr$type)</pre>
summary(fit)
# example 3
mu <- c(0.15, 0.15)
alpha <- matrix(c(0.75, 0.6, 0.6, 0.75), nrow=2, byrow=TRUE)
```

hfit

hreal

```
beta <- matrix(c(2.6, 2.6, 2.6, 2.6), nrow=2, byrow=TRUE)</pre>
rmark <- function(param = c(p=0.65), ...){</pre>
  rgeom(1, p=param[1]) + 1
}
impact <- function(param = c(eta1=0.2), alpha, n, mark, ...){</pre>
  ma <- matrix(rep(mark[n]-1, 4), nrow = 2)</pre>
  alpha * ma * matrix( rep(param["eta1"], 4), nrow=2)
}
h1 <- new("hspec", mu=mu, alpha=alpha, beta=beta,</pre>
          rmark = rmark,
           impact=impact)
res <- hsim(h1, size=100, lambda_component0 = matrix(rep(0.1,4), nrow=2))</pre>
fit <- hfit(h1,</pre>
             inter_arrival = res$inter_arrival,
             type = res$type,
             mark = res$mark,
             lambda_component0 = matrix(rep(0.1,4), nrow=2))
summary(fit)
# For more information, please see vignettes.
```

hreal

Realization of Hawkes process

Description

hreal is the list of the following:

- hspec : S4 object hspec-class that specifies the parameter values.
- inter_arrival : the time between two consecutive events.
- arrival : cumulative sum of inter_arrival.
- type : integer, the type of event.
- mark : the size of mark, an additional information associated with event.
- N : counting process that counts the number of events.
- Nc : counting process that counts the number of events weighted by mark.
- lambda : intensity process, left-continuous version.
- lambda_component : the component of intensity process with mu not included.
- rambda : intensity process, right-continuous version.
- rambda_component : the right-continuous version of lambda_component.

Print functions for hreal are provided.

Usage

```
## S3 method for class 'hreal'
print(x, n = 20, ...)
## S3 method for class 'hreal'
summary(object, n = 20, ...)
```

Arguments

х	S3-object of hreal.
n	Number of rows to display.
	Further arguments passed to or from other methods.
object	S3-object of hreal.

hsim

Simulate multivariate Hawkes process with exponential kernel.

Description

The method simulate multivariate Hawkes processes. The object hspec-class contains the parameter values such as mu, alpha, beta. The mark (jump) structure may or may not be included. It returns an object of class hreal which contains inter_arrival, arrival, type, mark, N, Nc, lambda, lambda_component, rambda, rambda_component.

Usage

```
hsim(object, size = 100, lambda_component0 = NULL, N0 = NULL, ...)
```

```
## S4 method for signature 'hspec'
hsim(object, size = 100, lambda_component0 = NULL, N0 = NULL, ...)
```

Arguments

object	hspec-class. S4 object that specifies the parameter values.
size	Number of observations.
lambda_componer	nt0
	Starting values of lambda component. numeric or matrix.
NØ	Starting values of N with default value 0.
	Further arguments passed to or from other methods.

Value

hreal S3-object, summary of the Hawkes process realization.

hspec-class

Examples

```
# example 1
mu <- 1; alpha <- 1; beta <- 2
h <- new("hspec", mu=mu, alpha=alpha, beta=beta)
hsim(h, size=100)
# example 2
mu <- matrix(c(0.1, 0.1), nrow=2)
alpha <- matrix(c(0.2, 0.1, 0.1, 0.2), nrow=2, byrow=TRUE)
beta <- matrix(c(0.9, 0.9, 0.9, 0.9), nrow=2, byrow=TRUE)
h <- new("hspec", mu=mu, alpha=alpha, beta=beta)
res <- hsim(h, size=100)
print(res)</pre>
```

hspec-class

An S4 class to represent an exponential marked Hawkes model

Description

This class represents a specification of a marked Hawkes model with exponential kernel. The intensity of the ground process is defined by:

$$\lambda(t) = \mu + \int_{(-\infty,t)\times E} (\alpha + g(u,z))e^{-\beta(t-u)}M(du \times dz)$$

For more details, please see the vignettes.

Details

 μ is base intensity. This is generally a constant vector but can be extended to stochastic processes. Currently, piecewise constant mu is also possible. mu is left continuous.

 α is a constant matrix which represents impacts on intensities after events. It is represented by slot alpha.

g is for non-constant parts of the impact. It may depend on any information generated by N, λ , z and so on. It is represented by slot impact.

 β is a constant matrix for exponential decay rates. It is represented by slot beta.

z is mark and represented by slot rmark.

mu, alpha and beta are required slots for every exponential Hawkes model. rmark and impact are additional slots.

- mu Numeric value or matrix or function, if numeric, automatically converted to matrix.
- alpha Numeric value or matrix or function, if numeric, automatically converted to matrix, exciting term.
- beta Numeric value or matrix or function, if numeric, automatically converted to matrix, exponential decay.
- eta Numeric value or matrix or function, if numeric, automatically converted to matrix, impact by additional mark.

dimens Dimension of the model.

rmark A function that generates mark for counting process, for simulation.

dmark A density function for mark, for estimation.

impact A function that describe the after impact of mark to lambda whose first argument is always param.

type_col_map Mapping between type and column number of kernel used for multi-kernel model.

Examples

```
MU <- matrix(c(0.2), nrow = 2)
ALPHA <- matrix(c(0.75, 0.92, 0.92, 0.75), nrow = 2, byrow=TRUE)
BETA <- matrix(c(2.25, 2.25, 2.25, 2.25), nrow = 2, byrow=TRUE)
mhspec2 <- new("hspec", mu=MU, alpha=ALPHA, beta=BETA)
mhspec2</pre>
```

hvol

Compute Hawkes volatility

Description

This function computes Hawkes volatility. Only works for bi-variate Hawkes process.

Usage

```
hvol(
   object,
   horizon = 1,
   inter_arrival = NULL,
   type = NULL,
   mark = NULL,
   dependence = FALSE,
   lambda_component0 = NULL,
   ...
)
## S4 method for signature 'hspec'
```

infer_lambda

```
hvol(
   object,
   horizon = 1,
   inter_arrival = NULL,
   type = NULL,
   mark = NULL,
   dependence = FALSE,
   lambda_component0 = NULL,
   ...
)
```

Arguments

object	hspec-class
horizon	Time horizon for volatility.
inter_arrival	Inter-arrival times of events which includes inter-arrival for events that occur in all dimensions. Start with zero.
type	A vector of dimensions. Distinguished by numbers, 1, 2, 3, and so on. Start with zero.
mark	A vector of mark (jump) sizes. Start with zero.
dependence	Dependence between mark and previous sigma-algebra.
lambda_compone	nt0
	A matrix of the starting values of lambda component.
	Further arguments passed to or from other methods.

infer_lambda

Infer lambda process with given Hawkes model and realized path

Description

This method compute the inferred lambda process and returns it as hreal form. If we have realized path of Hawkes process and its parameter value, then we can compute the inferred lambda processes. Similarly with other method such as hfit, the input arguments are inter_arrival, type, mark, or equivalently, N and Nc.

Usage

```
infer_lambda(
   object,
   inter_arrival = NULL,
   type = NULL,
   mark = NULL,
   N = NULL,
   Nc = NULL,
   lambda_component0 = NULL,
```

```
N0 = NULL,
....)
## S4 method for signature 'hspec'
infer_lambda(
   object,
   inter_arrival = NULL,
   type = NULL,
   mark = NULL,
   N = NULL,
   Nc = NULL,
   lambda_component0 = NULL,
   N0 = NULL,
   ....)
```

Arguments

object	hspec-class. This object includes the parameter values.
inter_arrival	inter-arrival times of events. This includes inter-arrival for events that occur in all dimensions. Start with zero.
type	a vector of dimensions. Distinguished by numbers, 1, 2, 3, and so on. Start with zero.
mark	a vector of mark (jump) sizes. Start with zero.
Ν	Hawkes process. If not provided, then generate using inter_arrival and type.
Nc	mark accumulated Hawkes process. If not provided, then generate using in- ter_arrival, type and mark.
lambda_componer	nt0
	the initial values of lambda component. Must have the same dimensional matrix (n by n) with hspec.
NØ	the initial values of N.
	further arguments passed to or from other methods.

Value

hreal S3-object, with inferred intensity.

Examples

```
mu <- c(0.1, 0.1)
alpha <- matrix(c(0.2, 0.1, 0.1, 0.2), nrow=2, byrow=TRUE)
beta <- matrix(c(0.9, 0.9, 0.9, 0.9), nrow=2, byrow=TRUE)
h <- new("hspec", mu=mu, alpha=alpha, beta=beta)
res <- hsim(h, size=100)
summary(res)
res2 <- infer_lambda(h, res$inter_arrival, res$type)</pre>
```

10

summary(res2)

logLik,hspec-method Compute the log-likelihood function

Description

The log-likelihood of the ground process of the Hawkes model. (The log-likelihood for mark (jump) distribution is not provided.)

Usage

```
## S4 method for signature 'hspec'
logLik(
   object,
   inter_arrival,
   type = NULL,
   mark = NULL,
   N = NULL,
   Nc = NULL,
   lambda_component0 = NULL,
   ...
)
```

Arguments

object	hspec-class. The parameter values in the object are used to compute the log-likelihood.
inter_arrival	A vector of realized inter-arrival times of events which includes inter-arrival for events that occur in all dimensions. Start with zero.
type	A vector of realized dimensions distinguished by numbers, 1, 2, 3, and so on. Start with zero.
mark	A vector of realized mark (jump) sizes. Start with zero.
Ν	A matrix of counting processes.
Nc	A matrix of counting processes weighted by mark.
N0 lambda_componen	A matrix of initial values of N. t0
	The initial values of lambda component. Must have the same dimensional matrix with object.
	Further arguments passed to or from other methods.

See Also

hspec-class, hfit, hspec-method

residual_process Compute residual process

Description

Using random time change, this function compute the residual process, which is the inter-arrival time of a standard Poisson process. Therefore, the return values should follow the exponential distribution with rate 1, if model and rambda are correctly specified.

Usage

```
residual_process(
   component,
   inter_arrival,
   type,
   rambda_component,
   mu,
   beta,
   dimens = NULL,
   mark = NULL,
   N = NULL,
   Nc = NULL,
   lambda_component0 = NULL,
   N0 = NULL,
   ...
)
```

Arguments

component	The component of type to get the residual process.
inter_arrival	Inter-arrival times of events. This includes inter-arrival for events that occur in all dimensions. Start with zero.
type	A vector of types distinguished by numbers, 1, 2, 3, and so on. Start with zero.
rambda_componer	nt
	Right continuous version of lambda process.
mu	Numeric value or matrix or function. If numeric, automatically converted to matrix.
beta	Numeric value or matrix or function. If numeric, automatically converted to matrix, exponential decay.
dimens	Dimension of the model. If omitted, set to be the length of mu.
mark	A vector of realized mark (jump) sizes. Start with zero.
Ν	A matrix of counting processes.
Nc	A matrix of counting processes weighted by mark.

residual_process

lambda_compone	nt0
	The initial values of lambda component. Must have the same dimensional matrix with hspec.
NØ	The initial value of N
	Further arguments passed to or from other methods.

Examples

```
mu <- c(0.1, 0.1)
alpha <- matrix(c(0.2, 0.1, 0.1, 0.2), nrow=2, byrow=TRUE)
beta <- matrix(c(0.9, 0.9, 0.9, 0.9), nrow=2, byrow=TRUE)
h <- new("hspec", mu=mu, alpha=alpha, beta=beta)
res <- hsim(h, size=1000)
rp <- residual_process(component = 1, res$inter_arrival, res$type, res$rambda_component, mu, beta)</pre>
```

Index

hfit,2 hfit,hspec-method (hfit),2 hreal,5,6,10 hsim,6 hsim,hspec-method (hsim),6 hspec-class,7 hvol,8 hvol,hspec-method (hvol),8

logLik, hspec-method, 11

maxLik, 2, 3

print.hreal(hreal), 5

residual_process, 12

summary.hreal(hreal), 5