Package ‘eddington’

August 16, 2024
Title Compute a Cyclist's Eddington Number
Version 4.2.0

Description Compute a cyclist's Eddington number, including efficiently
computing cumulative E over a vector. A cyclist's Eddington number
<https://en.wikipedia.org/wiki/Arthur_Eddington#Eddington_number_for_cycling>
is the maximum number satisfying the condition such that a cyclist has
ridden E miles or greater on E distinct days. The algorithm in this package
is an improvement over the conventional approach because both summary
statistics and cumulative statistics can be computed in linear time, since
it does not require initial sorting of the data. These functions may also be
used for computing h-indices for authors, a metric described by Hirsch (2005)
<doi:10.1073/pnas.0507655102>. Both are specific applications of computing
the side length of a Durfee square <https://en.wikipedia.org/wiki/Durfee_square>.

License GPL (>=2)

Encoding UTF-8

LazyData true

Depends R (>=4.2.0)

LinkingTo Rcpp

Imports Rcpp, R6, methods, xmI2

Suggests testthat, knitr, rmarkdown, stats, dplyr
SystemRequirements C++17
VignetteBuilder knitr

RoxygenNote 7.2.3

URL https://github.com/pegeler/eddington2

BugReports https://github.com/pegeler/eddington2/issues
NeedsCompilation yes

Author Paul Egeler [aut, cre],
Tashi Reigle [ctb]

Maintainer Paul Egeler <paulegeler@gmail.com>
Repository CRAN
Date/Publication 2024-08-16 20:10:02 UTC

https://en.wikipedia.org/wiki/Arthur_Eddington#Eddington_number_for_cycling
https://doi.org/10.1073/pnas.0507655102
https://en.wikipedia.org/wiki/Durfee_square
https://github.com/pegeler/eddington2
https://github.com/pegeler/eddington2/issues

2 Eddington

Contents
Eddington L e 2
EddingtonModule L 4
E cum e 5
E next 6
E num e 6
E req o e 7
E_sat . . . e 8
get_haversine_distance 8
read_gPX 10
rides . . oo 11

Index 12

Eddington An R6 Class for Tracking Eddington Numbers for Cycling
Description

The class will maintain the state of the algorithm, allowing for efficient updates as new rides come

.

Warnings

The implementation uses an experimental base R feature utils::hashtab.

Cloning of Eddington objects is disabled. Additionally, Eddington objects cannot be serialized;
they cannot be carried between sessions using base::saveRDS or base::save and then loaded later

using base::readRDS or base::load.

Active bindings

current The current Eddington number.

cumulative A vector of cumulative Eddington numbers.

number_to_next The number of rides needed to get to the next Eddington number.
n The number of rides in the data.

hashmap The hash map of rides above the current Eddington number.

Methods

Public methods:

e Eddington$new()

e Eddington$print()

* Eddington$update()

* Eddington$getNumberToTarget()
* Eddington$isSatisfied()

Eddington 3

Method new(): Create a new Eddington object.

Usage:
Eddington$new(rides, store.cumulative = FALSE)

Arguments:

rides A vector of rides
store.cumulative logical, indicating whether to keep a vector of cumulative Eddington num-
bers

Returns: A new Eddington object

Method print(): Print the current Eddington number.
Usage:
Eddington$print()
Method update(): Add new rides to the existing Eddington object.

Usage:
Eddington$update(rides)

Arguments:

rides A vector of rides
Method getNumberToTarget(): Get the number of rides of a specified length to get to a target
Eddington number.

Usage:
Eddington$getNumberToTarget(target)

Arguments:
target Target Eddington number

Returns: An integer representing the number of rides of target length needed to achieve the
target number.
Method isSatisfied(): Test if an Eddington number is satisfied.

Usage:
Eddington$isSatisfied(target)

Arguments:

target Target Eddington number

Returns: Logical

Examples

Randomly generate a set of 15 rides
rides <- rgamma(15, shape = 2, scale = 10)

View the rides sorted in decreasing order
stats::setNames(sort(rides, decreasing = TRUE), seq_along(rides))

Create the Eddington object

4 EddingtonModule

e <- Eddington$new(rides, store.cumulative = TRUE)

Get the Eddington number
e$current

Update with new data
e$update(rep(25, 10))

See the new data
e$cumulative

EddingtonModule An Rcpp Module for Tracking Eddington Numbers for Cycling

Description

A stateful C++ object for computing Eddington numbers.

Arguments

rides An optional vector of values used to initialize the class.

store_cumulative

Whether to store a vector of the cumulative Eddington number, as accessed from
the cumulative property.

Fields

new Constructor. Parameter list may either be empty, store_cumulative, or rides and store_cumulative
current The current Eddington number.

cumulative A vector of Eddington numbers or NULL if store_cumulative is FALSE.

hashmap A data.frame containing the distances and counts above the current Eddington number.

update Update the class state with new data.

getNumberToNext Get the number of additional distances required to reach the next Eddington
number.

getNumberToTarget Get the number of additional distances required to reach a target Eddington
number.
Warning

EddingtonModule objects cannot be serialized at this time; they cannot be carried between sessions
using base::saveRDS or base::save and then loaded later using base::readRDS or base::load.

E cum 5

Examples

Create a class instance with some initial data
e <- EddingtonModule$new(c(3, 3, 2), store_cumulative = TRUE)
e$current

Update with new data and look at the vector of cumulative Eddington numbers.
e$update(c(3, 3, 5))
e$cumulative

Get the number of rides required to reach the next Eddington number and
an Eddington number of 4.

e$getNumberToNext ()

e$getNumberToTarget (4)

E_cum Calculate the cumulative Eddington number

Description
This function is much like E_num except it provides a cumulative Eddington number over the vector
rather than a single summary number.

Usage

E_cum(rides)

Arguments

rides A vector of mileage, where each element represents a single day.

Value

An integer vector the same length as rides.

See Also

E_next, E_num, E_req, E_sat

6 E num

E_next Get the number of rides required to increment to the next Eddington
number

Description

Get the number of rides required to increment to the next Eddington number.

Usage

E_next(rides)

Arguments

rides A vector of mileage, where each element represents a single day.

Value
A named list with the current Eddington number (E) and the number of rides required to increment
by one (req).

See Also

E_cum, E_num, E_req, E_sat

E_num Get the Eddington number for cycling

Description
Gets the Eddington number for cycling. The Eddington Number for cycling, E, is the maximum
number where a cyclist has ridden E miles on E distinct days.

Usage

E_num(rides)

Arguments

rides A vector of mileage, where each element represents a single day.

Details

The Eddington Number for cycling is related to computing the rank of an integer partition, which
is the same as computing the side length of its Durfee square. Another relevant application of this
metric is computing the Hirsch index (doi:10.1073/pnas.0507655102) for publications.

This is not to be confused with the Eddington Number in astrophysics, Ngq4q, Which represents the
number of protons in the observable universe.

https://en.wikipedia.org/wiki/Arthur_Eddington#Eddington_number_for_cycling
https://en.wikipedia.org/wiki/Durfee_square
https://doi.org/10.1073/pnas.0507655102
https://en.wikipedia.org/wiki/Eddington_number

E req

Value

An integer which is the Eddington cycling number for the data provided.

See Also

E_cum, E_next, E_req, E_sat

Examples

Randomly generate a set of 15 rides
rides <- rgamma(15, shape = 2, scale = 10)

View the rides sorted in decreasing order
stats::setNames(sort(rides, decreasing = TRUE), seq_along(rides))

Get the Eddington number
E_num(rides)

E_req Determine the number of additional rides required to achieve a speci-
fied Eddington number

Description

Determine the number of additional rides required to achieve a specified Eddington number.

Usage

E_req(rides, candidate)

Arguments
rides A vector of mileage, where each element represents a single day.
candidate The Eddington number to test for.

Value

An integer vector of length 1. Returns @L if E is already achieved.

See Also

E_cum, E_next, E_num, E_sat

get_haversine_distance

E_sat Determine if a dataset satisfies a specified Eddington number

Description

Indicates whether a certain Eddington number is satisfied, given the data.

Usage

E_sat(rides, candidate)

Arguments
rides A vector of mileage, where each element represents a single day.
candidate The Eddington number to test for.

Value

A logical vector of length 1.

See Also

E_cum, E_next, E_num, E_req

get_haversine_distance

Compute the distance between two points using the Haversine formula

Description

Uses the Haversine great-circle distance formula to compute the distance between two latitude/longitude
points.

Usage

get_haversine_distance(
lat_1,
lon_1,
lat_2,
lon_2,
units = c("miles”, "kilometers")

get_haversine_distance

Arguments

lat_1,1on_1, lat_2, lon_2
The coordinates used to compute the distance.

units The units of the output distance.

Value

The distance between two points in the requested units.

References

https://en.wikipedia.org/wiki/Haversine_formula

Examples

In NYC, 20 blocks == 1 mile. Thus, computing the distance between two
points along 7th Ave from W 39 St to W 59 St should return ~1 mile.
w39_coords <- list(lat=40.75406905512651, lon=-73.98830604245481)
w59_coords <- list(lat=40.76684156255418, lon=-73.97908243833855)

get_haversine_distance(
w39_coords$lat,
w39_coords$lon,
w59_coords$lat,
w59_coords$lon,
"miles”

The total distance along a sequence of points can be computed. Consider the
following sequence of points along Park Ave in the form of a list of points
where each point is a list containing a “lat™ and “lon” tag.
park_ave_coords <- list(
list(lat=40.735337983655434, lon=-73.98973648773142), # E 15 St
list(lat=40.74772623378332, lon=-73.98066078090876), # E 35 St
list(1at=40.76026319186414, lon=-73.97149360922498), # E 55 St
list(lat=40.77301604875587, lon=-73.96217737679450) # E 75 St

)

We can create a function to compute the total distance as follows:
compute_total_distance <- function(coords) {
sum(
sapply(
seg_along(coords)[-11],
\(i) get_haversine_distance(
coords[[i]]$lat,
coords[[i]]$lon,
coords[[i - 1]1]%lat,
coords[[i - 1]1]1%$lon,
"miles”

https://en.wikipedia.org/wiki/Haversine_formula

10 read_gpx

)
}

Then applying the function to our sequence results in a total distance.
compute_total_distance(park_ave_coords)

read_gpx Read a GPX file into a data frame containing dates and distances

Description

Reads in a GPS Exchange Format XML document and outputs a data. frame containing distances.
The corresponding dates for each track segment (trkseg) will be included if present in the source
file, else the date column will be populated with NAs.

Usage

read_gpx(file, units = c("miles”, "kilometers"))
Arguments

file The input file to be parsed.

units The units desired for the distance metric.
Details

Distances are computed using the Haversine formula and do not account for elevation changes.

This function treats the first timestamp of each trkseg as the date of record. Thus overnight track
segments will all count toward the day in which the journey began.

Value
A data frame containing up to two columns:

date The date of the ride. See description and details.

distance The distance of the track segment in the requested units.

Examples

Not run:
Get a list of all GPX export files in a directory tree
gpx_export_files <- list.files(

"/path/to/gpx/exports/”,

pattern = "\\.gpx$",

full.names = TRUE,

recursive = TRUE

rides

Read in all files and combine them into a single data frame
rides <- do.call(rbind, lapply(gpx_export_files, read_gpx))

End(Not run)

11

rides A year of simulated bicycle ride mileages

Description

Simulated dates and distances of rides occurring in 2009.

Usage

rides

Format
A data frame with 250 rows and 2 variables:

ride_date date the ride occurred

ride_length the length in miles

Details

The dataset contains a total of 3,419 miles spread across 178 unique days. The Eddington number

for the year was 29.

Index

x datasets
rides, 11

base::load, 2, 4
base: :readRDS, 2, 4
base: :save, 2,4
base: :saveRDS, 2, 4

E_cum, 5, 6-8
E_next, 5,6,7, 8
E_num, 5, 6,6,7, 8
E_req,5-7,7,8
E_sat, 5-7, 8
Eddington, 2
EddingtonModule, 4

get_haversine_distance, 8

read_gpx, 10
rides, 11

utils::hashtab, 2

12

	Eddington
	EddingtonModule
	E_cum
	E_next
	E_num
	E_req
	E_sat
	get_haversine_distance
	read_gpx
	rides
	Index

