Package ‘ecotraj’

May 5, 2025
Type Package
Title Ecological Trajectory Analysis
Version 1.1.0
Date 2025-05-05

Description Analysis of temporal changes (i.e. dynamics) of ecological entities, defined as trajecto-
ries on a chosen multivariate space, by providing a set of
trajectory metrics and visual representations [De Caceres et al. (2019) <doi:10.1002/ecm.1350>;
and Sturbois et al. (2021) <doi:10.1016/j.ecolmodel.2020.109400>]. Includes functions
to estimate metrics for individual trajectories (length, directionality, angles, ...) as well as
metrics to relate pairs of trajectories (dissimilarity and convergence). Functions are also
provided to estimate the ecological quality of ecosystem with respect to reference conditions
[Sturbois et al. (2023) <doi:10.1002/ecs2.4726>].

Depends R (>=3.5.0), Repp (>=0.12.12)
Imports Kendall, MASS

LinkingTo Rcpp

License GPL (>=2)

URL https://emf-creaf.github.io/ecotraj/
LazyLoad yes

Encoding UTF-8

NeedsCompilation yes

RoxygenNote 7.3.2

Suggests ape, vegclust, knitr, rmarkdown, RColorBrewer, smacof, vegan,
ggplot2, hrbrthemes, reshape2, scales, tidyr, viridis, testthat
(>=3.0.0)

LazyData true

BugReports https://github.com/emf-creaf/ecotraj/issues
Config/testthat/edition 3

Author Miquel De Caceres [aut, cre] (ORCID:
<https://orcid.org/0000-0001-7132-2080>),
Nicolas Djeghri [aut] (ORCID: <https://orcid.org/0000-0001-5740-3386>),

1

https://doi.org/10.1002/ecm.1350
https://doi.org/10.1016/j.ecolmodel.2020.109400
https://doi.org/10.1002/ecs2.4726
https://emf-creaf.github.io/ecotraj/
https://github.com/emf-creaf/ecotraj/issues
https://orcid.org/0000-0001-7132-2080
https://orcid.org/0000-0001-5740-3386

avoca

Anthony Sturbois [aut] (ORCID: <https://orcid.org/0000-0002-9219-4468>),
Javier De la Casa [ctb]

Maintainer Miquel De Ciceres <miquelcaceres@gmail.com>
Repository CRAN
Date/Publication 2025-05-05 13:30:02 UTC

Contents
AVOCA . v o v v e e e e e e e e e e e e e e e e 2
defineTrajectories e 3
dynamicVariationo 4
furseals 6
glenan 7
glomel e 8
heatmapdata 8
ISSMEMHIC . . . o o o o e e 9
is.synchronous L e e 10
ISOSCAPE .+« v v v o v e e e e e e e e e e e e e e e e e 11
NOrthseaZoo oL e e e e 12
pike . .o 13
referenceEnvelopes L. 14
subsetTrajectories L. e e 16
trajectoryComparison Lo e 18
trajectoryCyclical 22
trajectoryCyclicalPlots L 28
trajectoryMetriCs e e e e e e 31
trajectoryPlot 36
trajectoryProjection L. L 38
transformTrajectories 39

Index 42

avoca Avoca permanent plot dataset
Description

Example dataset with data from 8 permanent forest plots located on slopes of a valley in the New
Zealand Alps. The study area is mountainous and centered on the Craigieburn Range (Southern
Alps), South Island, New Zealand. Forests plots are almost monospecific, being the mountain
beech (Fuscospora cliffortioides) the main dominant tree species. Previously forests consisted of
largely mature stands, but some of them were affected by different disturbances during the sampling

period (1972-2009) which includes 9 surveys.

https://orcid.org/0000-0002-9219-4468

defineTrajectories 3

Format

Three data items are included:

avoca_strat An object of class stratifiedvegdata (see function stratifyvegdata from pack-
age ’vegclust’) with structural and compositional data.

avoca_sites A vector identifying sampled sites of each element in avoca_strat.

avoca_surveys A vector identifying surveys of each element in avoca_strat.

Source

New Zealand National Vegetation Survey (NVS) Databank (https://nvs.landcareresearch.co.nz/).

References

Allen, R. B., P. J. Bellingham, and S. K. Wiser. 1999. Immediate damage by an earthquake to a
temperate montane forest. Ecology 80:708-714.

Harcombe, P. A., R. B. Allen, J. A. Wardle, and K. H. Platt. 1998. Spatial and temporal pat-
terns in stand structure, biomass, growth and mortality in a monospecific Nothofagus solandri var.
cliffortioides (Hook. f.) Poole forest in New Zealand. Journal of Sustainable Forestry 6:313-343.

Hurst, J. M., R. B. Allen, D. A. Coomes, and R. P. Duncan. 2011. Size-specific tree mortality varies
with neighbourhood crowding and disturbance in a montane Nothofagus forest. PLoS ONE 6.

defineTrajectories Trajectory definition

Description

Defines data structures for trajectory analysis

Usage

defineTrajectories(d, sites, surveys = NULL, times = NULL)

Arguments

d A symmetric matrix or an object of class dist containing the distance values
between pairs of ecological states..

sites A character vector indicating the ecological entity (site, individual, community)
corresponding to each ecological state (other types are converted to character).

surveys An integer vector indicating the survey corresponding to each ecological state
(only necessary when surveys are not in order).

times A numeric vector indicating survey times (if missing, survey times are made

equal to surveys).

4 dynamic Variation

Value

An object (list) of class trajectories with the following elements:

* d: An object of class dist containing relationships between ecological states
* metadata: A data frame describing trajectory states, with the following columns:
— sites: A character vector indicating the ecological entity corresponding to each ecolog-
ical state.
— surveys: An integer vector indicating the survey corresponding to each ecological state.

— times: A numeric vector indicating survey times.

See Also

subsetTrajectories

Examples

#Description of entities (sites) and surveys
entities <= c(”1","1","1","2" "2" 2"y
surveys <- ¢(1,2,3,1,2,3)

#Raw data table

xy<-matrix(@, nrow=6, ncol=2)
xy[2,2]<-1

xy[3,2]<-2

xy[4:6,1] <- 0.5

xy[4:6,2] <- xy[1:3,2]
xy[6,11<-1

d <- dist(xy)
Defines trajectories

x <- defineTrajectories(d, entities, surveys)
X

dynamicVariation Dynamic variation and variation decomposition

Description

* Function dynamicVariation assesses the amount of dynamic variation observed across tra-
jectories and the relative contribution of each of them.

* Function variationDecomposition performs a sum of squares decomposition of total vari-
ation in three components: (1) across trajectories (entities); (2) across time points; (3) their
interaction.

dynamic Variation 5

Usage

dynamicVariation(x, ...)

variationDecomposition(x)

Arguments
X An object of class trajectories (or its children subclasses fd.trajectories
or cycles).
Additional params to be passed to function trajectoryDistances.
Details

Function variationDecomposition requires trajectories to be synchronous. The SS sum of temporal
and interaction components correspond to the SS sum, across trajectories, of function trajectoryInternalVariation.

Value

 Function dynamicVariance returns a list with three elements (dynamic sum of squares, dy-
namic variance and a vector of trajectory relative contributions)

* Function variationDecomposition returns a data frame with results (sum of squares, de-
grees of freedom and variance estimates) for each variance component and the total.

See Also

defineTrajectories, is.synchronous, trajectoryDistances, trajectorylInternalVariation

Examples

#Description of entities and surveys
entities <_ C("—IH’ll‘lll’ll‘lII’IV‘III,II2IV’VIZII’IIZVI,Ilzll,II3IV,II3II,IV3VI,"3II)
surveys <- ¢(1,2,3,4,1,2,3,4,1,2,3,4)

#Raw data table
xy<-matrix(@, nrow=12, ncol=2)
xy[2,2]<-1

xy[3,2]<-2

xy[4,2]<-3

xy[5:6,2] <- xy[1:2,2]
xy[7,2]1<-1.5

xy[8,2]1<-2.0

xy[5:6,1] <- 0.25
xy[7,1]1<-0.5

xy[8,11<-1.0

xy[9:10,1] <- xy[5:6,1]+0.25
xy[11,1] <- 1.0

xy[12,1] <-1.5

xy[9:10,2] <- xy[5:6,2]
xy[11:12,2]<-c(1.25,1.0)

6 furseals

d <- dist(xy)

Defines trajectories
x <- defineTrajectories(d, entities, surveys)

Assessment of dynamic variation and individual trajectory contributions
dynamicVariation(x)

Variation decomposition (entity, temporal and interaction) for synchronous
trajectories:
variationDecomposition(x)

check the correspondence with internal variation
sum(variationDecomposition(x)[c("time"”, "interaction”),"ss"])
sum(trajectoryInternalVariation(x)$internal_ss)

furseals furseals dataset

Description

This is a subset of a data sets from Kernaléguen et al. (2015).

Format
furseals is an object of class data.frame composed of 1414 observations and 8 variables.

ID_SITA Fur seal ID used by Sturbois et al. (under review), from 1 to 47

ID Fur seal ID used by Kernaléguen et al. (2015) in the initial data set.

Species Fur seal species: the Antarctic fur seal Arctocephalus gazella or the subantarctic fur seal
A. tropicalis.

Sexe Fur seal gender, either "Male’ or ’Female’.

Time Number of the whisker sections from 1 to 30.

Place Breeding place: Crozet, Amsterdam or Kerguelen

d13C delta 13C value

d15N delta 15N value

Details

Briefly, fur seals the Antarctic fur seal Arctocephalus gazella and subantarctic fur seal A. tropicalis
whisker SI values yield unique long-term information on individual behaviour which integrates the
spatial, trophic and temporal dimensions of the ecological niche. The foraging strategies of this two
species of sympatric fur seals were examined in the winter 2001/2002 at Crozet, Amsterdam and
Kerguelen Islands (Southern Ocean) using the stable isotope values of serially sampled whiskers.
The subset of the initial data set is composed of consecutive whisker sections (3 mm-long) starting
from the proximal (facial) end, with the most recently synthesized tissue remaining under the skin.
Only individuals (n = 47) with whiskers totalizing at least 30 sections were selected in the initail
data, and only those 30 sections were selected.

glenan 7

Author(s)

Kernaléguen, L., Arnould, J.P.Y., Guinet, C., Cherel, Y.

References

Kernaléguen, L., Arnould, J.P.Y., Guinet, C., Cherel, Y., 2015. Determinants of individual foraging
specialization inlarge marine vertebrates, the Antarctic and subantarctic fur seals. Journal of Animal
Ecology 1081-1091.

glenan Glenan dataset

Description

Maerl bed data set to illustrate Ecological Quality Assessment (EQA)

Format

Glenan is an object of class data.frame composed of 32 observations and 252 variables.

Abundance.x Abundance (number of individuals) of each taxon x
Surveys Indicates different Maerl bed surveys.

Treatment Combinations of fishing dredges and pressure levels. ’CTRL’ stands for control. Fish-
ing dredges are:

e (1) aclam dredge (CD), 70 to 90 kg, 1.5 m wide, 40 teeth of 11 cm each;
* (2) a queen scallop dredge (QSD), 120 kg,1.8 m wide, with a blade;
* (3) aking scallop dredge (KSD), 190 kg, 1.8 m wide, 18 teeth of 10 cm each every 9 cm.

Details
Experimental data set built by Tauran et al. (2020) to study the impact of fishing dredges and
varying fishing pressures on maerl beds, in the bay of Brest (Brittany, France).

References

Tauran, A., Dubreuil, J., Guyonnet, B., Grall, J., 2020. Impact of fishing gears and fishing intensities
on maerl beds: An experimental approach. Journal of Experimental Marine Biology and Ecology
533, 151472. https://doi.org/10.1016/j.jembe.2020.151472

See Also

referenceEnvelopes

8 heatmapdata

glomel Glomel vegetation dataset

Description

Vegetation data set to illustrate Ecological Quality Assessment (EQA)

Format

Glomel is an object of class data.frame composed of 23 observations and 46 variables.

ID Station ID.
Ref Logical flag to indicate stations used to define the reference envelope.
Complementary Comments regarding the quality of the ecosystem.

... Percent cover values (derived from Braun-Blanquet ordinal scale) for 43 species of vascular
plants.
Details

The nature reserve of Landes et Marais de Glomel (Brittany, France) is composed of temperate
Atlantic wet heaths whose reference state is commonly considered dominated by plant communities
associated to acid, nutrient poor soils that are at least seasonally water logged and dominated by
Erica tetralix and E. ciliaris. The data set consists of 23 rows and 46 columns. The first five
stations (rows) were used to define the reference envelope, and the next 18 stations (rows) where
those for which the conservation status was to be assessed.

Author(s)

Aline Bifolchi, Réserve Naturelle des landes et marais de Glomel

See Also

referenceEnvelopes

heatmapdata heatmapdata dataset

Description

Espinasse et al. (2020) tested the application of isoscapes modelled from satellite data to the de-
scription of secondary production in the Northeast pacific. The output model fits in a 0.25° x 0.25°
spatial grid covering the region spanning from 46 to 62°N and from 195 to 235°E and supporting
delta 13C and delta 15N isoscapes from 1998 to 2017.

is.metric 9

Format

heatmapdata is an object of class dataframe composed of 9206 observations of 9 variables.

Latitude Latitude coordinate of the station, in degrees

Longitude Longitude coordinate of the station, in degrees

d13C delta 13C modelled value

d15N delta 15N modelled value

station Station ID

Years Period corresponding to the calculation of trajectory metrics
Angles Angle alpha (i.e direction) in the stable isotope space
Lengths Net change values (i.e direction) in the stable isotope space

Angles2 Angle alpha values (i.e direction) in the stable isotope space transformed for a potential
use with function geom_spoke
Details

This data sets is composed of trajectory metrics calculated by Sturbois et al. (2021) for all stations
within all inter-annual consecutive periods between 1998 and 2017 calculated from the whole data
set of Espinasse et al. (2020) for a 1° x 1° spatial grid.

Author(s)

Espinasse, B., Hunt, B.P.V,, Batten, S.D., Pakhomov, E.A.

References

Espinasse, B., Hunt, B.P.V., Batten, S.D., Pakhomov, E.A., 2020. Defining isoscapes in the North-
east Pacific as an index of ocean productivity. Global Ecol Biogeogr 29, 246-261.

See Also

isoscape

is.metric Metricity

Description

Checks whether the input dissimilarity matrix is metric (i.e. all triplets fulfill the triangle inequality).

Usage

is.metric(x, tol = 1e-04)

10 is.synchronous

Arguments
X Either an object of class trajectories, a symmetric matrix or an object of
class dist containing the distance values between pairs of ecological states.
tol Tolerance value for metricity
Value

A boolean indicating metric property

Author(s)
Miquel De Caceres, CREAF

is.synchronous Synchronicity in trajectory observations

Description

Checks whether trajectories are synchronous, meaning that observation times are equal

Usage

is.synchronous(x)

Arguments
X An object of class trajectories (or its children subclasses fd.trajectories
or cycles)
Value

A boolean indicating whether trajectories are synchronous

See Also

defineTrajectories

Examples

#Description of sites and surveys
sites <- C("-Il!,n—]n’u—ln’nzn,uzn’nzu)
surveys <- ¢(1,2,3,1,2,3)

#Raw data table

xy<-matrix(@, nrow=6, ncol=2)
xy[2,2]<-1

xy[3,2]<-2

xy[4:6,1] <- 0.5

isoscape 11

xy[4:6,2] <- xy[1:3,2]
xy[6,1]1<-1

#Synchronous trajectories
x1 <- defineTrajectories(dist(xy), sites, surveys)
is.synchronous(x1)

Non synchronous trajectories
x2 <- defineTrajectories(dist(xy[1:5,]), sites[1:5], surveys[1:5])
is.synchronous(x2)

isoscape isoscape dataset

Description

This data sets is a subset from Espinasse et al. (2020).

Format
isoscape is an object of class dataframe composed of 978 observations of 6 variables.

Latitude Latitude coordinate of the station, in degrees
Longitude Longitude coordinate of the station, in degrees
d13C delta 13C modelled value

d15N delta 15N modelled value

station station ID

Year Year corresponding to modelled stable isotope values

Details

Briefly, Espinasse et al. (2020) tested the application of isoscapes modelled from satellite data
to the description of secondary production in the Northeast pacific. The output model fits in a
0.25° x 0.25° spatial grid covering the region spanning from 46 to 62°N and from 195 to 235°E
and supporting delta 13C and delta 15N isoscapes from 1998 to 2017. The subset is composed of
modelled delta 13C and delta 15N values of a 1° x 1° spatial grid from the original modelled dataset
for 2013 and 2015.

Author(s)
Espinasse, B., Hunt, B.P.V., Batten, S.D., Pakhomov, E.A.

References

Espinasse, B., Hunt, B.P.V., Batten, S.D., Pakhomov, E.A., 2020. Defining isoscapes in the North-
east Pacific as an index of ocean productivity. Global Ecol Biogeogr 29, 246-261.

12 northseaZoo

See Also

heatmapdata

northseaZoo North Sea zooplankton dataset

Description

A multi-annual (1958-2021), monthly resolved dataset of zooplankton community composition in
the Northern and Southern North Sea used to illustrate Cyclical Ecological Trajectory Analysis
(CETA)

Format

northseaZoo is an object of class 1ist composed of 3 objects:

Hellinger a data.frame containing Hellinger-transformed zooplankton taxa abundances.
times a vector indicating the date (in year) associated to each line in Hellinger.

sites a vector indicating the site ("NNS" = Northern North Sea, "SNS" = Southern North Sea) asso-
ciated to each line in Hellinger.

Details

The data describes the zooplankton community in the North Sea sampled by the Continuous Plank-
ton Recorder (CPR) survey. The CPR survey operates through towing of CPR samplers across
commercial routes of merchant ships (plankton silk mesh = 270 microm, sampling depth = 5-10 m).
When brought back to the laboratory, plankton is counted and identified taxonomically following
standardized protocols. The raw data provided by the survey (doi:10.17031/66f12be296d70). was
reformated into two monthly-resolved time series of the commonest zooplankton taxa in the North-
ern North Sea ("NNS") and the Southern North Sea ("SNS"). During data processing, a smoothing
was performed by taking a rolling average (for each month, 5 values were averaged: a 3 months
window + the corresponding month of the previous and next years). The abundances were finally
Hellinger-transformed, making them amenable to ecological diversity study.

Author(s)

Nicolas Djeghri, Université de Bretagne Occidentale, France

Pierre Hélaouét and CPR survey staff, Marine Biological Association, United Kingdom

See Also

trajectoryCyclical

https://www.cprsurvey.org/
https://www.cprsurvey.org/
https://doi.org/10.17031/66f12be296d70

pike 13

pike pike dataset

Description

This data sets comes from Cucherousset et al. (2013).

Format

pike is an object of class dataframe composed of 58 observations of 10 variables.

trophic_status_initial Initial trophic status at release

ID ID used for each individual by Cucherousset et al. (2013)

Time Time of the stable isotope measurement: 1 (Release) or 2 (Departure)

Time_L Time of the stable isotope measurement as string, either "Release’ or ’Departure’

Date Date of release (common for all individuals) or recapture (variable dependind of the date of
departure)

Size_mm Size (length) of juvenile pike, in mm

d13C delta 13C values

d15N delta 15N values

Residence_time Number of days between the release and the recapture

Trophic_status_final Trophic status at the end of the study

Details

Briefly, Cucherousset et al. (2013) released 192 individually tagged, hatchery-raised, juvenile pike
(Esox lucius L.) with variable initial trophic position (fin delta 13C/delta 15N values). Based on
delta values, individuals were classified into zooplanktivorous (delta 15N < 10 %o) and piscivorous
(delta 15N > 10 %o) as cannibalism is commonly observed in this species. Individuals were released
in a temporarily flooded grassland where pike eggs usually hatch of the Briere marsh (France) to
identify the determinants of juvenile natal departure. The release site was connected through a
unique point to an adjacent pond used as a nursery habitat. Fish were continuously recaptured
when migrating from flooded grassland to adjacent pond. Recaptured individuals (n = 29) were
anaesthetized, checked for tags, measured for fork length, fin-clipped to quantify changes in delta
13C and delta 15N values, and released.

Author(s)

Cucherousset, J., Paillisson, J.-M., Roussel, J.-M.

References

Cucherousset, J., Paillisson, J.-M., Roussel, J.-M., 2013. Natal departure timing from spatially vary-
ing environments is dependent of individual ontogenetic status. Naturwissenschaften 100, 761-768.

14 referenceEnvelopes

referenceEnvelopes Ecological quality assessment

Description

Functions to assess the variability of ecological reference envelopes and to assess the ecological
quality of target stations/observations with respect to reference envelopes (Sturbois et al., under

review).
Usage
trajectoryEnvelopeVariability(
d,
sites,
surveys = NULL,
envelope = NULL,
nboot.ci = NULL,
alpha.ci = 0.05,

stateEnvelopeVariability(d, envelope = NULL, nboot.ci = NULL, alpha.ci = 0.05)

compareToTrajectoryEnvelope(
d,
sites,
envelope,
surveys = NULL,
m=1.5,
comparison_target = "trajectories”,
distances_to_envelope = FALSE,
distance_percentiles = FALSE,

)
compareToStateEnvelope(
d,
envelope,
m=1.5,
nboot.ci = NULL,

alpha.ci = 0.05,
distances_to_envelope = FALSE,
distance_percentiles = FALSE,

referenceEnvelopes 15

Arguments

d A symmetric matrix or an object of class dist containing the distance values
between pairs of ecological states (see details).

sites A vector indicating the site corresponding to each ecological state.

surveys A vector indicating the survey corresponding to each ecological state (only nec-
essary when surveys are not in order).

envelope A vector indicating the set of sites that conform the reference envelope (other
sites will be compared to the envelope)

nboot.ci Number of bootstrap samples for confidence intervals. If nboot.ci = NULL then
confidence intervals are not estimated.

alpha.ci Error in confidence intervals.
Additional parameters for function trajectoryDistances

m Fuzziness exponent for quality value assessment

comparison_target
String indicating the component to be compared to the reference envelope. Ei-
ther ’trajectories’ (to compare complete trajectories) or ’states’ (to compare in-
dividual trajectory states).

distances_to_envelope
Flag to indicate that distances to envelope should be included in the result

distance_percentiles
Flag to include the percentage of distances to the envelope (among sites corre-
sponding to the reference) that are smaller than that of the site.

Details

Functions stateEnvelopeVariability and trajectoryEnvelopeVariability are used to assess

the variability of reference envelopes. Functions compareToStateEnvelope and compareToTrajectoryEnvelope
are used to evaluate the ecological quality of stations/observations with respect to a predefined ref-

erence envelope.

Value

¢ Functions stateEnvelopeVariability and trajectoryEnvelopeVariability are used to
assess the variability of reference envelopes.

¢ Functions compareToStateEnvelope and compareToTrajectoryEnvelope return data frame
with columns identifying the envelope and the Q statistic for the ecological quality with re-
spect to the envelope. If nboot.ci !=NULL extra columns are added to indicate the boundaries
of a confidence interval for Q, built using bootstrap samples of the reference envelope.

Author(s)
Miquel De Céaceres, CREAF

Anthony Sturbois, Vivarmor nature, Réserve Naturelle nationale de la Baie de Saint-Brieuc

16 subsetTrajectories

References

Sturbois, A., De Céceres, M., Bifolchi, A., Bioret, F., Boyé, A., Gauthier, O., Grall, J., Grémare,
A., Labrune, C., Robert, A., Schaal, G., Desroy, N. (2023). Ecological Quality Assessment: a
general multivariate framework to report the quality of ecosystems and their dynamics with respect
to reference conditions. Ecosphere.

See Also

trajectoryMetrics, glomel

Examples

data(glomel)

Extract compositional data matrix
glomel_comp <- as.matrix(glomel[,!(names(glomel) %in% c("ID", "Ref", "Complementary"))])
rownames (glomel_comp) <- glomel$ID

Calculate Bray-Curtis distance matrix
glomel_bc <- vegan::vegdist(glomel_comp, method = "bray")

Define reference envelope (5 stations) by observation ID
glomel_env <- glomel$ID[glomel$Ref]

Assess quality with respect to reference envelope
compareToStateEnvelope(glomel_bc, glomel_env)

subsetTrajectories Trajectory subsetting

Description

Subsets data structures for trajectory analysis

Usage

subsetTrajectories(
X)
site_selection = NULL,
subtrajectory_selection = NULL,
survey_selection = NULL

subsetTrajectories 17

Arguments

X An object of class trajectories (or its children subclasses fd.trajectories
or cycles)

site_selection A character vector indicating the subset of entity (site) trajectories to be selected
(if NULL, all sites are included).

subtrajectory_selection
A character vector indicating the subset of cycles or fixed date trajectories to be
selected (only used when x is of class fd.trajectories or cycles).

survey_selection
An integer vector indicating the subset of surveys to be included (if NULL, all
surveys are included).

Details

When using function subsetTrajectories on cycles or fixed-date trajectories then the parameter
site_selection applies to sites (hence allows selecting multiple cycles or fixed-date trajectories).
Specific cycles or fixed-date trajectories can be selected using trajectory_selection.

Value

An object (list) of class trajectories (or its children subclasses fd.trajectories or cycles),
depending on the input.

See Also

defineTrajectories, trajectoryCyclical

Examples

#Description of entities (sites) and surveys
entities <_ C(II'III’II-]II’II111,"2”,“211’1)2")
surveys <- ¢(1,2,3,1,2,3)

#Raw data table

xy<-matrix(@, nrow=6, ncol=2)
xy[2,21<-1

xy[3,2]<-2

xy[4:6,1] <- 0.5

xy[4:6,2] <- xy[1:3,2]
xy[6,1]1<-1

d <- dist(xy)

Defines trajectories
<- defineTrajectories(d, entities, surveys)

X X

Extracts (subset) second trajectory
Xx_2 <- subsetTrajectories(x, "2")
x_2

18 trajectoryComparison

trajectoryComparison Trajectory comparison

Description

Functions to compare pairs of trajectories or trajectory segments.

 Function segmentDistances calculates the distance between pairs of trajectory segments.
* Function trajectoryDistances calculates the distance between pairs of trajectories.

 Function trajectoryConvergence performs the Mann-Kendall trend test on (1) the distances
between trajectories; (2) the distance between points of one trajectory to the other; or (3) the
variance of states among trajectories.

» Function trajectoryShifts calculates trajectory shifts (i.e. advances and delays) between
trajectories assumed to follow a similar path but with different speeds or time lags.

Usage
segmentDistances(x, distance.type = "directed-segment”, add = TRUE)
trajectoryDistances(
X’
distance.type = "DSPD",
symmetrization = "mean”,
add = TRUE
)
trajectoryConvergence(x, type = "pairwise.asymmetric”, add = TRUE)

trajectoryShifts(x, add = TRUE)

Arguments

X An object of class trajectories.
distance.type The type of distance index to be calculated (see section Details).

add Flag to indicate that constant values should be added (local transformation) to
correct triplets of distance values that do not fulfill the triangle inequality.

symmetrization Function used to obtain a symmetric distance, so that DSPD(T1,T2) =DSPD(T2,T1)
(e.g., mean, max or min). If symmetrization = NULL then the symmetrization is
not conducted and the output dissimilarity matrix is not symmetric.

non

type A string indicating the convergence test, either "pairwise.asymmetric”, "pairwise.symmetric”

or "multiple” (see details).

trajectoryComparison 19

Details

Ecological Trajectory Analysis (ETA) is a framework to analyze dynamics of ecological entities
described as trajectories in a chosen space of multivariate resemblance (De Céceres et al. 2019).
ETA takes trajectories as objects to be analyzed and compared geometrically.

The input distance matrix d should ideally be metric. That is, all subsets of distance triplets should
fulfill the triangle inequality (see utility function is.metric). All ETA functions that require
metricity include a parameter 'add’, which by default is TRUE, meaning that whenever the tri-
angle inequality is broken the minimum constant required to fulfill it is added to the three distances.
If such local (an hence, inconsistent across triplets) corrections are not desired, users should find
another way modify d to achieve metricity, such as PCoA, metric MDS or non-metric MDS (see
vignette ’Introduction to Ecological Trajectory Analysis’). If parameter add’ is set to FALSE and
problems of triangle inequality exist, ETA functions may provide missing values in some cases
where they should not.

The resemblance between trajectories is done by adapting concepts and procedures used for the
analysis of trajectories in space (i.e. movement data) (Besse et al. 2016).

Parameter distance. type is the type of distance index to be calculated which for function segmentDistances
has the following options (Besse et al. 2016, De Céceres et al. 2019:
* Hausdorff: Hausdorff distance between two segments.
* directed-segment: Directed segment distance (default).
* PPA: Perpendicular-parallel-angle distance.
In the case of function trajectoryDistances the following values are possible (De Céceres et al.
2019):
* Hausdorff: Hausdorff distance between two trajectories.
* SPD: Segment Path Distance.
* DSPD: Directed Segment Path Distance (default).

TSPD: Time-Sensitive Path Distance (experimental).

Function trajectoryConvergence is used to study convergence/divergence between trajectories.
There are three possible tests, the first two concerning pairwise comparisons between trajectories.

1. If type = "pairwise.asymmetric” then all pairwise comparisons are considered and the test
is asymmetric, meaning that we test for trajectory A approaching trajectory B along time. This
test uses distances of orthogonal projections (i.e. rejections) of states of one trajectory onto
the other.

2. If type = "pairwise.symmetric” then all pairwise comparisons are considered but we test
whether the two trajectories become closer along surveys. This test requires the same number
of surveys for all trajectories and uses the sequence of distances between states of the two
trajectories corresponding to the same survey.

3. If type = "multiple” then the function performs a single test of convergence among all tra-
jectories. This test needs trajectories to be synchronous. In this case, the test uses the sequence
of variability between states corresponding to the same time.

20 trajectoryComparison

In all cases, a Mann-Kendall test (see MannKendall) is used to determine if the sequence of values
is monotonously increasing or decreasing.

Function trajectoryShifts is intended to be used to compare trajectories that are assumed to fol-
low a similar pathway. The function evaluates shifts (advances or delays) due to different trajectory
speeds or the existence of time lags between them. This is done using calls to trajectoryProjection.
Whenever the projection of a given target state on the reference trajectory does not exist the shift
cannot be evaluated (missing values are returned).

Value

Function trajectoryDistances returns an object of class dist containing the distances between
trajectories (if symmetrization = NULL then the object returned is of class matrix).

Function segmentDistances list with the following elements:

* Dseg: Distance matrix between segments.
* Dini: Distance matrix between initial points of segments.
» Dfin: Distance matrix between final points of segments.

* Dinifin: Distance matrix between initial points of one segment and the final point of the
other.

e Dfinini: Distance matrix between final points of one segment and the initial point of the
other.

Function trajectoryConvergence returns a list with two elements:

* tau: A single value or a matrix with the statistic (Mann-Kendall’s tau) of the convergence/divergence
test between trajectories. If type = "pairwise.symmetric” then the matrix is square and if
type = "pairwise.asymmetric” the statistic of the test of the row trajectory approaching the
column trajectory. If type = "multiple” tau is a single value.

* p.value: A single value or a matrix with the p-value of the convergence/divergence test be-
tween trajectories. If type = "pairwise.symmetric” then the matrix of p-values is square
and if type = "pairwise.asymmetric” then the p-value indicates the test of the row trajec-
tory approaching the column trajectory. If type = "multiple” p-value is a single value.

Function trajectoryShifts returns an object of class data. frame describing trajectory shifts (i.e.
advances and delays). The columns of the data. frame are:

* reference: the site (trajectory) that is taken as reference for shift evaluation.

* site: the target site (trajectory) for which shifts have been computed.

* survey: the target trajectory survey for which shift is computed.

* time: the time corresponding to target trajectory survey.

* timeRef: the time associated to the projected ecological state onto the reference trajectory.

» shift: the time difference between the time of the target survey and the time of projected
ecological state onto the reference trajectory. Positive values mean faster trajectories and
negative values mean slower trajectories.

trajectoryComparison 21

Author(s)

Miquel De Céaceres, CREAF
Nicolas Djeghri, UBO

References

Besse, P., Guillouet, B., Loubes, J.-M. & Francois, R. (2016). Review and perspective for distance
based trajectory clustering. IEEE Trans. Intell. Transp. Syst., 17, 3306-3317.

De Céceres M, Coll L, Legendre P, Allen RB, Wiser SK, Fortin MJ, Condit R & Hubbell S. (2019).
Trajectory analysis in community ecology. Ecological Monographs 89, e01350.

See Also

trajectoryMetrics, trajectoryPlot, transformTrajectories, trajectoryProjection, MannKendall

Examples

#Description of entities (sites) and surveys
entities <- c(”1","1","1", """ npn mpu wpw w3w w3m w3w w3wy
surveys <- ¢(1,2,3,4,1,2,3,4,1,2,3,4)

#Raw data table
xy<-matrix (@, nrow=12, ncol=2)
xy[2,21<-1

xy[3,2]1<-2

xy[4,2]<-3

xy[5:6,2] <- xy[1:2,2]
xy[7,21<-1.5

xy[8,2]1<-2.0

xy[5:6,1] <- 0.25
xy[7,11<-0.5

xy[8,11<-1.0

xy[9:10,1] <- xy[5:6,1]+0.25
xy[11,1] <- 1.0

xy[12,1] <-1.5

xy[9:10,2] <- xy[5:6,2]
xy[11:12,2]<-c(1.25,1.0)

#Draw trajectories
trajectoryPlot(xy, entities, surveys,
traj.colors = c("black”,"red”, "blue"), lwd = 2)

#Distance matrix
d <- dist(xy)
d

#Trajectory data
x <- defineTrajectories(d, entities, surveys)

#Distances between trajectory segments
segmentDistances(x, distance.type = "Hausdorff")

22

trajectoryCyclical

segmentDistances(x, distance.type = "directed-segment")

#Distances between trajectories
trajectoryDistances(x, distance.type = "Hausdorff")
trajectoryDistances(x, distance.type = "DSPD")

#Trajectory convergence/divergence
trajectoryConvergence(x)

#i### Example of trajectory shifts

#Description of entities (sites) and surveys

entities2 < c(”1","1","1","1", 1" Q" Mpn mpw m3m w3m w3w w3my
times2 <- ¢(1,2,3,4,1,2,3,4,1,2,3,4)

#Raw data table

xy2<-matrix(@, nrow=12, ncol=2)

xy2[2,2]<-1

xy2[3,2]<-2

xy2[4,2]<-3

xy2[5:8,1] <- 0.25

xy2[5:8,2] <- xy2[1:4,2] + 0.5 # States are all shifted with respect to site "1"
xy2[9:12,1] <- 0.5

xy2[9:12,2] <- xy2[1:4,2]x1.25 # 1.25 times faster than site "1"

#Draw trajectories
trajectoryPlot(xy2, entities2,
traj.colors = c("black”,"red”, "blue"), lwd = 2)

#Trajectory data
x2 <- defineTrajectories(dist(xy2), entities2, times = times2)

#Check that the third trajectory is faster
trajectorySpeeds(x2)

#Trajectory shifts
trajectoryShifts(x2)

trajectoryCyclical Functions for Cyclical Ecological Trajectory Analysis

Description

The Cyclical extension of Ecological Trajectory Analysis (CETA) aims at allowing ETA to describe
ecological trajectories presenting cyclical dynamics such as seasonal or day/night cycles. We call
such trajectories "cyclical". CETA operates by subdividing cyclical trajectories into two types of
sub-trajectories of interest: cycles and fixed-date trajectories.

* Cycles are sub-trajectories joining the ecological states belonging to the same cycle.

» Fixed-date trajectories are sub-trajectories joining the ecological states of the same date in dif-
ferent cycles (e.g. in a multi-annual cyclical trajectory with seasonality, a fixed-date trajectory
might join all the ecological states associated with the January months of the different years).

trajectoryCyclical 23

We recommend reading the vignette on CETA prior to use it.The CETA functions provided here
achieve one of two goals:

1. Reformatting data to analyze either cycles or fixed-date trajectories. The reformatted data can
then be fed into existing ETA functions to obtain desired metrics (although special care need
to be taken with cycles, see details).

2. Providing new metrics relevant to cycles complementing other ETA functions.

Usage

extractCycles(
X,
cycleDuration,
dates = NULL,
startdate = NA,
externalBoundary = "end",
minEcolStates = 3

)

extractFixedDateTrajectories(
X,
cycleDuration,
dates = NULL,
fixedDate = NULL,
namesFixedDate = NULL,
minEcolStates = 2

)

cycleConvexity(
X,
cycleDuration,
dates = NULL,
startdate = NA,
externalBoundary = "end",
minEcolStates = 3,
add = TRUE

)

cycleShifts(
X,
cycleDuration,
dates = NULL,
datesCS = NULL,
centering = TRUE,
minEcolStates = 3,
add = TRUE

)

cycleMetrics(

24

trajectoryCyclical

X,

cycleDuration,

dates = NULL,

startdate = NA,
externalBoundary = "end",
minEcolStates = 3,

add = TRUE

Arguments

X

An object of class trajectories describing a cyclical trajectory.

cycleDuration A value indicating the duration of a cycle. Must be in the same units as times.

dates An optional vector indicating the dates (< cycleDuration) corresponding to

each ecosystem state. Must be in the same units as times. Defaults to times
modulo cycleDuration (see details).

startdate An optional value indicating at which date the cycles must begin. Must be in the

same units as times. Defaults to min(dates).

externalBoundary

An optional string, either "end” or "start”, indicating whether the start or end
of the cycles must be considered "external". Defaults to "end".

minEcolStates An optional integer indicating the minimum number of ecological states to re-

turn a fixed-date trajectory. Fixed-date trajectories comprising less ecological
states than minEcolStates are discarded and do not appear in the output of the
function. Defaults to 2.

fixedDate An optional vector of dates for which fixed-date trajectories must be computed.

namesFixedDate

Defaults to unique (dates), resulting in returning all possible fixed-date trajec-
tories.

add Flag to indicate that constant values should be added (local transformation) to

correct triplets of distance values that do not fulfill the triangle inequality.

datesCS An optional vector indicating the dates for which a cyclical shift must be com-

puted. Default to unique(dates) resulting in the computation of all possible
cyclical shifts.

centering An optional boolean. Should the cycles be centered before computing cyclical

shifts? Defaults to TRUE.

Details

CETA functions:

 Function extractCycles reformats an object of class trajectories describing one or more
cyclical trajectories into a new object of class trajectories designed for the analysis cycles.

* Function extractFixedDateTrajectories reformats an object of class trajectories de-
scribing one or more cyclical trajectories into a new object of class trajectories designed
for the analysis fixed-date trajectories.

An optional vector of names associated to each fixedDate. Defaults to round(fixedDate, 2).

trajectoryCyclical 25

* Function cycleConvexity computes the "convexity" of the cycles embedded in one or more
cyclical trajectories.

 Function cycleShifts computes the cyclical shifts (i.e. advances and delays) that can be
obtain from one or more cyclical trajectories.

CETA is a little more time-explicit than the rest of ETA. Hence the parameter times is needed
to initiate the CETA approach (classical ETA functions can work from surveys which is only
ordinal). CETA also distinguishes between times and dates. Times represent linear time whereas
dates represent circular time (e.g. the month of year). Dates are circular variables, coming back to
zero when reaching their maximum value cycleDuration corresponding to the duration of a cycle.
In CETA, dates are by default assumed to be times modulo cycleDuration. This should fit many
applications but if this is not the case (i.e. if there is an offset between times and dates), dates can be
specified. dates however need to remain compatible with times and cycleDuration (i.e. (times
modulo cycleDuration) - (dates modulo cycleDuration) needs to be a constant).

IMPORTANT: Cycles within CETA comprises both "internal" and "external" ecological states
(see the output of function extractCycles). This distinction is a solution to what we call the
"December-to-January segment problem". Taking the example of a monthly resolved multi-annual
time series, a way to make cycles would be to take the set of ecological states representing months
from January to December of each year. However, this omits the segment linking December of year
Y to January of year Y+1. However, including this segments means having two January months in
the same cycle. The proposed solution in CETA (in the case of this specific example) is to set the
January month of year Y+1 as "external". "external" ecological states need a specific handling for
some operation in ETA, namely:

* Centering where external ecological states must be excluded from computation but included
nonetheless in the procedure. This is handled automatically by the function centerTrajectories.

* Trajectory internal variability, where external ecological states must be excluded. This handled
directly by the trajectoryInternalVariation function.

* Visualization through principal coordinate analysis of the cycles. The dedicated function
cyclePCoA must be preferred over trajectoryPCoA.

As a general rule the outputs of extractCycles should be used as inputs in other, non-CETA func-
tion (e.g. trajectoryDistances). There is three important exceptions to that rule: the functions
cycleConvexity, cycleShifts and cycleMetrics. Instead, the inputs of these three functions
should parallel the inputs of extractCycles in a given analysis. For cycleConvexity, this is be-
cause convexity uses angles obtained from the whole cyclical trajectory, and not only the cycles.
For cycleShifts, this is because cyclical shifts are not obtained with respect to a particular set of
cycles. For cycleMetrics, this is because it calls cycleConvexity. The function instead compute
the most adapted set of cycles to obtain the metric.

Note: Function cycleShifts is computation intensive for large data sets, it may not execute imme-
diately.

Further information and detailed examples of the use of CETA functions can be found in the asso-
ciated vignette.
Value

Function extractCycles returns the base information needed to describe cycles. Its outputs are
meant to be used as input for other ETA functions. Importantly, within cycles, ecological states can

trajectoryCyclical

be considered "internal" or "external". Some operations and metrics within ETA use all ecological
states whereas others use only "internal" ones (see details). Function extractCycles returns an
object of class cycles containing:

* d: an object of class dist, the new distance matrix describing the cycles. To take in account
ecological states that are both the end of a cycle and the start of another,d contains duplications.
As compared to the input matrix, d may present deletions of ecological states that do not
belong to any cycles (e.g. due to minEcolStates))

* metadata: an object of class data. frame describing the ecological states in d with columns:

— sites: the sites associated to each ecological states.

— Cycles: the names of the cycle each ecological states belongs to. The cycle name is built
by combining the site name with C1, C2, C3... in chronological order.

— surveys: renumbering of the surveys to describe individual Cycles.
— times: the times associated to each ecological states.

— internal: a boolean vector with TRUE indicating "internal” ecological states whereas
FALSE indicates "external" ecological states. This has implications for how the outputs of
extractCycles are treated by other ETA functions (see details).

— dates: the dates associated to each ecological states.

* interpolationInfo: an output that only appear if ecological states have been interpolated.
It is used internally by plotting functions (see cyclePCoA) but is not intended to be of interest
to the end user.

Function extractFixedDateTrajectories returns the base information needed to describe fixed-
date trajectories. Its outputs are meant to be used as inputs for other ETA functions in order
to obtain desired metrics. Function extractFixedDateTrajectories returns an object of class
fd.trajectories containing:

* d: an object of class dist, the new distance matrix describing the fixed-date trajectories. As
compared to the input matrix, d may present deletions of ecological states that do not belong
to any fixed-date trajectories (e.g. due to minEcolStates))

* metadata: an object of class data. frame describing the ecological states in d with columns:

— sites: the sites to each ecological states.

— fdT: the names of the fixed-date trajectory each ecological states belongs to. The fixed-
date trajectory name is built by combining the site name with "fdT" and the name of the
fixed date (from namesFixedDate).

— surveys: renumbering of the surveys to describe individual fixed date trajectories.
— times: the times associated to each ecological states.
— dates: the dates associated to each ecological states.

Function cycleConvexity returns the a vector containing values between 0 and 1 describing the
convexity of cycles. Importantly, outputs of extractCycles should not be used as inputs for
cycleConvexity (see details).

Function cycleShifts returns an object of class data.frame describing cyclical shifts (i.e. ad-
vances and delays). Importantly, outputs of extractCycles should not be used as inputs for
cycleShifts (see details). The columns of the data. frame are:

* site: the site for which each cycle shift has been computed.

trajectoryCyclical 27

* dateCS: the date for which a cycle shift has been computed.

* timeCS: the time of the ecological state for which a cycle shift has been computed (i.e. the
time associated to the projected ecological state).

* timeRef: the time associated to the reference ecological state.
* timeScale: the time difference between the reference and the projected ecological state.
e cyclicalShift: the cyclical shift computed (an advance if positive, a delay if negative) in

the same units as the times input.

Function cycleMetrics returns a data frame where rows are cycles and columns are different cycle
metrics.

Author(s)

Nicolas Djeghri, UBO
Miquel De Céaceres, CREAF

References

Djeghri et al. (in preparation) Going round in cycles, but going somewhere: Ecological Trajectory
Analysis as a tool to decipher seasonality and other cyclical dynamics.

See Also

trajectoryCyclicalPlots, trajectoryMetrics, trajectoryComparison

Examples

#First build a toy dataset with:
#The sampling times of the time series
timesToy <- 0:30

#The duration of the cycles (i.e. the periodicity of the time series)
cycleDurationToy <- 10

#The sites sampled (only one named "A")
sitesToy <- rep(c("A"),length(timesToy))

#And prepare a trend term
trend <- 0.05

#Build cyclical data (note that we apply the trend only to x):
x <- sin((timesToy*2*pi)/cycleDurationToy)+trendxtimesToy

y <- cos((timesToy#*2*pi)/cycleDurationToy)

matToy <- cbind(x,y)

#And express it as distances:
dToy <- dist(matToy)

#Make it an object of class trajectory:
cyclicalTrajToy <- defineTrajectories(d = dToy,

28 trajectoryCyclicalPlots

sites = sitesToy,
times = timesToy)

#At this stage, cycles and / or fixed date trajectories are not isolated.
#This done with the two CETA "extract” functions:
cyclesToy <- extractCycles(x = cyclicalTrajToy,
cycleDuration = cycleDurationToy)
fdTrajToy <- extractFixedDateTrajectories(x = cyclicalTrajToy,
cycleDuration = cycleDurationToy)

#The output of these functions can be used as input
#for other ETA functions to get metrics of interest
#such as trajectory length:

trajectorylLengths(x = cyclesToy)
trajectoryLengths(x = fdTrajToy)

#or distances between trajectories:
trajectoryDistances(x = cyclesToy)
trajectoryDistances(x = fdTrajToy)

#In addition CETA adds two additional specific metrics.
#that require the same inputs as function extractCycles():
cycleConvexity(x = cyclicalTrajToy,
cycleDuration = cycleDurationToy)

#The NA with the first cycle, is expected:
#Cycle convexity cannot be computed right at the boundary of the time series
cycleShifts(x = cyclicalTrajToy,

cycleDuration = cycleDurationToy)
#Note that because our cycles are perfectly regular here, the cyclicalShift
#computed are all @ (or close because of R's computing approximations)

#Subsetting cycles and fixed date trajectories:
subsetTrajectories(cyclesToy,

subtrajectory_selection = "A_C1")
subsetTrajectories(fdTrajToy,

subtrajectory_selection = c("A_fdT_2","A_fdT_4"))

#General metrics describing the geometry of cycles:
cycleMetrics(x = cyclicalTrajToy,
cycleDuration = cycleDurationToy)

trajectoryCyclicalPlots
Cyclical trajectory plots

Description

Plotting functions for Cyclical Ecological Trajectory Analysis:

trajectoryCyclicalPlots 29

* Function cyclePCoA removes unwanted points (see details) and performs principal coordi-
nates analysis (cmdscale) and draws cycles in the ordination scatterplot.

* Function fixedDateTrajectoryPCoA performs principal coordinates analysis (cmdscale)
and draws fixed date trajectories in the ordination scatterplot.

Usage

cyclePCoA(
X,
centered = FALSE,
sites.colors = NULL,
cycles.colors = NULL,
print.names = FALSE,
print.init.points = FALSE,
cex.init.points =1,
axes = c(1, 2),

)

fixedDateTrajectoryPCoA(
X)
fixedDates.colors = NULL,
sites.lty = NULL,
print.names = FALSE,
add.cyclicalTrajectory = TRUE,
axes = c(1, 2),

)
Arguments
X The full output of function extractCycles or extractFixedDateTrajectories
as appropriate, an object of class cycles or fd.trajectories.
centered Boolean. Have the cycles been centered? Default to FALSE.

sites.colors The colors applied to the different sites. The cycles will be distinguished (old to
recent) by increasingly lighter tones of the provided colors.

cycles.colors The colors applied to the different cycles. Not compatible with sites.colors.

print.names A boolean flag to indicate whether the names of cycles or fixed-date trajectories
should be printed.

print.init.points
A boolean flag to indicate whether an initial point at the start of cycles should be
printed (useful to spot the start of cycles in graphs containing many trajectories).

cex.init.points
The size of initial points.

axes The pair of principal coordinates to be plotted.

Additional parameters for function arrows.

30 trajectoryCyclicalPlots

fixedDates.colors

The colors applied to the different fixed dates trajectories. Defaults to a simple
RGB circular color palette.

sites.lty The line type for the different sites (see par, "1ty").
add.cyclicalTrajectory

A boolean flag to indicate whether the original cyclical trajectory should also be
drawn as background.

Details

The functions cyclePCoA and fixedDateTrajectoryPCoA give adapted graphical representation
of cycles and fixed-date trajectories using principal coordinate analysis (PCoA, see cmdscale).
Function cyclePCoA handles external and potential interpolated ecological states so that they are
correctly taken in account in PCoA (i.e. avoiding duplication, and reducing the influence of inter-
polated ecological states as much as possible). In case of centered cycles, the influence of these
ecological states will grow as they will not correspond to duplications anymore. In case of centered
cycles, the intended use is to set the parameter centered to TRUE.

Value

Functions cyclePCoA and fixedDateTrajectoryPCoA return the results of calling of cmdscale.

Author(s)

Nicolas Djeghri, UBO
Miquel De Ciceres, CREAF

References
Djeghri et al. (in preparation) Going round in cycles, but going somewhere: Ecological Trajectory
Analysis as a tool to decipher seasonality and other cyclical dynamics.

See Also

trajectoryCyclical, cmdscale

Examples

#First build a toy dataset with:
#The sampling times of the time series
timesToy <- 0:30

#The duration of the cycles (i.e. the periodicity of the time series)
cycleDurationToy <- 10

#The sites sampled (only one named "A")
sitesToy <- rep(c("A"),length(timesToy))

#And prepare a trend term
trend <- 0.05

trajectoryMetrics 31

#Build cyclical data (note that we apply the trend only to x):
x <- sin((timesToy#*2*pi)/cycleDurationToy)+trend*timesToy

y <- cos((timesToy*2*pi)/cycleDurationToy)

matToy <- cbind(x,y)

#And express it as distances:
dToy <- dist(matToy)

#Make it an object of class trajectory:
cyclicalTrajToy <- defineTrajectories(d = dToy,
sites = sitesToy,
times = timesToy)

#And extract the cycles and fixed date trajectories:
cyclesToy <- extractCycles(x = cyclicalTrajToy,
cycleDuration = cycleDurationToy)
fdTrajToy <- extractFixedDateTrajectories(x = cyclicalTrajToy,
cycleDuration = cycleDurationToy)

#CETA plotting functions:
cyclePCoA(cyclesToy)
fixedDateTrajectoryPCoA(fdTrajToy)

#After centering of cycles, set parameter centered to TRUE in cyclePCoA():
cent_cyclesToy <- centerTrajectories(cyclesToy)
cyclePCoA(cent_cyclesToy, centered = TRUE)

trajectoryMetrics Trajectory metrics

Description

Set of functions to estimate metrics describing individual trajectories. Given input trajectory data,
the set of functions that provide ETA metrics are:

* Function trajectoryLengths calculates lengths of directed segments and total path lengths
of trajectories.

 Function trajectorylLengths2D calculates lengths of directed segments and total path lengths
of trajectories from 2D coordinates given as input.

* Function trajectorySpeeds calculates speeds of directed segments and total path speed of
trajectories.

* Function trajectorySpeeds2D calculates speeds of directed segments and total path speed
of trajectories from 2D coordinates given as input.

 Function trajectoryAngles calculates the angle between consecutive pairs of directed seg-
ments or between segments of ordered triplets of points.

32 trajectoryMetrics

* Function trajectoryAngles2D calculates the angle between consecutive pairs of directed
segments or between segments of ordered triplets of points.

» Function trajectoryDirectionality calculates (for each trajectory) a statistic that mea-
sures directionality of the whole trajectory.

 Function trajectoryInternalVariation calculates (for each trajectory) a statistic that mea-
sures the variability between the states included in the trajectory.

* Function trajectoryMetrics evaluates several trajectory metrics at once

* Function trajectoryWindowMetrics evaluates several trajectory metrics on subtrajectories
defined using moving windows.

Usage
trajectorylLengths(x, relativeTolInitial = FALSE, all = FALSE)

trajectorylLengths2D(
Xy,
sites,
surveys = NULL,
relativeToInitial = FALSE,
all = FALSE

trajectorySpeeds(x)
trajectorySpeeds2D(xy, sites, surveys = NULL, times = NULL)

trajectoryAngles(
X,
all = FALSE,
relativeToInitial = FALSE,
stats = TRUE,
add = TRUE

trajectoryAngles2D(
Xy,
sites,
surveys,
relativeToInitial = FALSE,
betweenSegments = TRUE

trajectoryDirectionality(x, add = TRUE, nperm = NA)
trajectoryInternalVariation(x, relativeContributions = FALSE)

trajectoryMetrics(x, add = TRUE)

trajectoryMetrics 33

trajectoryWindowMetrics(x, bandwidth, type = "surveys”, add = TRUE)

Arguments

X An object of class trajectories.

relativeToInitial
Flag to indicate that lengths or angles should be calculated with respect to initial
survey.

all A flag to indicate that angles are desired for all triangles (i.e. all pairs of seg-
ments) in the trajectory. If FALSE, angles are calculated for consecutive seg-
ments only.

Xy Matrix with 2D coordinates in a Cartesian space (typically an ordination of eco-
logical states).

sites A vector indicating the site corresponding to each ecological state.

surveys A vector indicating the survey corresponding to each ecological state (only nec-
essary when surveys are not in order).

times A numeric vector indicating the time corresponding to each ecosystem state.

stats A flag to indicate that circular statistics are desired (mean, standard deviation
and mean resultant length, i.e. rho)

add Flag to indicate that constant values should be added (local transformation) to
correct triplets of distance values that do not fulfill the triangle inequality.

betweenSegments
Flag to indicate that angles should be calculated between trajectory segments or
with respect to X axis.

nperm The number of permutations to be used in the directionality test.

relativeContributions
A logical flag to indicate that contributions of individual observations to tempo-
ral variability should be expressed in relative terms, i.e. as the ratio of the sum
of squares of the observation divided by the overall sum of squares (otherwise,
absolute sum of squares are returned).

bandwidth Bandwidth of the moving windows (in units of surveys or times, depending on
type)
type A string, either "surveys" or "times", indicating how windows are defined.
Details

Ecological Trajectory Analysis (ETA) is a framework to analyze dynamics of ecological entities
described as trajectories in a chosen space of multivariate resemblance (De Céceres et al. 2019).
ETA takes trajectories as objects to be analyzed and compared geometrically.

The input distance matrix d should ideally be metric. That is, all subsets of distance triplets should
fulfill the triangle inequality (see utility function is.metric). All ETA functions that require
metricity include a parameter ’add’, which by default is TRUE, meaning that whenever the tri-
angle inequality is broken the minimum constant required to fulfill it is added to the three distances.
If such local (an hence, inconsistent across triplets) corrections are not desired, users should find
another way modify d to achieve metricity, such as PCoA, metric MDS or non-metric MDS (see

34 trajectoryMetrics

vignette *Introduction to Ecological Trajectory Analysis’). If parameter *add’ is set to FALSE and
problems of triangle inequality exist, ETA functions may provide missing values in some cases
where they should not.

Function trajectoryAngles calculates angles between consecutive segments in degrees. For each
pair of segments, the angle between the two is defined on the plane that contains the two segments,
and measures the change in direction (in degrees) from one segment to the other. Angles are always
positive, with zero values indicating segments that are in a straight line, and values equal to 180
degrees for segments that are in opposite directions. If all = TRUE angles are calculated between
the segments corresponding to all ordered triplets. Alternatively, if relativeToInitial = TRUE
angles are calculated for each segment with respect to the initial survey.

Function trajectoryAngles2D calculates angles between consecutive segments in degrees from
2D coordinates given as input. For each pair of segments, the angle between the two is defined
on the plane that contains the two segments, and measures the change in direction (in degrees)
from one segment to the other. Angles are always positive (O to 360), with zero values indicating
segments that are in a straight line, and values equal to 180 degrees for segments that are in opposite
directions. If all = TRUE angles are calculated between the segments corresponding to all ordered
triplets. Alternatively, if relativeToInitial = TRUE angles are calculated for each segment with
respect to the initial survey. If betweenSegments = TRUE angles are calculated between segments
of trajectory, otherwise, If betweenSegments = FALSE, angles are calculated considering Y axis as
the North (0°).

Function trajectoryDirectionality evaluates the directionality metric proposed in De Céceres
et al (2019). If nperm is supplied, then the function performs a permutational test to evaluate the
significance of directionality, where the null hypothesis entails a random order of surveys within
each trajectory. The p-value corresponds to the proportion of permutations with a directional value
equal or larger than the observed.

Value

Functions trajectoryLengths and trajectoryLengths2D return a data frame with the length of
each segment on each trajectory and the total length of all trajectories. If relativeToInitial
= TRUE lengths are calculated between the initial survey and all the other surveys. If all = TRUE
lengths are calculated for all segments.

Functions trajectorySpeeds and trajectorySpeeds2D return a data frame with the speed of
each segment on each trajectory and the total speeds of all trajectories. Units depend on the units
of distance matrix and the units of times of the input trajectory data.

Function trajectoryAngles returns a data frame with angle values on each trajectory. If stats=TRUE,
then the mean, standard deviation and mean resultant length of those angles are also returned.

Function trajectoryAngles2D returns a data frame with angle values on each trajectory. If betweenSegments=TRUE,
then angles are calculated between trajectory segments, alternatively, If betweenSegments=FALSE,
angles are calculated considering Y axis as the North (0°).

Function trajectoryDirectionality returns a vector with directionality values (one per trajec-
tory). If nperm is not missing, the function returns a data frame with a column of directional values
and a column of p-values corresponding to the result of the permutational test.

Function trajectoryInternalVariation returns data.frame with as many rows as trajectories,
and different columns: (1) the contribution of each individual state to the internal sum of squares

trajectoryMetrics 35

(in absolute or relative terms); (2) the overall sum of squares of internal variability; (3) an unbiased
estimator of overall internal variance.

Function trajectoryMetrics returns a data frame where rows are trajectories and columns are
different trajectory metrics.

Function trajectoryWindowMetrics returns a data frame where rows are midpoints over trajecto-
ries and columns correspond to different trajectory metrics.

Author(s)
Miquel De Caceres, CREAF

Anthony Sturbois, Vivarmor nature, Réserve Naturelle nationale de la Baie de Saint-Brieuc
Nicolas Djeghri, UBO

References

De Céceres M, Coll L, Legendre P, Allen RB, Wiser SK, Fortin MJ, Condit R & Hubbell S. (2019).
Trajectory analysis in community ecology. Ecological Monographs 89, e01350.

See Also

trajectoryComparison, trajectoryPlot, transformTrajectories, cycleMetrics

Examples

#Description of entities (sites) and surveys
entities <= c("1","1","1","2" "2" ")
surveys <- c(1, 2, 3, 1, 2, 3)

times <- c(@, 1.5, 3, 0, 1.5, 3)

#Raw data table

xy <- matrix(@, nrow=6, ncol=2)
xy[2,21<-1

xy[3,2]<-2

xy[4:6,1] <- 0.5

xy[4:6,2] <- xy[1:3,2]
xy[6,1]1<-1

#Draw trajectories
trajectoryPlot(xy, entities, surveys,
traj.colors = c("black”,"red”), lwd = 2)

#Distance matrix
d <- dist(xy)
d

#Trajectory data
x <- defineTrajectories(d, entities, surveys, times)

#Trajectory lengths
trajectorylLengths(x)

36 trajectoryPlot

trajectorylLengths2D(xy, entities, surveys)

#Trajectory speeds
trajectorySpeeds(x)
trajectorySpeeds2D(xy, entities, surveys, times)

#Trajectory angles
trajectoryAngles(x)
trajectoryAngles2D(xy, entities, surveys, betweenSegments = TRUE)
trajectoryAngles2D(xy, entities, surveys, betweenSegments = FALSE)

#Several metrics at once
trajectoryMetrics(x)

trajectoryPlot Trajectory plots

Description

Set of plotting functions for Ecological Trajectory Analysis:

Usage

trajectoryPCoA(
X,
traj.colors = NULL,
axes = c(1, 2),
survey.labels = FALSE,
time.labels = FALSE,

trajectoryPlot(
coords,
sites,
surveys = NULL,
times = NULL,
traj.colors = NULL,
axes = c(1, 2),
survey.labels = FALSE,
time.labels = FALSE,

Arguments

X An object of class trajectories.

trajectoryPlot 37

traj.colors A vector of colors (one per site). If selection !=NULL the length of the color
vector should be equal to the number of sites selected.

axes The pair of principal coordinates to be plotted.

survey.labels A boolean flag to indicate whether surveys should be added as text next to arrow
endpoints

time.labels A boolean flag to indicate whether times should be added as text next to arrow
endpoints

Additional parameters for function arrows.

coords A data.frame or matrix where rows are ecological states and columns are coor-
dinates in an arbitrary space
sites A vector indicating the site corresponding to each ecological state.
surveys A vector indicating the survey corresponding to each ecological state (only nec-
essary when surveys are not in order).
times A numeric vector indicating survey times.
Details

* Function trajectoryPCoA performs principal coordinates analysis (cmdscale) and draws tra-
jectories in the ordination scatterplot.

* Function trajectoryPlot draws trajectories in a scatter plot corresponding to the input co-
ordinates.
Value

Function trajectoryPCoA returns the result of calling cmdscale.

Author(s)
Miquel De Caceres, CREAF

Anthony Sturbois, Vivarmor nature, Réserve Naturelle nationale de la Baie de Saint-Brieuc

References
De Céceres M, Coll L, Legendre P, Allen RB, Wiser SK, Fortin MJ, Condit R & Hubbell S. (2019).
Trajectory analysis in community ecology. Ecological Monographs 89, e01350.

See Also

trajectoryMetrics, transformTrajectories, cmdscale, cyclePCoA

Examples
#Description of sites and surveys
sites <= c("1","1","1", 2" "" "omy
surveys <- ¢(1,2,3,1,2,3)

#Raw data table

38 trajectoryProjection

xy<-matrix(@, nrow=6, ncol=2)
xy[2,2]<-1

xy[3,21<-2

xy[4:6,1] <- 0.5

xyl[4:6,2] <- xy[1:3,2]
xy[6,11<-1

#Define trajectory data
x <- defineTrajectories(dist(xy), sites, surveys)

#Draw trajectories using original coordinates
trajectoryPlot(xy, sites, surveys,

traj.colors = c("black”,"red"”), 1lwd = 2)
#Draw trajectories in a PCoA
trajectoryPCoA(x,

traj.colors = c("black”,"red"”), lwd = 2)

#Should give the same results if surveys are not in order
#(here we switch surveys for site 2)

temp <- xy[5,]

xy[5,1 <- xy[6,]

xy[6,]1 <- temp

surveys[5] <- 3

surveys[6] <- 2

trajectoryPlot(xy, sites, surveys,

traj.colors = c("black”,"red"”), lwd = 2)
x <- defineTrajectories(dist(xy), sites, surveys)
trajectoryPCoA(x,

traj.colors = c("black”,"red”), lwd = 2)

trajectoryProjection Trajectory projection

Description

Performs an projection of a set of target points onto a specified trajectory and returns the distance
to the trajectory (i.e. rejection) and the relative position of the projection point within the trajectory.

Usage

trajectoryProjection(
d,
target,
trajectory,
tol = 1e-06,
add = TRUE,
force = TRUE

transformTrajectories 39

Arguments
d A symmetric matrix or an object of class dist containing the distance values
between pairs of ecological states (see details).
target An integer vector of the ecological states to be projected.
trajectory An integer vector of the ecological states conforming the trajectory onto which
target states are to be projected.
tol Numerical tolerance value to determine that projection of a point lies within the
trajectory.
add Flag to indicate that constant values should be added (local transformation) to
correct triplets of distance values that do not fulfill the triangle inequality.
force Flag to indicate that when projection falls out of the reference trajectory for a
given, the closest point in the trajectory will be used.
Value

A data frame with the following columns:
» distanceToTrajectory: Distances to the trajectory, i.e. rejection. If there is no orthogonal
projection the distance corresponds to the minimum distance to the trajectory.
* segment: Segment that includes the projected point or the closest state.

* relativeSegmentPosition: Relative position of the projected point within the segment, i.e.
values from 0 to 1 with O representing the start of the segment and 1 representing its end.

* relativeTrajectoryPosition: Relative position of the projected point within the trajectory,
i.e. values from O to 1 with O representing the start of the trajectory and 1 representing its end.

Author(s)
Miquel De C4ceres, CREAF

transformTrajectories Transform trajectories

Description

The following functions are provided to transform trajectories:
* Function smoothTrajectories performs multivariate smoothing on trajectory data using a
Gaussian kernel.

» Function centerTrajectories shifts all trajectories to the center of the multivariate space
and returns a modified distance matrix.

* Function interpolateTrajectories relocates trajectory ecological states to those corre-
sponding to input times, via interpolation.

40 transformTrajectories

Usage

smoothTrajectories(
X,
survey_times = NULL,
kernel_scale = 1,
fixed_endpoints = TRUE
)

centerTrajectories(x, exclude = integer(Q))

interpolateTrajectories(x, times)

Arguments

X An object of class trajectories.

survey_times A vector indicating the survey time for all surveys (if NULL, time between con-
secutive surveys is considered to be one)

kernel_scale Scale of the Gaussian kernel, related to survey times
fixed_endpoints
A logical flag to force keeping the location of trajectory endpoints unmodified

exclude An integer vector indicating sites that are excluded from trajectory centroid com-
putation. Note: for objects of class cycles, external are excluded by default.

times A numeric vector indicating new observation times for trajectories. Values
should be comprised between time limits of the original trajectories.

Details
Details of calculations are given in De Céceres et al (2019). Function centerTrajectories per-
forms centering of trajectories using matrix algebra as explained in Anderson (2017).

Value

A modified object of class trajectories, where distance matrix has been transformed. When
calling interpolateTrajectories, also the number of observations and metadata is likely to be
affected.

Author(s)

Miquel De Céaceres, CREAF
Nicolas Djeghri, UBO

References
De Céaceres M, Coll L, Legendre P, Allen RB, Wiser SK, Fortin MJ, Condit R & Hubbell S. (2019).
Trajectory analysis in community ecology. Ecological Monographs 89, e01350.

Anderson (2017). Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley Stat-
sRef: Statistics Reference Online. 1-15. Article ID: stat07841.

transformTrajectories

See Also

trajectoryPlot trajectoryMetrics

41

Index

+ data

avoca, 2
furseals, 6
glenan, 7
glomel, 8
heatmapdata, 8
isoscape, 11
northseaZoo, 12
pike, 13

arrows, 29, 37

avoca, 2

avoca_sites (avoca), 2
avoca_strat (avoca), 2
avoca_surveys (avoca), 2

centerTrajectories, 25
centerTrajectories
(transformTrajectories), 39
cmdscale, 29, 30, 37
compareToStateEnvelope
(referenceEnvelopes), 14
compareToTrajectoryEnvelope
(referenceEnvelopes), 14
cycleConvexity (trajectoryCyclical), 22
cycleMetrics, 35
cycleMetrics (trajectoryCyclical), 22
cyclePCoA, 25, 26, 37
cyclePCoA (trajectoryCyclicalPlots), 28
cycles, 29, 40
cycles (trajectoryCyclical), 22
cycleShifts (trajectoryCyclical), 22

data.frame, 12, 20, 26
defineTrajectories, 3, 5, 10, 17
dist, 3, 4, 10, 15, 20, 26, 39
dynamicVariation, 4

extractCycles, 29
extractCycles (trajectoryCyclical), 22

42

extractFixedDateTrajectories, 29
extractFixedDateTrajectories
(trajectoryCyclical), 22

fd.trajectories, 29

fd.trajectories (trajectoryCyclical), 22

fixedDateTrajectoryPCoA
(trajectoryCyclicalPlots), 28

furseals, 6

glenan, 7
glomel, 8, 16

heatmapdata, 8

interpolateTrajectories
(transformTrajectories), 39

is.metric, 9, 19, 33

is.synchronous, 5, 10

isoscape, 11

list, 12

MannKendall, 20, 21
matrix, 3, 10, 15, 39

northseaZoo, 12

par, 30
pike, 13

referenceEnvelopes, 7, 8, 14

segmentDistances
(trajectoryComparison), 18
smoothTrajectories
(transformTrajectories), 39
stateEnvelopeVariability
(referenceEnvelopes), 14
subsetTrajectories, 4, 16

trajectories, 18, 24, 33, 36, 40

INDEX

trajectories (defineTrajectories), 3
trajectoryAngles (trajectoryMetrics), 31
trajectoryAngles2D (trajectoryMetrics),
31
trajectoryComparison, 18, 27, 35
trajectoryConvergence
(trajectoryComparison), 18
trajectoryCyclical, 12, 17,22, 30
trajectoryCyclicalPlots, 27, 28
trajectoryDirectionality
(trajectoryMetrics), 31
trajectoryDistances, 5, 15
trajectoryDistances
(trajectoryComparison), 18
trajectoryEnvelopeVariability
(referenceEnvelopes), 14
trajectoryInternalVariation, 5, 25
trajectoryInternalVariation
(trajectoryMetrics), 31
trajectorylLengths (trajectoryMetrics),
31
trajectorylLengths2D
(trajectoryMetrics), 31
trajectoryMetrics, 16, 21, 27,31, 37,41
trajectoryPCoA, 25
trajectoryPCoA (trajectoryPlot), 36
trajectoryPlot, 21, 35, 36, 41
trajectoryProjection, 20, 21, 38
trajectoryShifts
(trajectoryComparison), 18
trajectorySpeeds (trajectoryMetrics), 31
trajectorySpeeds2D (trajectoryMetrics),
31
trajectoryWindowMetrics
(trajectoryMetrics), 31
transformTrajectories, 21, 35, 37, 39

variationDecomposition
(dynamicVariation), 4

43

	avoca
	defineTrajectories
	dynamicVariation
	furseals
	glenan
	glomel
	heatmapdata
	is.metric
	is.synchronous
	isoscape
	northseaZoo
	pike
	referenceEnvelopes
	subsetTrajectories
	trajectoryComparison
	trajectoryCyclical
	trajectoryCyclicalPlots
	trajectoryMetrics
	trajectoryPlot
	trajectoryProjection
	transformTrajectories
	Index

