
Package ‘ecoregime’
May 1, 2025

Title Analysis of Ecological Dynamic Regimes

Version 0.2.1

Description A toolbox for implementing the Ecological Dynamic Regime framework
(Sánchez-Pinillos et al., 2023 <doi:10.1002/ecm.1589>) to characterize and
compare groups of ecological trajectories in multidimensional spaces defined
by state variables. The package includes the RETRA-EDR algorithm to identify
representative trajectories, functions to generate, summarize, and visualize
representative trajectories, and several metrics to quantify the distribution
and heterogeneity of trajectories in an ecological dynamic regime and quantify
the dissimilarity between two or more ecological dynamic regimes. The package
also includes a set of functions to assess ecological resilience based on
ecological dynamic regimes (Sánchez-Pinillos et al., 2024 <doi:10.1016/j.biocon.2023.110409>).

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.1

URL https://mspinillos.github.io/ecoregime/,

https://github.com/MSPinillos/ecoregime

BugReports https://github.com/MSPinillos/ecoregime/issues

Depends R (>= 3.4.0)

LazyData true

Imports ape, data.table, ecotraj, graphics, methods, shape, smacof,
stats, stringr

Suggests knitr, plotrix, primer, RColorBrewer, rmarkdown, testthat (>=
3.0.0), vegan, viridis

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Author Martina Sánchez-Pinillos [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-1499-4507>)

Maintainer Martina Sánchez-Pinillos <martina.sanchez.pinillos@gmail.com>

1

https://doi.org/10.1002/ecm.1589
https://doi.org/10.1016/j.biocon.2023.110409
https://mspinillos.github.io/ecoregime/
https://github.com/MSPinillos/ecoregime
https://github.com/MSPinillos/ecoregime/issues
https://orcid.org/0000-0002-1499-4507

2 define_retra

Repository CRAN

Date/Publication 2025-05-01 20:00:05 UTC

Contents
define_retra . 2
deviation_metrics . 6
dist_edr . 10
EDR_data . 13
EDR_metrics . 14
plot.RETRA . 17
plot_edr . 20
retra_edr . 22
state_to_trajectory . 25
summary.RETRA . 27

Index 29

define_retra Define representative trajectories from trajectory features

Description

Generate an object of class RETRA from a data frame containing trajectory states to define represen-
tative trajectories in Ecological Dynamic Regimes (EDR).

Usage

define_retra(data, d = NULL, trajectories = NULL, states = NULL, retra = NULL)

Arguments

data A data frame of four columns indicating identifiers for the new representative
trajectories, the individual trajectories or sites to which the states belong, the
order of the states in the individual trajectories, and the identifier of the rep-
resentative trajectory to which the states belong (only if !is.null(retra)).
Alternatively, ’data’ can be a vector or a list of character vectors including the
sequence of segments forming the new representative trajectory. See Details for
further clarifications to define data.

d Either a symmetric matrix or an object of class dist containing the dissimilari-
ties between each pair of states of all trajectories in the EDR. If NULL (default),
the length (Length) of the new representative trajectories and the distances be-
tween states of different trajectories or sites (Link_distance) are not calculated.

trajectories Only needed if !is.null(d). Vector indicating the trajectory or site to which
each state in d belongs.

define_retra 3

states Only needed if !is.null(d). Vector of integers indicating the order of the
states in d for each trajectory.

retra Object of class RETRA returned from retra_edr(). If NULL (default), minSegs
and Seg_density are not provided for the new representative trajectories.

Details

Each representative trajectory returned by the function retra_edr() corresponds to the longest
sequence of representative segments that can be linked according to the criteria defined in the
RETRA-EDR algorithm (Sánchez-Pinillos et al., 2023). One could be interested in splitting the ob-
tained trajectories, considering only a fraction of the returned trajectories, or defining representative
trajectories following different criteria than those in RETRA-EDR. The function define_retra()
allows generating an object of class RETRA that can be used in other functions of ecoregime (e.g.,
plot()).

For that, it is necessary to provide information about the set of segments or trajectory states that
form the new representative trajectory through the argument data:

• data can be defined as a data frame with as many rows as the number of states in all repre-
sentative trajectories and the following columns:

RT A string indicating the identifier of the new representative trajectories. Each identifier
needs to appear as many times as the number of states forming each representative trajec-
tory.

RT_traj A vector indicating the individual trajectories in the EDR to which each state of the
new representative trajectory belongs.

RT_states A vector of integers indicating the identifier of the states forming the new repre-
sentative trajectories. Each integer must refer to the order of the states in the individual
trajectories of the EDR to which they belong.

RT_retra Only if the new trajectories are defined from representative trajectories returned by
retra_edr() (when !is.null(retra)). A vector of strings indicating the representative
trajectory in retra to which each state belongs.

• Alternatively, data can be defined as either a vector (if there is one representative trajectory)
or a list of character vectors (with as many elements as the number of representative trajec-
tories desired) containing the sequence of segments of the representative trajectories. In any
case, each segment needs to be specified in the form traj[st1-st2], where traj is the iden-
tifier of the original trajectory to which the segment belongs and st1 and st2 are identifiers
of the initial and final states defining the segment. If only one state of an individual trajec-
tory is considered to form the representative trajectory, the corresponding segment needs to be
defined as traj[st-st].

Value

An object of class RETRA, which is a list of length equal to the number of representative trajectories
defined. For each trajectory, the following information is returned:

minSegs Value of the minSegs parameter used in retra_edr(). If retra is NULL, minSegs = NA.

Segments Vector of strings including the sequence of segments forming the representative trajec-
tory. Each segment is identified by a string of the form traj[st1-st2], where traj is the

4 define_retra

identifier of the original trajectory to which the segment belongs and st1 and st2 are identi-
fiers of the initial and final states defining the segment. The same format traj[st1-st2] is
maintained when only one state of an individual trajectory is considered (st1 = st2). traj,
st1, and st2 are recycled from data.

Size Integer indicating the number of states forming the representative trajectory.

Length Numeric value indicating the length of the representative trajectory, calculated as the sum
of the dissimilarities in d between every pair of consecutive states. If d is NULL, Length = NA.

Link_distance Data frame of two columns indicating artificial links between two segments (Link)
and the dissimilarity between the connected states (Distance). When two representative seg-
ments are linked by a common state or by two consecutive states of the same trajectory, the
link distance is zero or equal to the length of a real segment, respectively. In both cases, the
link is not considered in the returned data frame. If d is NULL, Link_distance = NA.

Seg_density Data frame of two columns and one row for each representative segment. Density
contains the number of segments in the EDR that is represented by each segment of the repre-
sentative trajectory. kdTree_depth contains the depth of the k-d tree for each leaf represented
by the corresponding segment. That is, the number of partitions of the ordination space until
finding a region with minSegs segments or less. If retra is NULL, Seg_density = NA.

Author(s)

Martina Sánchez-Pinillos

See Also

retra_edr() for identifying representative trajectories in EDRs through RETRA-EDR.

summary() for summarizing the characteristics of the representative trajectories.

plot() for plotting representative trajectories in an ordination space representing the state space of
the EDR.

Examples

Example 1 ---
Define representative trajectories from the outputs of retra_edr().

Identify representative trajectories using retra_edr()
d <- EDR_data$EDR1$state_dissim
trajectories <- EDR_data$EDR1$abundance$traj
states <- EDR_data$EDR1$abundance$state
old_retra <- retra_edr(d = d, trajectories = trajectories, states = states,

minSegs = 5)

retra_edr() returns three representative trajectories
old_retra

Keep the last five segments of trajectories "T2" and "T3"
selected_segs <- old_retra$T2$Segments[4:length(old_retra$T2$Segments)]

Identify the individual trajectories for each state...
selected_segs

define_retra 5

selected_traj <- rep(c(15, 4, 4, 1, 14), each = 2)

...and the states (in the same order as the representative trajectory).
selected_states <- c(1, 2, 2, 3, 3, 4, 1, 2, 2, 3)

Generate the data frame with the format indicated in the documentation
df <- data.frame(RT = rep("A", length(selected_states)),

RT_traj = selected_traj,
RT_states = as.integer(selected_states),
RT_retra = rep("T2", length(selected_states)))

Remove duplicates (trajectory 4, state 3)
df <- unique(df)

Generate a RETRA object using define_retra()
new_retra <- define_retra(data = df,

d = d,
trajectories = trajectories,
states = states,
retra = old_retra)

Example 2 ---
Define representative trajectories from sequences of segments

Select all segments in T1, split T2 into two new trajectories, and include
a trajectory composed of states belonging to trajectories "5", "6", and "7"
data <- list(old_retra$T1$Segments,

old_retra$T2$Segments[1:3],
old_retra$T2$Segments[4:8],
c("5[1-2]", "5[2-3]", "7[4-4]", "6[4-5]"))

Generate a RETRA object using define_retra()
new_retra <- define_retra(data = data,

d = d,
trajectories = trajectories,
states = states,
retra = old_retra)

Example 3 ---
Define two representative trajectories from individual trajectories in EDR1.

Define trajectory "A" from states in trajectories 3 and 4
data_A <- data.frame(RT = rep("A", 4),

RT_traj = c(3, 3, 4, 4),
RT_states = c(1:2, 4:5))

Define trajectory "B" from states in trajectories 5, 6, and 7
data_B <- data.frame(RT = rep("B", 5),

RT_traj = c(5, 5, 7, 6, 6),
RT_states = c(1, 2, 4, 4, 5))

Compile data for both trajectories in a data frame
df <- rbind(data_A, data_B)

6 deviation_metrics

df$RT_states <- as.integer(df$RT_states)

Generate a RETRA object using define_retra()
new_retra <- define_retra(data = df, d = EDR_data$EDR1$state_dissim,

trajectories = EDR_data$EDR1$abundance$traj,
states = EDR_data$EDR1$abundance$state)

deviation_metrics Metrics of trajectory deviation with respect to a reference trajectory

Description

Set of metrics to analyze the deviation of disturbed trajectories from an ecological dynamic regime
(EDR) considering a representative trajectory as the reference. These metrics include the resistance
to the disturbance, amplitude, recovery, and net change.

Usage

resistance(
d,
trajectories,
states,
disturbed_trajectories,
disturbed_states,
predisturbed_states = disturbed_states - 1

)

amplitude(
d,
trajectories,
states,
disturbed_trajectories,
disturbed_states,
predisturbed_states = disturbed_states - 1,
reference,
index = c("absolute", "relative"),
method = "nearest_state"

)

recovery(
d,
trajectories,
states,
disturbed_trajectories,
disturbed_states,
reference,

deviation_metrics 7

index = c("absolute", "relative"),
method = "nearest_state"

)

net_change(
d,
trajectories,
states,
disturbed_trajectories,
disturbed_states,
predisturbed_states = disturbed_states - 1,
reference,
index = c("absolute", "relative"),
method = "nearest_state"

)

Arguments

d Either a symmetric matrix or an object of class dist containing the dissimilari-
ties between each pair of states.

trajectories Vector indicating the trajectory or site to which each state in d belongs.

states Vector of integers indicating the order of the states in d for each trajectory.
disturbed_trajectories

Vector of the same class as trajectories indicating the identifier of the dis-
turbed trajectories.

disturbed_states

Vector of integers included in statesindicating the first state after the release of
the disturbance for each value in disturbed_trajectories.

predisturbed_states

Vector of integers included in states indicating the last undisturbed state of
each disturbed_trajectories. The previous states to disturbed_states
are considered by default.

reference Object of class RETRA indicating the representative trajectory taken as the ref-
erence to compute the amplitude, recovery, and net_change of the disturbed
trajectories (see Details).

index Method to calculate amplitude, recovery, or net change ("absolute", "relative";
see Details).

method Method to calculate the distance between the disturbed_states or predisturbed_states
and the reference trajectory. One of "nearest_state", "projection" or
"mixed" (see Details).

Details

Resistance (resistance())

Resistance captures the immediate impact of the disturbance as a function of the changes in the
state variables (Sánchez-Pinillos et al., 2019).

8 deviation_metrics

Rt = 1− dpre,dist

Amplitude (amplitude())
Amplitude indicates the direction in which the system is displaced during the disturbance in rela-
tion to the reference (Sánchez-Pinillos et al., 2024). Positive values indicate that the disturbance
displaces the system towards the boundaries of the dynamic regime. Negative values indicate that
the disturbance displaces the system towards the representative trajectory.

Two indices can be calculated:

If index = "absolute",

A = ddist,RT − dpre,RT

If index = "relative",

A =
ddist,RT−dpre,RT

dpre,dist

Recovery (recovery())
Recovery quantifies the ability of the system to evolve towards the reference following the relief
of the disturbance (if positive) or move in the direction of the boundaries of the dynamic regime (if
negative) (Sánchez-Pinillos et al., 2024).

Two indices can be calculated:

If index = "absolute",

Rc = ddist,RT − dpost,RT

If index = "relative",

Rc =
ddist,RT−dpost,RT

ddist,post

Net change (net_change())
Net change quantifies the proximity of the system to the reference relative to the pre-disturbed
state (Sánchez-Pinillos et al., 2024). Positive values indicate that the system eventually evolves
towards the boundaries of the dynamic regime. Negative values indicate that the system eventually
evolves towards the reference.

Two indices can be calculated:

If index = "absolute",

NC = dpost,RT − dpre,RT

If index = "relative",

NC =
dpost,RT−dpre,RT

dpre,post

In all cases:

• dpre,RT is the dissimilarity between the predisturbed_states and the reference.

• ddist,RT is the dissimilarity between the disturbed_states and the reference.

• dpost,RT is the dissimilarity between the states after disturbed_states and the reference.

• dpre,dist is the dissimilarity contained in d between the predisturbed_states and the disturbed_states.

• ddist,post is the dissimilarity contained in d between the disturbed_states and the post-
disturbed states.

• dpre,post is the dissimilarity contained in d between the predisturbed_states and the post-
disturbed states.

deviation_metrics 9

dpre,RT , ddist,RT , and dpost,RT are calculated using the function state_to_trajectory() by
three different methods:

• If method = "nearest_state", dpre,RT , ddist,RT , and dpost,RT are calculated as the dissimi-
larity between the pre-disturbance, disturbed, or post-disturbance states and their nearest state
in the reference.

• If method = "projection", dpre,RT , ddist,RT , and dpost,RT are calculated as the dissimilarity
between the pre-disturbance, disturbed, or post-disturbance states and their projection onto the
reference.

• If method = "mixed", dpre,RT , ddist,RT , and dpost,RT are calculated in the same way than
method = "projection" whenever the pre-disturbance, disturbed and post-disturbance states
can be projected onto any segment of the reference. Otherwise, dpre,RT , ddist,RT , and
dpost,RT are calculated using the nearest state of the reference.

Value

• resistance() returns a data frame of two columns indicating the resistance value (Rt) for
each disturbed_trajectory.

• amplitude() returns a data frame of three columns indicating the amplitude value (A_abs;
A_rel) for each disturbed_trajectory and reference. If index = c("absolute", "relative"),
both values are included in a data frame of four columns.

• recovery() returns a data frame of four columns indicating the recovery value (Rc_abs;
Rc_rel) for each disturbed_trajectory, post-disturbance state (state) and reference.
If index = c("absolute", "relative"), both values are included in a data frame of five
columns.

• net_change returns a data frame of four columns indicating the net change value (NC_abs;
NC_rel) for each disturbed_trajectory, post-disturbance state (state), and reference.
If index = c("absolute", "relative"), both values are included in a data frame of five
columns.

Author(s)

Martina Sánchez-Pinillos

References

Sánchez-Pinillos, M., Leduc, A., Ameztegui, A., Kneeshaw, D., Lloret, F., & Coll, L. (2019).
Resistance, resilience or change: Post-disturbance dynamics of boreal forests after insect outbreaks.
Ecosystems 22, 1886-1901 https://doi.org/10.1007/s10021-019-00378-6

Sánchez-Pinillos, M., Dakos, V., & Kéfi, S. (2024). Ecological dynamic regimes: A key concept for
assessing ecological resilience. Biological Conservation 289, 110409 https://doi.org/10.1016/j.biocon.2023.110409

See Also

retra_edr() to identify representative trajectories in an ecological dynamic regime.

define_retra() to generate an object of classRETRA.

state_to_trajectory() to calculate the position of a state with respect to a trajectory.

10 dist_edr

Examples

Identify the representative trajectories of the EDR from undisturbed trajectories
RT <- retra_edr(d = EDR_data$EDR3$state_dissim,

trajectories = EDR_data$EDR3$abundance$traj,
states = as.integer(EDR_data$EDR3$abundance$state),
minSegs = 5)

Abundance matrix including disturbed and undisturbed trajectories
abundance <- rbind(EDR_data$EDR3$abundance,

EDR_data$EDR3_disturbed$abundance, fill = TRUE)

State dissimilarities (Bray-Curtis) for disturbed and undisturbed trajectories
d <- vegan::vegdist(abundance[, paste0("sp", 1:12)], method = "bray")

Resistance
Rt <- resistance(d = d, trajectories = abundance$traj, states = abundance$state,

disturbed_trajectories = unique(abundance[!is.na(disturbed_states)]$traj),
disturbed_states = abundance[disturbed_states == 1]$state)

Amplitude
A <- amplitude(d = d, trajectories = abundance$traj, states = abundance$state,

disturbed_trajectories = unique(abundance[!is.na(disturbed_states)]$traj),
disturbed_states = abundance[disturbed_states == 1]$state, reference = RT)

Recovery
Rc <- recovery(d = d, trajectories = abundance$traj, states = abundance$state,

disturbed_trajectories = unique(abundance[!is.na(disturbed_states)]$traj),
disturbed_states = abundance[disturbed_states == 1]$state, reference = RT)

Net change
NC <- net_change(d = d, trajectories = abundance$traj, states = abundance$state,

disturbed_trajectories = unique(abundance[!is.na(disturbed_states)]$traj),
disturbed_states = abundance[disturbed_states == 1]$state, reference = RT)

dist_edr Dissimilarities between Ecological Dynamic Regimes

Description

Generate a matrix containing dissimilarities between one or more pairs of Ecological Dynamic
Regimes (EDR). dist_edr() computes different dissimilarity indices, all of them based on the
dissimilarities between the trajectories of two EDRs.

Usage

dist_edr(
d,
d.type,

dist_edr 11

trajectories = NULL,
states = NULL,
edr,
metric = "dDR",
symmetrize = NULL,
...

)

Arguments

d Symmetric matrix or object of class dist containing the dissimilarities between
each pair of states of all trajectories in the EDR or the dissimilarities between
each pair of trajectories.

d.type One of "dStates" (if d contains state dissimilarities) or "dTraj" (if d contains
trajectory dissimilarities).

trajectories Only if d.type = "dStates". Vector indicating the trajectory or site corre-
sponding to each entry in d.

states Only if d.type = "dStates". Vector of integers indicating the order of the states
in d for each trajectory.

edr Vector indicating the EDR to which each trajectory/state in d belongs.
metric A string indicating the dissimilarity index to be used: "dDR" (default), "minDist",

"maxDist".
symmetrize String naming the function to be called to symmetrize the resulting dissimilarity

matrix ("mean", "min", "max, "lower", "upper"). If NULL (default), the matrix
is not symmetrized.

... Only if d.type = "dStates". Further arguments to calculate trajectory dissim-
ilarities. See ecotraj::trajectoryDistances().

Details

The implemented metrics are:

"dDR" dDR(R1, R2) =
1
n

∑n
i=1 dTR(T1i, R2)

"minDist" dDRmin(R1, R2) = minni=1{dTR(T1i, R2)}
"maxDist" dDRmax(R1, R2) = maxni=1{dTR(T1i, R2)}

where R1 and R2 are two EDRs composed of n and m ecological trajectories, respectively, and
dTR(T1i, R2) is the dissimilarity between the trajectory T1i of R1 and the closest trajectory of R2:
dTR(T1i, R2) = min{dT (T1i, T21), ..., dT (T1i, T2m)}
The metrics calculated are not necessarily symmetric. That is, dDR(R1, R2) is not necessarily
equal to dDR(R2, R1). It is possible to symmetrize the returned matrix by indicating the name of
the function to be used in symmetrize:

"mean" dDRsym = dDR(R1,R2)+dDR(R2,R1)
2

"min" dDRsym = min{dDR(R1, R2), dDR(R2, R1)}
"max" dDRsym = max{dDR(R1, R2), dDR(R2, R1)}
"lower" The lower triangular part of the dissimilarity matrix is used.
"upper" The upper triangular part of the dissimilarity matrix is used.

12 dist_edr

Value

Matrix including the dissimilarities between every pair of EDRs.

Author(s)

Martina Sánchez-Pinillos

References

Sánchez-Pinillos, M., Kéfi, S., De Cáceres, M., Dakos, V. 2023. Ecological Dynamic Regimes:
Identification, characterization, and comparison. Ecological Monographs. doi:10.1002/ecm.
1589

Examples

Load species abundances and compile in a data frame
abun1 <- EDR_data$EDR1$abundance
abun2 <- EDR_data$EDR2$abundance
abun3 <- EDR_data$EDR3$abundance
abun <- data.frame(rbind(abun1, abun2, abun3))

Define row names in abun to keep the reference of the EDR, trajectory, and
state
row.names(abun) <- paste0(abun$EDR, "_", abun$traj, "_", abun$state)

Calculate dissimilarities between every pair of states
For example, Bray-Curtis index
dStates <- vegan::vegdist(abun[, -c(1, 2, 3)], method = "bray")

Use the labels in dStates to define the trajectories to which each state
belongs
id_traj <- vapply(strsplit(labels(dStates), "_"), function(x){

paste0(x[1], "_", x[2])
}, character(1))

id_state <- vapply(strsplit(labels(dStates), "_"), function(x){
as.integer(x[3])

}, integer(1))
id_edr <- vapply(strsplit(labels(dStates), "_"), function(x){

paste0("EDR", x[1])
}, character(1))

Calculate dissimilarities between every pair of trajectories
dTraj <- ecotraj::trajectoryDistances(ecotraj::defineTrajectories(d = dStates, sites = id_traj,

surveys = id_state),
distance.type = "DSPD")

Use labels in dTraj to identify EDRs
id_edr_traj <- vapply(strsplit(labels(dTraj), "_"), function(x){

paste0("EDR", x[1])
}, character(1))

Compute dissimilarities between EDRs:

doi:10.1002/ecm.1589
doi:10.1002/ecm.1589

EDR_data 13

1) without symmetrizing the matrix and using state dissimilarities
dEDR <- dist_edr(d = dStates, d.type = "dStates",

trajectories = id_traj, states = id_state, edr = id_edr,
metric = "dDR", symmetrize = NULL)

2) symmetrizing by averaging elements on and below the diagonal and using
trajectory dissimilarities
dEDR <- dist_edr(d = dTraj, d.type = "dTraj", edr = id_edr_traj,

metric = "dDR", symmetrize = "mean")

EDR_data Ecological Dynamic Regime data

Description

Example datasets to characterize and compare EDRs, including abundance data, state, segment, and
trajectory dissimilarity matrices for 93 artificial communities belonging to three different EDRs.

Usage

EDR_data

Format

List of four nested sublists. Each element of "EDR1", "EDR2", and "EDR3" is associated with one
EDR and includes the following elements:

• abundance: Data table with 15 columns and one row for each community state:

– EDR: Integer indicating the identifier of the EDR.
– traj: Integer containing the identifier of the trajectory for each artificial community in

the corresponding EDR. Each trajectory represents a different sampling unit.
– state: Integer indicating the observations or states of each community. The sequence of

states of a given community forms a trajectory.
– sp1, ..., sp12: Vectors containing species abundances for each community state.

• state_dissim: Object of class dist containing Bray-Curtis dissimilarities between every
pair of states in abundance.

• segment_dissim: Object of class dist containing the dissimilarities between every pair of
trajectory segments in abundance.

• traj_dissim: Object of class dist containing the dissimilarities between every pair of com-
munity trajectories in abundance.

The element EDR3_disturbed represents the dynamics of three disturbed communities originally
associated with EDR3. It includes an abundance matrix with 16 columns and one row for each
community state. The column disturbed_states is a numeric vector indicating whether the cor-
responding state represents a state before the disturbance (0), during or immediately after the release
of the disturbance (1), or a post-disturbance state (> 1).

14 EDR_metrics

Details

Artificial data was generated following the procedure explained in Box 1 in Sánchez-Pinillos et
al. (2023). The initial state of each community was defined using a hypothetical environmental
space with optimal locations for 12 species. Community dynamics were simulated using a general
Lotka-Volterra model.

Abundances for EDR3_disturbed were generated following the procedure explained in Sánchez-
Pinillos et al. (2024) for ecological systems affected by pulse disturbances.

State dissimilarities were calculated using the Bray-Curtis metric. Segment and trajectory dissimi-
larities were calculated using the package ’ecotraj’.

References

Sánchez-Pinillos, M., Kéfi, S., De Cáceres, M., Dakos, V. 2023. Ecological Dynamic Regimes:
Identification, characterization, and comparison. Ecological Monographs. doi:10.1002/ecm.
1589

Sánchez-Pinillos, M., Dakos, V., Kéfi, S. 2024. Ecological Dynamic Regimes: A key concept for
assessing ecological resilience. Biological Conservation. doi:10.1016/j.biocon.2023.110409

EDR_metrics Metrics of Ecological Dynamic Regimes

Description

Set of metrics to analyze the distribution and variability of trajectories in Ecological Dynamic
Regimes (EDR), including dynamic dispersion (dDis), dynamic beta diversity (dBD), and dynamic
evenness (dEve).

Usage

dDis(
d,
d.type,
trajectories,
states = NULL,
reference,
w.type = "none",
w.values,
...

)

dBD(d, d.type, trajectories, states = NULL, ...)

dEve(d, d.type, trajectories, states = NULL, w.type = "none", w.values, ...)

doi:10.1002/ecm.1589
doi:10.1002/ecm.1589
doi:10.1016/j.biocon.2023.110409

EDR_metrics 15

Arguments

d Symmetric matrix or object of class dist containing the dissimilarities between
each pair of states of all trajectories in the EDR or the dissimilarities between
each pair of trajectories. To compute dDis, d needs to include the dissimilarities
between all states/trajectories and the states/trajectory of reference.

d.type One of "dStates" (if d contains state dissimilarities) or "dTraj" (if d contains
trajectory dissimilarities).

trajectories Vector indicating the trajectory or site corresponding to each entry in d.

states Only if d.type = "dStates". Vector of integers indicating the order of the states
in d for each trajectory.

reference Vector of the same class as trajectories and length equal to one, indicating
the reference trajectory to compute dDis.

w.type Method used to weight individual trajectories:

• "none": All trajectories are considered equally relevant (default).
• "length": Trajectories are weighted by their length, calculated as the sum

of the dissimilarities between every pair of consecutive states. d must con-
tain dissimilarities between trajectory states and d.type = "dStates".

• "size": Trajectories are weighted by their size, calculated as the number
of states forming the trajectory. d must contain dissimilarities between tra-
jectory states and d.type = "dStates".

• "precomputed": Trajectories weighted according to different criteria.

w.values Only if w.type = "precomputed". Numeric vector of length equal to the num-
ber of trajectories containing the weight of each trajectory.

... Only if d.type = "dStates". Further arguments to calculate trajectory dissim-
ilarities. See ecotraj::trajectoryDistances().

Details

Dynamic dispersion (dDis())
dDis is calculated as the average dissimilarity between each trajectory in an EDR and a target
trajectory taken as reference (Sánchez-Pinillos et al., 2023).

dDis =
∑m

i=1 diα

m

where diα is the dissimilarity between trajectory i and the trajectory of reference α, and m is the
number of trajectories.

Alternatively, it is possible to calculate a weighted mean of the dissimilarities by assigning a weight
to each trajectory.

dDis =
∑m

i=1 widiα∑m
i=1 wi

where wi is the weight assigned to trajectory i.

Dynamic beta diversity (dBD())
dBD quantifies the overall variation of the trajectories in an EDR and is equivalent to the average
distance to the centroid of the EDR (De Cáceres et al., 2019).

dBD =
∑m−1

i=1

∑m
j=i+1 d2

ij

m(m−1)

16 EDR_metrics

Dynamic evenness (dEve())
dEve quantifies the regularity with which an EDR is filled by the individual trajectories (Sánchez-
Pinillos et al., 2023).

dEve =

∑m−1
l=1 min(

dij∑m−1
l=1

dij

, 1
m−1)−

1
m−1

1− 1
1−1

where dij is the dissimilarity between trajectories i and j linked in a minimum spanning tree by the
link l.

Optionally, it is possible to weight the trajectories of the EDR. In that case, dEve becomes analogous
to the functional evenness index proposed by Villéger et al. (2008).

dEvew =

∑m−1
l=1 min(

EWij∑m−1
l=1

EWij

, 1
m−1)−

1
m−1

1− 1
1−1

where EWij is the weighted evenness:

EWij =
dij

wi+wj

Value

• dDis() returns the value of dynamic dispersion for a given trajectory taken as a reference.

• dBD() returns the value of dynamic beta diversity.

• dEve() returns the value of dynamic evenness.

Author(s)

Martina Sánchez-Pinillos

References

De Cáceres, M, Coll L, Legendre P, Allen RB, Wiser SK, Fortin MJ, Condit R & Hubbell S. (2019).
Trajectory analysis in community ecology. Ecological Monographs.

Sánchez-Pinillos, M., Kéfi, S., De Cáceres, M., Dakos, V. 2023. Ecological Dynamic Regimes:
Identification, characterization, and comparison. Ecological Monographs. doi:10.1002/ecm.
1589

Villéger, S., Mason, N.W.H., Mouillot, D. (2008) New multidimensional functional diversity indices
for a multifaced framework in functional ecology. Ecology.

Examples

Data to compute dDis, dBD, and dEve
dStates <- EDR_data$EDR1$state_dissim
dTraj <- EDR_data$EDR1$traj_dissim
trajectories <- paste0("T", EDR_data$EDR1$abundance$traj)
states <- EDR_data$EDR1$abundance$state

Dynamic dispersion taking the first trajectory as reference
dDis(d = dTraj, d.type = "dTraj", trajectories = unique(trajectories),

reference = "T1")

doi:10.1002/ecm.1589
doi:10.1002/ecm.1589

plot.RETRA 17

Dynamic dispersion weighting trajectories by their length
dDis(d = dStates, d.type = "dStates", trajectories = trajectories, states = states,

reference = "T1", w.type = "length")

Dynamic beta diversity using trajectory dissimilarities
dBD(d = dTraj, d.type = "dTraj", trajectories = unique(trajectories))

Dynamic evenness
dEve(d = dStates, d.type = "dStates", trajectories = trajectories, states = states)

Dynamic evenness considering that the 10 first trajectories are three times
more relevant than the rest
w.values <- c(rep(3, 10), rep(1, length(unique(trajectories))-10))
dEve(d = dTraj, d.type = "dTraj", trajectories = unique(trajectories),

w.type = "precomputed", w.values = w.values)

plot.RETRA Plot representative trajectories of Ecological Dynamic Regimes

Description

Plot representative trajectories of an Ecological Dynamic Regime (EDR) in the state space distin-
guishing between the segments belonging to real trajectories of the EDR and the artificial links
between segments.

Usage

S3 method for class 'RETRA'
plot(
x,
d,
trajectories,
states,
select_RT = NULL,
traj.colors = NULL,
RT.colors = NULL,
sel.color = NULL,
link.color = NULL,
link.lty = 2,
axes = c(1, 2),
...

)

Arguments

x Object of class RETRA.

18 plot.RETRA

d Symmetric matrix or dist object containing the dissimilarities between each
pair of states of all trajectories in the EDR or data frame containing the coordi-
nates of all trajectory states in an ordination space.

trajectories Vector indicating the trajectory or site to which each state in d belongs.

states Vector of integers indicating the order of the states in d for each trajectory.

select_RT Optional string indicating the name of a representative trajectory that must be
highlighted in the plot. By default (select_RT = NULL), all representative tra-
jectories are represented with the same color.

traj.colors Specification for the color of all individual trajectories (defaults "grey") or a
vector with length equal to the number of trajectories indicating the color for
each individual trajectory.

RT.colors Specification for the color of representative trajectories (defaults "black").

sel.color Specification for the color of the selected representative trajectory (defaults "red").
Only if !is.null(select_RT).

link.color Specification for the color of the links between trajectory segments forming rep-
resentative trajectories. By default, the same color than RT.colors is used.

link.lty The line type of the links between trajectory segments forming representative
trajectories. Defaults 2 = "dashed" (See graphics::par).

axes An integer vector indicating the pair of axes in the ordination space to be plotted.

... Arguments for generic plot().

Value

The function plot() plots a set of individual trajectories and the representative trajectories in
an ordination space defined through d or calculated by applying metric multidimensional scaling
(mMDS; Borg and Groenen, 2005) to d.

Author(s)

Martina Sánchez-Pinillos

References

Borg, I., & Groenen, P. J. F. (2005). Modern Multidimensional Scaling (2nd ed.). Springer.

Sánchez-Pinillos, M., Kéfi, S., De Cáceres, M., Dakos, V. 2023. Ecological Dynamic Regimes:
Identification, characterization, and comparison. Ecological Monographs. doi:10.1002/ecm.
1589

See Also

retra_edr() for identifying representative trajectories in EDRs applying RETRA-EDR.

define_retra() for defining representative trajectories from a subset of segments or trajectory
features.

summary() for summarizing representative trajectories in EDRs.

doi:10.1002/ecm.1589
doi:10.1002/ecm.1589

plot.RETRA 19

Examples

Example 1 ---

d contains the dissimilarities between trajectory states
d <- EDR_data$EDR1$state_dissim

trajectories and states are defined according to `d` entries.
trajectories <- EDR_data$EDR1$abundance$traj
states <- EDR_data$EDR1$abundance$state

x defined from retra_edr(). We obtain three representative trajectories.
RT <- retra_edr(d = d, trajectories = trajectories, states = states, minSegs = 5)
summary(RT)

Plot individual trajectories in blue and representative trajectories in orange,
"T2" will be displayed in green. Artificial links will be displayed with a
dotted line.
plot(x = RT, d = d, trajectories = trajectories, states = states, select_RT = "T2",

traj.colors = "lightblue", RT.colors = "orange", sel.color = "darkgreen",
link.lty = 3, main = "Representative trajectories in EDR1")

Example 2 ---

d contains the coordinates in an ordination space. For example, we use
the coordinates of the trajectory states after applying a principal component
analysis (PCA) to an abundance matrix.
abun <- EDR_data$EDR1$abundance
pca <- prcomp(abun[, -c(1:3)])
coord <- data.frame(pca$x)

trajectories and states are defined according to the abundance matrix
used in the PCA
trajectories <- EDR_data$EDR1$abundance$traj
states <- EDR_data$EDR1$abundance$state

Instead of using the representative trajectories obtained from `retra_edr()`,
we will define the set of trajectories that we want to highlight. For example,
we can select the trajectories whose initial and final states are in the
extremes of the first axis.
T1 <- trajectories[which.max(coord[, 1])]
T2 <- trajectories[which.min(coord[, 1])]
RT_traj <- c(trajectories[trajectories %in% T1],

trajectories[trajectories %in% T2])
RT_states <- c(states[which(trajectories %in% T1)],

states[which(trajectories %in% T2)])

Create a data frame to generate a RETRA object using define_retra
RT_df <- data.frame(RT = c(rep("T1", sum(trajectories %in% T1)),

rep("T2", sum(trajectories %in% T2))),
RT_traj = RT_traj,
RT_states = as.integer(RT_states))

RT_retra <- define_retra(data = RT_df)

20 plot_edr

Plot the defined trajectories with the default graphic values
plot(x = RT_retra, d = coord, trajectories = trajectories, states = states,

main = "Extreme trajectories in EDR1")

plot_edr Plot Ecological Dynamic Regimes

Description

Represents EDR trajectories in the state space. Trajectories and/or states can be displayed in differ-
ent colors based in a predefined classification or variable.

Usage

plot_edr(
x,
trajectories,
states,
traj.colors = NULL,
state.colors = NULL,
variable = NULL,
type = "trajectories",
axes = c(1, 2),
initial = F,
...

)

Arguments

x Symmetric matrix or dist object containing the dissimilarities between each
pair of states of all trajectories in the EDR. Alternatively, data frame containing
the coordinates of all trajectory states in an ordination space.

trajectories Vector indicating the trajectory or site to which each state in x belongs.

states Vector of integers indicating the order of the states in x for each trajectory.

traj.colors Specification for the color of all individual trajectories (defaults "grey") or a
vector with length equal to the number of different trajectories indicating the
color for each individual trajectory.

state.colors Specification for the color of all trajectory states (defaults equal to traj.colors),
vector with length equal to the number of states indicating the color for each tra-
jectory state, or vector of colors used to generate a gradient depending on the
values of variable (if type = "gradient").

variable Numeric vector with equal length to the number of states to be represented using
a gradient of state colors (if type = "gradient").

type One of the following "trajectories", "states", or "gradient".

plot_edr 21

axes An integer vector indicating the pair of axes in the ordination space to be plotted.

initial Flag indicating if the initial state must be plotted (only if type = "states" or
type = "gradient")

... Arguments for generic plot().

Value

plot_edr() permits representing the trajectories of an Ecological Dynamic Regime using different
colors for each trajectory or state.

Author(s)

Martina Sánchez-Pinillos

See Also

plot.RETRA() for plotting representative trajectories in an ordination space representing the state
space of the EDR.

Examples

Data
state_variables <- EDR_data$EDR1$abundance
d <- EDR_data$EDR1$state_dissim

Coordinates in classic multidimensional scaling
x <- cmdscale(d, k = 3)

Plot trajectories 1-10 in "coral", 11-20 in "blue" and 21-30 in "gold"
plot_edr(x = x, trajectories = state_variables$traj,

states = as.integer(state_variables$state),
traj.colors = c(rep("coral", 10), rep("royalblue", 10), rep("gold", 10)),
main = "type = 'trajectories'")

legend("bottomleft", legend = paste0("Trajectories ", c("1-10", "11-20", "21-30")),
lty = 1, col = c("coral", "royalblue", "gold"))

Plot states with different colors depending on the state value
plot_edr(x = x, trajectories = state_variables$traj,

states = as.integer(state_variables$state),
traj.colors = NULL,
state.colors = rep(RColorBrewer::brewer.pal(5, "Blues"),

length(unique(state_variables$traj))),
type = "states", main = "type = 'states'")

legend("bottomleft", legend = paste0("State ", 1:5),
pch = 15, col = RColorBrewer::brewer.pal(5, "Blues"))

Plot states with different colors depending on the abundance of sp1
plot_edr(x = x, trajectories = state_variables$traj,

states = as.integer(state_variables$state),
traj.colors = NULL, state.colors = viridis::viridis(5),
variable = state_variables$sp1,

22 retra_edr

type = "gradient", main = "type = 'gradient'", initial = TRUE)
legend("bottomleft",

legend = c(paste0("abun sp1 = ", min(state_variables$sp1)),
rep(NA, 28),
paste0("abun sp1 = ", max(state_variables$sp1))),

fill = viridis::viridis(30), border = NA, y.intersp = 0.2)

retra_edr Representative trajectories in Ecological Dynamic Regimes (RETRA-
EDR)

Description

retra_edr() applies the algorithm RETRA-EDR (Sánchez-Pinillos et al., 2023) to identify repre-
sentative trajectories summarizing the main dynamical patterns of an Ecological Dynamic Regime
(EDR).

Usage

retra_edr(
d,
trajectories,
states,
minSegs,
dSegs = NULL,
coordSegs = NULL,
traj_Segs = NULL,
state1_Segs = NULL,
state2_Segs = NULL,
Dim = NULL,
eps = 0

)

Arguments

d Either a symmetric matrix or an object of class dist containing the dissimilari-
ties between each pair of states of all trajectories in the EDR.

trajectories Vector indicating the trajectory or site to which each state in d belongs.

states Vector of integers indicating the order of the states in d for each trajectory.

minSegs Integer indicating the minimum number of segments in a region of the EDR
represented by a segment of the representative trajectory.

dSegs Either a symmetric matrix or an object of class dist containing the dissimilari-
ties between every pair of trajectory segments (see Details).

coordSegs Matrix containing the coordinates of trajectory segments (rows) in each axis
(columns) of an ordination space (see Details).

retra_edr 23

traj_Segs Vector indicating the trajectory to which each segment in dSeg and/or coordSegs
belongs. Only required if dSegs or coordSegs are not NULL.

state1_Segs Vector indicating the initial state of each segment in dSegs and/or coordSegs
according to the values given in states. Only required if dSegs or coordSegs
are not NULL.

state2_Segs Vector indicating the final state of each segment in dSegs and/or coordSegs
according to the values given in states. Only required if dSegs or coordSegs
are not NULL.

Dim Optional integer indicating the number of axes considered to partition the seg-
ment space and generate a k-d tree. By default (Dim = NULL), all axes are con-
sidered.

eps Numeric value indicating the minimum length in the axes of the segment space
to be partitioned when the k-d tree is generated. If eps = 0 (default), partitions
are made regardless of the size.

Details

The algorithm RETRA-EDR is based on a partition-and-group approach by which it identifies re-
gions densely crossed by ecological trajectories in an EDR, selects a representative segment in each
dense region, and joins the representative segments by a set of artificial Links to generate a net-
work of representative trajectories. For that, RETRA-EDR splits the trajectories of the EDR into
segments and uses an ordination space generated from a matrix containing the dissimilarities be-
tween trajectory segments. Dense regions are identified by applying a k-d tree to the ordination
space.

By default, RETRA-EDR calculates segment dissimilarities following the approach by De Cáceres
et al. (2019) and applies metric multidimensional scaling (mMDS, Borg and Groenen, 2005) to gen-
erate the ordination space. It is possible to use other dissimilarity metrics and/or ordination methods
and reduce the computational time by indicating the dissimilarity matrix and the coordinates of the
segments in the ordination space through the arguments dSegs and coordSegs, respectively.

• If !is.null(dSegs) and is.null(coordSegs), RETRA-EDR is computed by applying mMDS
to dSegs.

• If !is.null(dSegs) and !is.null(coordSegs), RETRA-EDR is directly computed from
the coordinates provided in coordSegs and representative segments are identified using dSegs.
coordSegs should be calculated by the user from dSegs.

• If is.null(dSegs) and !is.null(coordSegs) (not recommended), RETRA-EDR is di-
rectly computed from the coordinates provided in coordSegs. As dSegs is not provided,
retra_edr() assumes that the ordination space is metric and identifies representative seg-
ments using the Euclidean distance.

Value

The function retra_edr() returns an object of class RETRA, which is a list of length equal to the
number of representative trajectories identified. For each trajectory, the following information is
returned:

minSegs Value of the minSegs parameter.

24 retra_edr

Segments Vector of strings including the sequence of segments forming the representative trajec-
tory. Each segment is identified by a string of the form traj[st1-st2], where traj is the
identifier of the original trajectory to which the segment belongs and st1 and st2 are identi-
fiers of the initial and final states defining the segment.

Size Numeric value indicating the number of states forming the representative trajectory.

Length Numeric value indicating the length of the representative trajectory, calculated as the sum
of the dissimilarities in d between every pair of consecutive states.

Link_distance Data frame of two columns indicating artificial links between representative seg-
ments (Link) and the dissimilarity between the connected states (Distance). When two rep-
resentative segments are linked by a common state or by two consecutive states of the same
trajectory, the link distance is zero or equal to the length of a real segment, respectively. In
both cases, the link is not considered in the returned data frame.

Seg_density Data frame of two columns and one row for each representative segment. Density
contains the number of segments in the EDR that is represented by each segment of the repre-
sentative trajectory. kdTree_depth contains the depth of the k-d tree for each leaf represented
by the corresponding segment. That is, the number of partitions of the ordination space until
finding a region with minSegs segments or less.

Author(s)

Martina Sánchez-Pinillos

References

Borg, I., & Groenen, P. J. F. (2005). Modern Multidimensional Scaling (2nd ed.). Springer.

De Cáceres, M, Coll L, Legendre P, Allen RB, Wiser SK, Fortin MJ, Condit R & Hubbell S. (2019).
Trajectory analysis in community ecology. Ecological Monographs.

Sánchez-Pinillos, M., Kéfi, S., De Cáceres, M., Dakos, V. 2023. Ecological Dynamic Regimes:
Identification, characterization, and comparison. Ecological Monographs. doi:10.1002/ecm.
1589

See Also

summary() for summarizing the characteristics of the representative trajectories.

plot() for plotting representative trajectories in an ordination space representing the state space of
the EDR.

define_retra() for defining representative trajectories from a subset of segments or trajectory
features.

Examples

Example 1 ---
Identify representative trajectories from state dissimilarities

Calculate state dissimilarities (Bray-Curtis) from species abundances
abundance <- data.frame(EDR_data$EDR1$abundance)
d <- vegan::vegdist(abundance[, -c(1:3)], method = "bray")

doi:10.1002/ecm.1589
doi:10.1002/ecm.1589

state_to_trajectory 25

Identify the trajectory (or site) and states in d
trajectories <- abundance$traj
states <- as.integer(abundance$state)

Compute RETRA-EDR
RT1 <- retra_edr(d = d, trajectories = trajectories, states = states,

minSegs = 5)

Example 2 ---
Identify representative trajectories from segment dissimilarities

Calculate segment dissimilarities using the Hausdorff distance
dSegs <- ecotraj::segmentDistances(ecotraj::defineTrajectories(d = d, sites = trajectories,

surveys = states),
distance.type = "Hausdorff")

dSegs <- dSegs$Dseg

Identify the trajectory (or site) and states in dSegs:
Split the labels of dSegs (traj[st1-st2]) into traj, st1, and st2
seg_components <- strsplit(gsub("\\]", "", gsub("\\[", "-", labels(dSegs))), "-")
traj_Segs <- sapply(seg_components, "[", 1)
state1_Segs <- as.integer(sapply(seg_components, "[", 2))
state2_Segs <- as.integer(sapply(seg_components, "[", 3))

Compute RETRA-EDR
RT2 <- retra_edr(d = d, trajectories = trajectories, states = states, minSegs = 5,

dSegs = dSegs, traj_Segs = traj_Segs,
state1_Segs = state1_Segs, state2_Segs = state2_Segs)

state_to_trajectory Position of a state with respect to a trajectory

Description

Define the position of a state with respect to a reference trajectory based on its distance from the
trajectory and the length and direction of the trajectory.

Usage

state_to_trajectory(
d,
trajectories,
states,
target_states,
reference,
method,
coordStates = NULL

)

26 state_to_trajectory

Arguments

d Either a symmetric matrix or an object of class dist containing the dissimilari-
ties between each pair of states.

trajectories Vector indicating the trajectory or site to which each state in d belongs.

states Vector of integers indicating the order of the states in d for each trajectory (as-
sign 1 if the state does not belong to any trajectory).

target_states Vector of integers indicating the indices in trajectories and states of the
ecological states for which their relative position will be calculated.

reference Vector of the same class of trajectories or object of class RETRA indicating
the reference trajectory to calculate the relative position of the target_states

method Method to calculate the distance and relative position of the target_states
and the reference. One of "nearest_state", "projection" or "mixed" (see
Details).

coordStates Matrix containing the coordinates of each state (rows) and axis (columns) of a
metric ordination space (see Details)

Details

state_to_trajectory() can calculate the distance and relative position of one or more target_states
relative to a reference trajectory by three different methods:

• "nearest_state" returns the dissimilarity of the target_states to the nearest state of
the reference trajectory (distance) and calculates the relative position of the nearest state
within the reference.

• "projection" returns the dissimilarity of the target_states to their projection onto the
reference trajectory and calculates the relative position of the projected state within the
reference. This method requires d to be metric (i.e. to satisfy the triangle inequality). If
d is not metric, state_to_trajectory() calculates the Euclidean distance within a trans-
formed space generated through multidimensional scaling (Borg and Groenen, 2005). To use
the state coordinates in a different metric space, use the coordStates argument. When the
target_states cannot be projected onto any of the segments forming the reference trajec-
tory, state_to_trajectory() returns NA for both distance and relative_position.

• "mixed" calculates the dissimilarity between the target_states and the reference trajec-
tory, as well as their relative position by computing its projection onto any of the segments
of the reference (analogous to method = "projection"). For the target_states that cannot
be projected, state_to_trajectory() uses the nearest state in the reference to compute
distance and relative_position (analogous to method = "nearest_state").

Value

The function state_to_trajectory() returns a data frame of four columns including the distance
and relative_position between the target_state and the reference.

• Depending on the method, distance is calculated as the dissimilarity between the target_states
and their respective nearest state in the reference or the dissimilarity to their projections onto
the reference.

summary.RETRA 27

• The relative_position is a value that ranges between 0 (if the nearest state or projected
point coincides with the first reference state) and 1 (if the nearest state or projected point
coincides with the last reference state).

Author(s)

Martina Sánchez-Pinillos

Examples

State dissimilarities
d <- vegan::vegdist(EDR_data$EDR3$abundance[, paste0("sp", 1:12)], method = "bray")
trajectories <- EDR_data$EDR3$abundance$traj
states <- EDR_data$EDR3$abundance$state

Calculate the representative trajectories of an EDR to be used as reference
RT <- retra_edr(d,

trajectories = trajectories,
states = states,
minSegs = 10)

Define the target states
target_states <- as.integer(c(1, 16, 55))

Calculate the position of the target states with respect to the representative
trajectories of an EDR
state_to_trajectory(d, trajectories = trajectories,

states = states,
target_states = target_states,
reference = RT,
method = "nearest_state")

summary.RETRA Summarize representative trajectories

Description

Summarize the properties of representative trajectories returned by retra_edr() or define_retra()

Usage

S3 method for class 'RETRA'
summary(object, ...)

Arguments

object An object of class RETRA.

... (not used)

28 summary.RETRA

Value

Data frame with nine columns and one row for each representative trajectory in object. The
columns in the returned data frame contain the following information:

ID Identifier of the representative trajectories.

Size Number of states forming each representative trajectory.

Length Sum of the dissimilarities in d between every pair of consecutive states forming the repre-
sentative trajectories.

Avg_link Mean value of the dissimilarities between consecutive states of the representative trajec-
tories that do not belong to the same ecological trajectory or site (i.e., artificial links).

Sum_link Sum of the dissimilarities between consecutive states of the representative trajectories
that do not belong to the same ecological trajectory or site (i.e., artificial links).

Avg_density Mean value of the number of segments represented by each segment of the represen-
tative trajectory (excluding artificial links).

Max_density Maximum number of segments represented by at least one of the segments of the
representative trajectory (excluding artificial links).

Avg_depth Mean value of the k-d tree depths, that is, the number of partitions of the ordination
space until finding a region with minSegs segments or less.

Max_depth Maximum depth in the k-d tree, that is, the number of partitions of the ordination space
until finding a region with minSegs segments or less.

See Also

retra_edr() for identifying representative trajectories in EDRs applying RETRA-EDR.

define_retra() for generating an object of class RETRA from trajectory features.

Examples

Apply RETRA-EDR to identify representative trajectories
d = EDR_data$EDR1$state_dissim
trajectories = EDR_data$EDR1$abundance$traj
states = EDR_data$EDR1$abundance$state
RT <- retra_edr(d = d, trajectories = trajectories, states = states, minSegs = 5)

Summarize the properties of the representative trajectories in a data frame
summary(RT)

Index

∗ datasets
EDR_data, 13

amplitude (deviation_metrics), 6

dBD (EDR_metrics), 14
dDis (EDR_metrics), 14
define_retra, 2
define_retra(), 9, 18, 24, 27, 28
dEve (EDR_metrics), 14
deviation_metrics, 6
dist, 2, 7, 11, 15, 22, 26
dist_edr, 10

ecotraj::trajectoryDistances(), 11, 15
EDR_data, 13
EDR_metrics, 14

graphics::par, 18

net_change (deviation_metrics), 6

plot(), 3, 4, 18, 21, 24
plot.RETRA, 17
plot.RETRA(), 21
plot_edr, 20

recovery (deviation_metrics), 6
resistance (deviation_metrics), 6
retra_edr, 22
retra_edr(), 3, 4, 9, 18, 27, 28

state_to_trajectory, 25
state_to_trajectory(), 9
summary(), 4, 18, 24
summary.RETRA, 27

29

	define_retra
	deviation_metrics
	dist_edr
	EDR_data
	EDR_metrics
	plot.RETRA
	plot_edr
	retra_edr
	state_to_trajectory
	summary.RETRA
	Index

