Package ‘ecopower’

August 24, 2023
Type Package

Title Power Estimates and Equivalence Testing for Multivariate Data
Version 0.2.0

Description Estimates power by simulation for multivariate
abundance data to be used for sample size estimates. Multivariate
equivalence testing by simulation from a Gaussian copula model.
The package also provides functions for parameterising multivariate effect
sizes and simulating multivariate abundance data jointly. The discrete
Gaussian copula approach is described in
Popovic et al. (2018) <doi:10.1016/j.jmva.2017.12.002>.

Depends R (>=3.5.0)

Imports parallel, mvabund, ecoCopula, stats

Encoding UTF-8

LazyData true

License LGPL (>=2.1)

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, testthat, ggplot2, RColorBrewer
VignetteBuilder knitr

NeedsCompilation no

Author Ben Maslen [aut],
Michelle Lim [aut, cre]

Maintainer Michelle Lim <michelle.lim@unsw.edu.au>
Repository CRAN
Date/Publication 2023-08-24 15:20:02 UTC

R topics documented:

crayweed e e e e
effect_altmanyglm
effect_nullmanyglm

https://doi.org/10.1016/j.jmva.2017.12.002

crayweed

equivtest.cord L L L L e e e 7
extend.cord e 9
fish. . 12
powersim.cord L. e e e e e e 14
Index 18
crayweed Crayweed dataset
Description

Dataset of fish abundances recorded at crayweed reference and restored sites.

Usage

data(crayweed)

Format

An object of class "1ist" containing:

abund A matrix with 27 observations of abundance of 34 fish species.

X A data frame with treatment and time variables.

Details

The matrix abund has the following species abundances:

* Abudefduf.sp.

* Acanthopagrus.australis
* Acanthurus.nigrofuscus
* Achoerodus.viridis

* Aplodactylus.lophodon
* Atypichthys.strigatus

* Cheilodactylus.fuscus
* Chromis.hypsilepis

* Crinodus.lophodon

* Girella.elevata

* Girella.tricuspidata

* Hypoplectrodes.maccullochi
* Needle.fish.unidentified
* Notolabrus.gymnogenis

* Odax.cyanomelas

crayweed

* Olisthops.cyanomelas

* Ophthalmolepis.lineolatus
* Parma.microlepis

* Parma.unifasciata

* Pempheris.compressa

* Pempheris.multiradiata

* Pictilabrus.laticlavius

* Prionurus.microlepidotus
* Pseudocaranx.dentex

* Pseudojuloides.elongatus
* Pseudolabrus.gymnogenis
* Sardinops.neopilchardus
* Scorpis.lineolatus

* Seriola.lalandi

* Sphyraena.obtusata

¢ Tetractenos.hamiltoni

* Trachinops.taeniatus

* Trachurus.novaezelandiae

* Upeneichthyes.lineatus
The data frame X has the following variables:

¢ treatment - reference / restored

* time - sample period with seven time points

References

Data attributed to the crayweed restoration project (http://www.operationcrayweed.com/).

Examples

data(crayweed)
head(crayweed$abund)
head(crayweed$x)

http://www.operationcrayweed.com/

4 effect_alt.manyglm

effect_alt.manyglm Specify multivariate effect sizes

Description
effect_alt returns a coefficient matrix to be parsed to extend, powersim and equivtest to spec-
ify an effect size of interest.

Usage

S3 method for class 'manyglm'
effect_alt(object, effect_size, increasers, decreasers, term, K = NULL)

effect_alt(object, effect_size, increasers, decreasers, term, K = NULL)

Arguments

object objects of class manyglm, typically the result of a call to manyglm.

effect_size An effect size of interest, see details for interpretation.

increasers A vector list of responses which increase relative to the control group/intercept.

decreasers A vector list of responses which decrease relative to the control group/intercept.

term Name of predictor of interest in quotes.

K A vector of length nlevels - 1. If NULL, the effect size will increase by its
exponent according to the order of factor variables. Alternatively, specify a
vector K that corresponds to the exponent of the effect_size for each level of
a factor variable. Defaults to NULL, see details.

Details

effect_alt helps users to create interpretable multivariate effect sizes to be parsed into extend,
powersim and equivtest, so that researchers can investigate the relationship between effect size,
power and sample size in a complicated multivariate abundance setting.

effect_alt creates an effect of size log(effect_size) for a predictor of interest (term), for re-
sponses who have been specified to increase (increasers) and -log(effect_size) for responses
who have been specified to decrease (decreasers). Responses that have not been specified in the
increasers or decreasers vectors are specified to have no effect with a coefficient of 0. The
effect has been logged to make the effect size interpretable within the coefficient matrix.

For poisson regression family=poisson() and negative binomial regression family="negative.binomial”
the effect size is interpreted for a categorical variable as the multiplicative change in mean abun-

dance in the treatment group relative to the control group, whilst for a continuous variable it is
interpreted as the multiplicative change in abundance for a 1 unit increase in the predictor of inter-

est.

For logit regression family=binomial("logit") the effect size is interpreted as an odds ratio. For
a categorical variable this is the change in odds of obtaining outcome 1 when being in the treatment

effect_alt. manyglm 5

group relative to the control group. Whilst for continuous variables, this is interpreted as the change
in odds of obtaining outcome 1 with a 1 unit increase in the predictor of interest.

For cloglog regression family=binomial("cloglog") the effect size is interpreted similarly to
poisson and negative binomial regression. For a categorical variable it is interpreted as the multi-
plicative change in the mean of the underlying count in the treatment group relative to the control.
Whilst for a continuous variable it is interpreted as the multiplicative change in the mean of the
underlying count for a 1 unit increase in the predictor of interest.

For categorical variables, the intercept is also changed to be the group mean intercept by taking
the intercept of a model without the categorical predictor of interest. This is done to avoid messy
comparisons of null control groups.

For categorical variables with more than two levels, effect size is changed to effect_size*K[i]
where K defaults to be c(1,2,...,nlevels - 1), where nlevels are the number of levels of the
categorical variable and is specified along the order of the levels. To change this, specify a vector K
with length of nlevels - 1. To change the control group, this must be done prior to specifying the
manyglm object using relevel (which can also change the order of the levels).

Note that if the predictor of interest is a categorical variable it must be classed either as a factor or
character otherwise results may be misleading.

Value

A coefficient matrix with the specified effect size.

Functions

» effect_alt(): Specify multivariate effect sizes

See Also

extend, equivtest, powersim

Examples

library(mvabund)

data(spider)

spiddat = mvabund(spider$abund)
X = data.frame(spider$x)

Specify increasers and decreasers
increasers = c("Alopacce”, "Arctlute”, "Arctperi”, "Pardnigr”, "Pardpull")
decreasers = c("Alopcune”, "Alopfabr"”, "Zoraspin")

Obtain an effect matrix of effect_size=3
spid.glm = manyglm(spiddat~soil.dry, family="negative.binomial”, data=X)
effect_mat = effect_alt(spid.glm, effect_size=3,

increasers, decreasers, term="soil.dry")

Obtain an effect matrix of effect_size=1.5

X$Treatment = rep(c("A","B","C","D"),each=7)

spid.glm = manyglm(spiddat~Treatment, family="negative.binomial”, data=X)
effect_mat = effect_alt(spid.glm, effect_size=1.5,

6 effect_null. manyglm

increasers, decreasers, term="Treatment")

Change effect size parameterisation

effect_mat = effect_alt(spid.glm, effect_size=1.5,
increasers, decreasers, term="Treatment”,
K=c(3,1,2))

effect_null.manyglm Specify null effects for multivariate abundance data

Description

effect_null returns a coefficient matrix to be parsed to powersim by default to specify a null
effect.

Usage

S3 method for class 'manyglm'
effect_null(object, term)

effect_null(object, term)

Arguments
object objects of class manyglm, typically the result of a call to manyglm.
term Name of predictor of interest in quotes.

Details

effect_null produces a coefficient matrix with a null effect that is specified by setting the param-
eter estimates of a predictor of interest term to 0. This function is used by default in powersim.
Note that intercept values are parameterised as in effect_alt.

Value

A coefficient matrix with the null effect.

Functions

» effect_null(): Specify null effects for multivariate abundance data

See Also

effect_alt, powersim

equivtest.cord 7

Examples

library(mvabund)

data(spider)

spiddat = mvabund(spider$abund)
X = data.frame(spider$x)

Find null effect size for continuous predictor
spid.glm = manyglm(spiddat~soil.dry, family="negative.binomial”, data=X)
coeffs@ = effect_null(spid.glm, term="soil.dry")

equivtest.cord Multivariate equivalence testing

Description

equivtest takes in a copula model fitted to data and a matrix of effect sizes to execute a a multi-
variate equivalence test.

Usage
S3 method for class 'cord'
equivtest(
object,
coeffs,
term = NULL,
object@ = NULL,
stats = NULL,
test = "LR",
nsim = 999,

ncores = detectCores() - 1,
show.time = TRUE

)

equivtest(
object,
coeffs,
term = NULL,
object@® = NULL,
stats = NULL,
test = "LR",
nsim = 999,

ncores = detectCores() - 1,
show.time = TRUE

8 equivtest.cord

Arguments
object objects of class cord, typically the result of a call to cord.
coeffs Coefficient matrix for a manyglm object that characterises the size of effects to
be simulated. See effect_alt for help in producing this matrix.
term Name of predictor of interest in quotes. Defaults to NULL, see details.
object®@ object of class cord that specifies the null hypothesis. Defaults to NULL, see
details.
stats Statistics simulated under the null hypothesis. Optional, defaults to NULL. If not
NULL, equivtest will not simulate test statistics and use the stats specified.
test Test statistic for computing p-value. Defaults to "LR".
nsim Number of simulations for p-value estimate to be based upon. Defaults to 999.
ncores Number of cores for parallel computing. Defaults to the total number of cores
available on the machine minus 1.
show. time Logical. Displays time elapsed. Defaults to TRUE.
Details

equivtest takes a cord object and a coefficient matrix coeffs which specifies an effect size of
interest to perform an equivalence test.

First, marginal parameters of the data are obtained from a manyglm object. Next, a copula model is
fitted using cord to estimate the factor analytic covariance structure of the data. The cord function
uses two factors by default. The p-value is then obtained by parsing the cord object into extend,
nsim times with an effect size specified by coeff's.

The test statistics are simulated under the hypothesis that the effect size equals a certain threshold.
The p-value is computed as the proportion of times the simulated test statistics are less than the
observed statistic. Equivalence is declared if the estimated effect is less than the threshold.

equivtest can handle any user-defined null hypothesis, so only the fitted null model (object®)
or the predictor of interest (term) needs to be specified. If both object® and term are NULL,
equivtest will automatically set the predictor of interest as the last term in the fitted object model
or drop the only term in the model to obtain the intercept model.

Simulations are computed in parallel using the "socket" approach, which uses all available cores
minus 1 for clustering to improve computation efficiency. Using 1 less than the number of available
cores for your machine (detectCores()-1) is recommended to leave one core available for other
computer processes.

Value

Equivalence test results, and;

p p-value;

stat_obs observed statistic;

stats simulated statistics.
Functions

* equivtest(): Multivariate equivalence testing

extend.cord 9

See Also

effect_alt

Examples

library(ecoCopula)
library(mvabund)

data(spider)

spiddat = mvabund(spider$abund)
X = data.frame(spiders$x)

Specify increasers and decreasers
increasers = c("Alopacce”, "Arctlute”, "Arctperi”, "Pardnigr", "Pardpull")
decreasers = c("Alopcune”, "Alopfabr"”, "Zoraspin")

Equivalence test for continuous predictor at effect_size=1.5
fit.glm = manyglm(spiddat~bare.sand, family="negative.binomial”, data=X)
threshold = effect_alt(fit.glm, effect_size=1.5,
increasers, decreasers, term="bare.sand”)
fit.cord = cord(fit.glm)
equivtest(fit.cord, coeffs=threshold, term="bare.sand”, nsim=99, ncores=2)

Equivalence test for categorical predictor with 4 levels at effect_size=1.5
X$Treatment = rep(c("A","B","C","D"),each=7)
fit_factors.glm = manyglm(spiddat~Treatment, family="negative.binomial”, data=X)
threshold = effect_alt(fit_factors.glm, effect_size=1.5,

increasers, decreasers, term="Treatment"”)
fit_factors.cord = cord(fit_factors.glm)
equivtest(fit_factors.cord, coeffs=threshold, term="Treatment”, nsim=99, ncores=2)

Specify object@

object@.glm = manyglm(spiddat~1, family="negative.binomial")

object@.cord = cord(object@.glm)

equivtest(fit_factors.cord, coeffs=threshold, object@=object@.cord, nsim=99, ncores=2)

extend.cord Simulate or extend multivariate abundance data

Description

extend returns a simulated response matrix or a manyglm object with N observations and simulated
response matrix that utilises the existing correlation structure of the data.

Usage

S3 method for class 'cord'
extend(

10

object,

extend.cord

N = nrow(object$objs$data),

coeffs =

newdata =

coef (object$obj),
NULL,

n_replicate = NULL,
do.fit = FALSE,

seed = NULL

)

extend(
object,

N = nrow(objectobjdata),

coeffs =

newdata =
n_replicate

coef(object$obj),
NULL,

NULL,

do.fit = FALSE,

seed = NULL

Arguments

object
N

coeffs

newdata

n_replicate

do.fit

seed

Details

objects of class cord, typically the result of a call to cord.

Number of samples to be extended. Defaults to the number of observations in
the original sample.

Coefficient matrix for a manyglm object that characterises the size of effects to
be simulated. See effect_alt for help in producing this matrix. Defaults to the
coefficient matrix from the cord object, coef (object$obj).

Data frame of same size as the original X covariates from the fitted object, that
specifies a different design of interest. Defaults to NULL.

Number of unique replicates of the original data frame. Defaults to NULL, over-
writes N if specified.

Logical. If TRUE, fits a manyglm object from the simulated data. Defaults to
FALSE.

Random number seed, defaults to a random seed number.

extend takes a cord object and returns a new simulated response matrix or an "extended" manyglm
object with N observations and the new simulated response matrix. Response abundances are simu-
lated through a Gaussian copula model that utilises a coefficient matrix coeff's, the specified cord
model and the joint correlation structure exhibited between the response variables. To help with the
specification of coeff's, see effect_alt which simplifies this process.

Response variables are simulated through a copula model by first extracting Gaussian copular scores
as Dunn-Smyth residuals (Dunn & Smyth 1996), which are obtained from abundances y;; with
marginal distributions F; which have been specified via the original manyglm model (fit.glm; see

examples);

extend.cord 11

Zij = @71Fj(yi;) + wij £ (Yiz)

These scores then follow a multivariate Gaussian distribution with zero mean and covariance struc-
ture X2,

Zij ~ Np(O, Z)

To avoid estimating a large number p(p — 1)/2 pairwise correlations within ¥, factor analysis is
utilised with two latent factor variables, which can be interpreted as an unobserved environmental
covariate.

Thus, in order to simulate new multivariate abundances we simulate new copula scores and back
transform them to abundances as y;; = I’ *;1 (®(zi5)), where the coefficient matrix coeffs speci-
fies the effect size within the new marginal distributions F™* ;.

The data frame is also extended in a manner that preserves the original design structure. This
is done by first repeating the design matrix until the number of samples exceeds N, then randomly
removing rows from the last repeated data frame until the number of samples equals N. Alternatively,
a balanced design structure can be obtained by specifying the number of replicates.

newdata can be utilised if a different data frame is wanted for simulation.

If users are interested in obtaining a manyglm model, do. fit=TRUE can be used to obtain a manyglm
object from the simulated responses.
Value

Simulated data or manyglm object.

Functions

e extend(): Simulate or extend multivariate abundance data

References

Dunn, PK., & Smyth, G.K. (1996). Randomized quantile residuals. Journal of Computational and
Graphical Statistics 5, 236-244.

See Also

effect_alt

Examples

library(ecoCopula)
library(mvabund)

data(spider)

spiddat = mvabund(spider$abund)
X = data.frame(spider$x)

Specify increasers and decreasers
increasers = c("Alopacce”, "Arctlute”, "Arctperi”, "Pardnigr", "Pardpull”)

12 fish

decreasers = c("Alopcune”, "Alopfabr"”, "Zoraspin")

Simulate data

fit.glm = manyglm(spiddat~1, family="negative.binomial”)
fit.cord = cord(fit.glm)

simData = extend(fit.cord)

Simulate data with N=20

fit.glm = manyglm(spiddat~soil.dry, family="negative.binomial”, data=X)
fit.cord = cord(fit.glm)

simData = extend(fit.cord, N=20)

Obtain a manyglm fit from simulated data with N=10 and effect_size=1.5
X$Treatment = rep(c("A","B","C","D"),each=7)
fit_factors.glm = manyglm(spiddat~Treatment, family="negative.binomial”, data=X)
effect_mat = effect_alt(fit_factors.glm, effect_size=1.5,

increasers, decreasers, term="Treatment")
fit_factors.cord = cord(fit_factors.glm)
newFit.glm = extend(fit_factors.cord, N=10,

coeffs=effect_mat, do.fit=TRUE)

Change sampling design

X_new = X

X_new$Treatment[6:7] = c("B","B")

simData = extend(fit_factors.cord, N=NULL,
coeffs=effect_mat, newdata=X_new, n_replicate=5)

fish Fish dataset

Description

Dataset of fish abundances and associated environmental variables.

Usage
data(fish)

Format

An object of class "data.frame"” containing:

fish A data frame with nine observations of abundance of 34 fish species, and five site-related
variables.

Details
The matrix abund has the following species abundances:

* Abudefduf.sp

fish

* Acanthurus.nigrofuscus

* Achoerodus.viridis

* Aplodactylus.lophodon

* Atypichthys.strigatus

* Baitfish

* Brachaluteres.jacksonianus
* Chaeotodon.auriga

* Cheilodactylus.fuscus

* Chromis.hypsilepis

* Girella.elevata

* Girella.tricuspidata

* Heterodontus.portusjacksoni
* Kyphosus.sydneyanus

* Latropiscis.purpurissatus

* Meuschenia.spp

* Microcanthus.strigatus

* Naso.unicornis

* Notolabrus.gymnogenis

* Olisthops.cyanomelas

* Ophthalmolepis.lineolatus
* Pagrus.auratus

* Parma.microlepis

* Parma.unifasciata

* Parupeneus.signatus

* Pempheris.compressa

* Pictilabrus.laticlavius

* Prionurus.maculatus

* Prionurus.microlepidotus

* Scorpis.lineolatus

* Seriola.lalandi

* Seriola.sp

* Trachinops.taeniatus

* Unidentified.wrasse

» Site.Type - control / reference / restored
* Site.Name - location of site
* Viz - visibility in metres

* Temp - temperature in degrees Celsius

* Depth - depth in metres

14 powersim.cord

References

Data attributed to the crayweed restoration project (http://www.operationcrayweed.com/).

Examples

data(fish)
head(fish)

powersim.cord Provide power estimates for multivariate abundance models

Description

powersim returns a power estimate for a cord object for a given sample size N and effect size of
interest.

Usage

S3 method for class 'cord'
powersim(
object,
coeffs,
term,
N = nrow(objectobjdata),
coeffs@ = effect_null(object$obj, term),

nsim = 1000,
ncrit = 999,
test = "score”,
alpha = 0.05,

newdata = NULL,
ncores = detectCores() - 1,
show.time = TRUE,
long_power = FALSE,
n.samp = 10,
nlv = 2

)

powersim(
object,
coeffs,
term,
N = nrow(objectobjdata),
coeffs@ = effect_null(object$obj, term),
nsim = 999,
ncrit = nsim,

http://www.operationcrayweed.com/

powersim.cord

15

test = "score”,

alpha = 0.05,

newdata = NULL,

ncores = detectCores() - 1,

show.time =

long_power =

n.samp = 10,
nlv = 2

Arguments

object

coeffs

term

coeffso

nsim

ncrit

test

alpha

newdata

ncores

show. time

long_power

n.samp

nlv

TRUE,
FALSE,

objects of class cord, typically the result of a call to cord.

Coefficient matrix for a manyglm object that characterises the size of effects to
be simulated. See effect_alt for help in producing this matrix.

Name of predictor of interest in quotes.

Number of samples for power estimate. Defaults to the number of observations
in the original sample.

Coefficient matrix under the null hypothesis. Defaults to being specified by
effect_null.

Number of simulated test statistics under the specified effect size (coeffs) to
estimate power. Defaults to 999.

Number of simulated test statistics under the null effect to estimate the critical
value. Defaults to 999.

Test statistic for power estimate to based upon. Defaults to "score"”, however
"wald" is also allowed.

Type I error rate for power estimate, defaults to @.05.

Data frame of the same size as the original data frame from the cord object
(object$objs$data), that specifies a different design of interest.

Number of cores for parallel computing. Defaults to the total number of cores
available on the machine minus 1.

Logical. Displays time elapsed. Defaults to TRUE.

Logical. Whether to estimate power using separate critical test statistics for
each nsim test statistics simulated under the alternative hypothesis. Note that
although this will give a more accurate estimate of power, it will take a consid-
erably large amount of time. First try increasing ncrit. Defaults to FALSE.

integer, number of sets of residuals for importance sampling for the copula
model with cord. Defaults to 10, recommend setting this higher for smaller
sample sizes N.

number of latent variables (default = 2) for the copula model with cord, recom-
mend setting this lower for smaller sample sizes N.

16 powersim.cord

Details
powersimtakes a cord object, sample size N and coefficient matrix coeffs which specifies an effect
size of interest and returns a power estimate.

The power estimate is obtained by first parsing the cord object into extend, nsim times with an
effect size specified by coeffs. Next, the cord object is parsed into extend an additional ncrit
times with a null effect, which is defined by default by effect_null. This effectively simulates
nsim+ ncrit manyglm models under both the null and alternative hypothesis.

For each simulated manyglm object, a test statistic test is obtained. A critical test statistic is
then obtained as the upper 1 - alpha quantile of simulated test statistics under the null hypothesis.
Power is then estimated as the proportion of times the test statistics simulated under the alternative
hypothesis exceed the critical test statistic under the null.

To improve computation time, simulations are computed in parallel using the "socket" approach,
which by default uses all available cores minus 1 for clustering. Using 1 less than the number of
available cores for your machine (detectCores()-1) is recommended to better avoid errors relating
to clustering or nodes.

Value

Power estimate result, and;

power power.

Functions

* powersim(): Provide power estimates for multivariate abundance models

Author(s)

Ben Maslen <b.maslen @unsw.edu.au>.

References

Maslen, B., Popovic, G., Lim, M., Marzinelli, E., & Warton, D. (2023). How many sites? Methods
to assist design decisions when collecting multivariate data in ecology. Methods in Ecology and
Evolution, 14(6), 1564-1573. Popovic, G. C., Hui, F. K., & Warton, D. 1. (2018). A general
algorithm for covariance modeling of discrete data. Journal of Multivariate Analysis, 165, 86-100.

See Also

effect_alt, effect_null, extend

Examples

library(ecoCopula)
library(mvabund)

data(spider)

spiddat = mvabund(spider$abund)
X = data.frame(spiders$x)

powersim.cord 17

Specify increasers and decreasers
increasers = c("Alopacce”, "Arctlute”, "Arctperi”, "Pardnigr", "Pardpull”)
decreasers = c("Alopcune”, "Alopfabr"”, "Zoraspin")

Find power for continuous predictor at effect_size=1.5
fit.glm = manyglm(spiddat~bare.sand, family="negative.binomial”, data=X)
effect_mat = effect_alt(fit.glm, effect_size=1.5,
increasers, decreasers, term="bare.sand"”)
fit.cord = cord(fit.glm)
powersim(fit.cord, coeffs=effect_mat, term="bare.sand”, nsim=99, ncrit=99, ncores=2)

Find power for categorical predictor with 4 levels at effect_size=1.5
X$Treatment = rep(c("A","B","C","D"),each=7)
fit_factors.glm = manyglm(spiddat~Treatment, family="negative.binomial”, data=X)
effect_mat = effect_alt(fit_factors.glm, effect_size=1.5,
increasers, decreasers, term="Treatment"”)
fit_factors.cord = cord(fit_factors.glm)
powersim(fit_factors.cord, coeffs=effect_mat, term="Treatment"”, nsim=99, ncrit=99, ncores=2)

Change effect size parameterisation
effect_mat = effect_alt(fit_factors.glm, effect_size=1.5,
increasers, decreasers, term="Treatment”,
K=c(3,1,2))
powersim(fit_factors.cord, coeffs=effect_mat, term="Treatment"”, nsim=99, ncrit=99, ncores=2)

Index

x datasets
crayweed, 2
fish, 12

cord, 8, 10, 14-16
crayweed, 2

effect_alt, 6,811, 15, 16
effect_alt (effect_alt.manyglm), 4
effect_alt.manyglm, 4
effect_null, 15, 16

effect_null (effect_null.manyglm), 6
effect_null.manyglm, 6
equivtest, 4, 5

equivtest (equivtest.cord), 7
equivtest.cord, 7

extend, 4, 5,8, 16

extend (extend.cord), 9
extend.cord, 9

fish, 12
manyglm, 4-6, 8-11, 15, 16
powersim, 4-6

powersim (powersim.cord), 14
powersim.cord, 14

18

	crayweed
	effect_alt.manyglm
	effect_null.manyglm
	equivtest.cord
	extend.cord
	fish
	powersim.cord
	Index

