Package ‘eat’

January 10, 2023

Title Efficiency Analysis Trees
Version 0.1.4

Description Functions are provided to determine production frontiers and technical
efficiency measures through non-parametric techniques based upon regression trees.
The package includes code for estimating radial input, output, directional and
additive measures, plotting graphical representations of the scores and the production
frontiers by means of trees, and determining rankings of importance of input variables
in the analysis. Additionally, an adaptation of Random Forest by a set of individual
Efficiency Analysis Trees for estimating technical efficiency is also included. More
details in: <doi:10.1016/j.eswa.2020.113783>.

License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1

Imports dplyr, conflicted, stats, ggplot2, ggparty, partykit, ggrepel,
Rdpack, IpSolveAPI, utils, reshape2

Suggests rmarkdown, testthat, knitr, kableExtra, devtools
RdMacros Rdpack

VignetteBuilder knitr

Depends R (>=2.10)

URL https://efficiencytools.wordpress.com/

BugReports https://github.com/MiriamEsteve/EAT/issues
NeedsCompilation no

Author Miriam Esteve [cre, aut] (<https://orcid.org/0000-0002-5908-0581>),
Victor Espafia [aut] (<https://orcid.org/0000-0002-1807-6180>),
Juan Aparicio [aut] (<https://orcid.org/0000-0002-0867-0004>),
Xavier Barber [aut] (<https://orcid.org/0000-0003-3079-5855>)

Maintainer Miriam Esteve <mestevecampello@gmail.com>
Repository CRAN
Date/Publication 2023-01-10 09:20:16 UTC

https://doi.org/10.1016/j.eswa.2020.113783
https://efficiencytools.wordpress.com/
https://github.com/MiriamEsteve/EAT/issues
https://orcid.org/0000-0002-5908-0581
https://orcid.org/0000-0002-1807-6180
https://orcid.org/0000-0002-0867-0004
https://orcid.org/0000-0003-3079-5855

2 R topics documented:

R topics documented:

alpha.o 3
bagging e e e 4
barplot_importance 4
bestEAT 5
bestRFEAT 6
CEAT_BCC_in e e e e 7
CEAT _BCC_out o i e 8
CEAT_DDF 9
CEAT_RSL_in e 9
CEAT_RSL_out. e 10
CEAT_WAM e 11
checkEAT 11
comparePareto 12
deepEAT e 12
EAT . . 13
EAT BCC_in 15
EAT_BCC_out it 16
EAT _DDF e 16
EAT frontier levels e 17
EAT leaf stats e 18
EAT_object o o 19
EAT_RSL_in 20
EAT_RSL_out. e e 20
EAT size e e 21
EAT_WAM e 22
efficiencyCEAT e 22
efficiencyDensity L 24
efficiencyEAT o e 25
efficiencylitter L 26
efficiencyRFEAT e 27
estimBAT 28
frontier L e e 29
generateLv L e 30
imp_var_ EAT e 30
imp_var_ RFEAT e 31
isFinalNode 31
layout e e 32
00] P 32
mtry_inputSelection L e 33
M_Breiman 33
PISAindex 34
PIOtEAT e e e e 35
PIOtRFEAT e e 35
posldNode 36
predict EAT L 37

predict. RFEAT e 37

alpha 3

predictFDH e 38
Predictor e 39
PreProcess L e e e e 39
RandomEAT e e e 40
rankingEAT L 41
rankingRFEAT 41
RBranch e e e 42
ROV e 43
RFEAT . . . e 43
RFEAT _object e e e 45
RF_predictor e 46
SCOTES . v v v v e e et e e e e e e e e e e e e 46
selectTK e e e e 47
select_MIry e e e e e 47
SERules o o 48
SPLIt . . e 48
split_forest e e e e 49
treesForRCV o e 50
X2Y2.8IM .« . oo e e e e 50
YLISImM. . oo e e e e e e e e e 51
Index 52
alpha Alpha Calculation for Pruning Procedure of Efficiency Analysis Trees
Description

This function gets the minimum alpha for each subtree evaluated during the pruning procedure of
the Efficiency Analysis Trees technique.

Usage

alpha(tree)

Arguments

tree A list containing the EAT nodes.

Value

Numeric value corresponding to the minimum alpha associated with a suitable node to be pruned.

4 barplot_importance

bagging Bagging data

Description

Bootstrap aggregating for data.

Usage

bagging(data, x, y)

Arguments
data Dataframe containing the variables in the model.
X Column input indexes in data.
y Column output indexes in data.

Value

List containing training dataframe and list with binary response as O if the observations have been
selected for training and 0 in any other case.

barplot_importance Barplot Variable Importance

Description

This function generates a barplot with the importance of each predictor.

Usage

barplot_importance(m, threshold)

Arguments
m Dataframe with the importance of each predictor.
threshold Importance score value in which a line should be graphed.
Value

Barplot representing each variable on the x-axis and its importance on the y-axis.

bestEAT

bestEAT

Tuning an Efficiency Analysis Trees model

Description

This funcion computes the root mean squared error (RMSE) for a set of Efficiency Analysis Trees
models built with a grid of given hyperparameters.

Usage

bestEAT(
training
test,
X,
"
numStop
fold = 5

’

:5’

’

max.depth = NULL,
max.leaves = NULL,

na.rm =

Arguments

training

test

X

y
numStop

fold

max.depth
max.leaves

na.rm

Value

TRUE

Training data.frame or matrix containing the variables for model construc-
tion.

Test data. frame or matrix containing the variables for model assessment.
Column input indexes in training.

Column output indexes in training.

Minimum number of observations in a node for a split to be attempted.

Folds in which the dataset to apply cross-validation during the pruning is di-
vided.

Maximum depth of the tree.
Maximum number of leaf nodes.

logical. If TRUE, NA rows are omitted.

A data. frame with the sets of hyperparameters and the root mean squared error (RMSE) associated
for each model.

6 bestRFEAT

Examples

data("PISAindex")

n <- nrow(PISAindex) # Observations in the dataset
selected <- sample(l:n, n * 0.7) # Training indexes
training <- PISAindex[selected,] # Training set
test <- PISAindex[- selected,] # Test set

bestEAT(training = training,

test = test,
X = 6:9,
y =3,

numStop = c(3, 5, 7),
fold = c(5, 7, 10))

bestRFEAT Tuning a Random Forest + Efficiency Analysis Trees model

Description

This funcion computes the root mean squared error (RMSE) for a set of Random FOrest + Efficiency
Analysis Trees models built with a grid of given hyperparameters.

Usage

bestRFEAT(
training,
test,
X,
Y,
numStop = 5,
m = 50,
s_mtry = c("5", "BRM"),
na.rm = TRUE

Arguments
training Training data.frame or matrix containing the variables for model construc-
tion.
test Test data. frame or matrix containing the variables for model assessment.
X Column input indexes in training.
y Column output indexes in training.

numStop Minimum number of observations in a node for a split to be attempted.

CEAT _BCC_in 7

m Number of trees to be built.
s_mtry character. Number of inputs to be selected in each split. See
na.rm logical. If TRUE, NA rows are omitted.

Value

A data. frame with the sets of hyperparameters and the root mean squared error (RMSE) associated
for each model.

Examples

data("PISAindex")

n <- nrow(PISAindex) # Observations in the dataset
selected <- sample(l:n, n * 0.7) # Training indexes
training <- PISAindex[selected,] # Training set
test <- PISAindex[- selected,] # Test set

bestRFEAT(training = training,

test = test,

X = 6:9,

y =3,

numStop = c(3, 5),
m = c(20, 30),

s_mtry = c("1", "BRM"))

CEAT_BCC_in Banker, Charnes and Cooper programming model with input orienta-
tion for a Convexified Efficiency Analysis Trees model

Description

Banker, Charnes and Cooper programming model with input orientation for a Convexified Effi-
ciency Analysis Trees model.

Usage

CEAT_BCC_in(j, scores, x_k, y_k, atreeTk, ytreeTk, nX, nY, N_leaves)

Arguments
j Number of DMUs.
scores matrix. Empty matrix for scores.

x_k data.frame. Set of input variables.

8 CEAT_BCC_out
y_k data.frame Set of output variables.
atreeTk matrix Set of "a" Pareto-coordinates.
ytreeTk matrix Set of predictions.
nX Number of inputs.
ny Number of outputs.
N_leaves Number of leaf nodes.
Value
A numerical vector with scores.
CEAT_BCC_out Banker, Charnes and Cooper programming model with output orien-
tation for a Convexified Efficiency Analysis Trees model
Description
Banker, Charnes and Cooper programming model with output orientation for a Convexified Effi-
ciency Analysis Trees model.
Usage
CEAT_BCC_out(j, scores, x_k, y_k, atreeTk, ytreeTk, nX, nY, N_leaves)
Arguments
Jj Number of DMUs.
scores matrix. Empty matrix for scores.
x_k data.frame. Set of input variables.
y_k data. frame Set of output variables.
atreeTk matrix Set of "a" Pareto-coordinates.
ytreeTk matrix Set of predictions.
nX Number of inputs.
ny Number of outputs.
N_leaves Number of leaf nodes.
Value

A numerical vector with efficiency scores.

CEAT_DDF

CEAT_DDF Directional Distance Function mathematical programming model for
a Convexified Efficiency Analysis Trees model

Description

Directional Distance Function for a Convexified Efficiency Analysis Trees model.

Usage

CEAT_DDF(j, scores, x_k, y_k, atreeTk, ytreeTk, nX, nY, N_leaves)

Arguments
j Number of DMUs.
scores matrix. Empty matrix for scores.
x_k data.frame. Set of input variables.
y_k data.frame Set of output variables.
atreeTk matrix Set of "a" Pareto-coordinates.
ytreeTk matrix Set of predictions.
nX Number of inputs.
nY Number of outputs.
N_leaves Number of leaf nodes.

Value

A numerical vector with scores.

CEAT_RSL_in Russell Model with input orientation for a Convexified Efficiency Anal-
ysis Trees model

Description

Russell Model with input orientation for a Convexified Efficiency Analysis Trees model.

Usage

CEAT_RSL_in(j, scores, x_k, y_k, atreeTk, ytreeTk, nX, nY, N_leaves)

10

Arguments
J
scores
x_k
y_k
atreeTk
ytreeTk
nX
nY

N_leaves

Value

CEAT_RSL_out

Number of DMUs.

matrix. Empty matrix for scores.
data.frame. Set of input variables.
data.frame Set of output variables.
matrix Set of "a" Pareto-coordinates.
matrix Set of predictions.

Number of inputs.

Number of outputs.

Number of leaf nodes.

A numerical vector with scores.

CEAT_RSL_out

Russell Model with output orientation for a Convexified Efficiency
Analysis Trees model

Description

Russell Model with output orientation for a Convexified Efficiency Analysis Trees model.

Usage

CEAT_RSL_out(j, scores, x_k, y_k, atreeTk, ytreeTk, nX, nY, N_leaves)

Arguments
J
scores
x_k
y_k
atreeTk
ytreeTk
nX
nY

N_leaves

Value

Number of DMUs.

matrix. Empty matrix for scores.
data.frame. Set of input variables.
data.frame Set of output variables.
matrix Set of "a" Pareto-coordinates.
matrix Set of predictions.

Number of inputs.

Number of outputs.

Number of leaf nodes.

A numerical vector with scores.

CEAT_WAM 11

CEAT_WAM Weighted Additive Model for a Convexified Efficiency Analysis Trees
model

Description

Weighted Additive Model for a Convexified Efficiency Analysis Trees model.

Usage
CEAT_WAM(j, scores, x_k, y_k, atreeTk, ytreeTk, nX, nY, N_leaves, weights)

Arguments
j Number of DMUSs.
scores matrix. Empty matrix for scores.
x_k data.frame. Set of input variables.
y_k data.frame Set of output variables.
atreeTk matrix Set of "a" Pareto-coordinates.
ytreeTk matrix Set of predictions.
nX Number of inputs.
nY Number of outputs.
N_leaves Number of leaf nodes.
weights "MIP" for Measure of Inefficiency Proportion or "RAM" for Range Adjusted

Measure of Inefficiency.
Value

A numerical vector with scores.

checkEAT Check Efficiency Analysis Trees.

Description

This function verifies if a specific tree keeps to Pareto-dominance properties.

Usage
checkEAT (tree)

Arguments

tree A list containing the EAT nodes.

12 deepEAT

Value

Message indicating if the tree is acceptable or warning in case of breaking any Pareto-dominance
relationship.

comparePareto Pareto-dominance relationships

Description
This function denotes if a node dominates another one or if there is no Pareto-dominance relation-
ship.

Usage

comparePareto(t1, t2)

Arguments

t1 A first node.

t2 A second node.
Value

-1 if t1 dominates t2, 1 if t2 dominates t1 and O if there are no Pareto-dominance relationships.

deepEAT Deep Efficiency Analysis Trees

Description
This function creates a deep Efficiency Analysis Tree and a set of possible prunings by the weakest-
link pruning procedure.

Usage
deepEAT(data, x, y, numStop = 5, max.depth = NULL, max.leaves = NULL)

Arguments
data data.frame or matrix containing the variables in the model.
X Column input indexes in data.
y Column output indexes in data.
numStop Minimum number of observations in a node for a split to be attempted.
max.depth Maximum depth of the tree.

max.leaves Maximum number of leaf nodes.

EAT 13

Value

A list containing each possible pruning for the deep tree and its associated alpha value.

EAT Efficiency Analysis Trees

Description

This function estimates a stepped production frontier through regression trees.

Usage

EAT(
data,
X,
Y,
numStop = 5,
fold = 5,
max.depth = NULL,
max.leaves = NULL,

na.rm = TRUE
)
Arguments
data data.frame or matrix containing the variables in the model.
X Column input indexes in data.
y Column output indexes in data.
numStop Minimum number of observations in a node for a split to be attempted.
fold Set of number of folds in which the dataset to apply cross-validation during the
pruning is divided.
max.depth Depth of the tree.
max.leaves Maximum number of leaf nodes.
na.rm logical. If TRUE, NA rows are omitted.
Details

The EAT function generates a regression tree model based on CART (Breiman et al. 1984) under
a new approach that guarantees obtaining a stepped production frontier that fulfills the property of
free disposability. This frontier shares the aforementioned aspects with the FDH frontier (Deprins
and Simar 1984) but enhances some of its disadvantages such as the overfitting problem or the
underestimation of technical inefficiency. More details in Esteve et al. (2020).

14 EAT

Value
An EAT object containing:

e data

— df: data frame containing the variables in the model.

— x: input indexes in data.

y: output indexes in data.
— input_names: input variable names.

output_names: output variable names.
— row_names: rownames in data.

e control

fold: fold hyperparameter value.

numStop: numStop hyperparameter value.

max.leaves: max.leaves hyperparameter value.

max.depth: max.depth hyperparameter value.
— na.rm: na.rm hyperparameter value.

* tree: list structure containing the EAT nodes.
* nodes_df: data frame containing the following information for each node.

— id: node index.
SL: left child node index.
N: number of observations at the node.

Proportion: proportion of observations at the node.

the output predictions.
R: the error at the node.

index: observation indexes at the node.

e model

nodes: total number of nodes at the tree.

leaf_nodes: number of leaf nodes at the tree.

a: lower bound of the nodes.

y: output predictions.

References

Breiman L, Friedman J, Stone CJ, Olshen RA (1984). Classification and regression trees. CRC
press.

Deprins D, Simar L (1984). “Measuring labor efficiency in post offices, The Performance of Public
Enterprises: Concepts and Measurements, M. Marchand, P. Pestieau and H. Tulkens.”

Esteve M, Aparicio J, Rabasa A, Rodriguez-Sala JJ (2020). “Efficiency analysis trees: A new
methodology for estimating production frontiers through decision trees.” Expert Systems with Ap-
plications, 162, 113783.

EAT BCC _in 15

Examples
#
Single output scenario
#

simulated <- Y1.sim(N = 50, nX = 3)
EAT(data = simulated, x = c(1, 2, 3), y = 4, numStop = 10, fold = 5, max.leaves = 6)

#
Multi output scenario
#

simulated <- X2Y2.sim(N = 5@, border = 0.1)
EAT(data = simulated, x = ¢(1,2), y = c(3, 4), numStop = 10, fold = 7, max.depth = 7)

EAT_BCC_in Banker, Charnes and Cooper Programming Model with Input Orien-
tation for an Efficiency Analysis Trees model

Description
Banker, Charnes and Cooper programming model with input orientation for an Efficiency Analysis
Trees model.

Usage
EAT_BCC_in(j, scores, x_k, y_k, atreeTk, ytreeTk, nX, nY, N_leaves)

Arguments
j Number of DMUs.
scores matrix. Empty matrix for scores.
x_k data.frame. Set of input variables.
y_k data.frame Set of output variables.
atreeTk matrix Set of "a" Pareto-coordinates.
ytreeTk matrix Set of predictions.
nX Number of inputs.
nY Number of outputs.
N_leaves Number of leaf nodes.

Value

A numerical vector with efficiency scores.

16 EAT _DDF

EAT_BCC_out Banker, Charnes and Cooper Programming Model with Output Orien-
tation for an Efficiency Analysis Trees model

Description
Banker, Charnes and Cooper programming model with output orientation for an Efficiency Analysis
Trees model.

Usage

EAT_BCC_out(j, scores, x_k, y_k, atreeTk, ytreeTk, nX, nY, N_leaves)

Arguments
j Number of DMUs.
scores matrix. Empty matrix for scores.
x_k data.frame. Set of input variables.
y_k data. frame Set of output variables.
atreeTk matrix Set of "a" Pareto-coordinates.
ytreeTk matrix Set of predictions.
nX Number of inputs.
nY Number of outputs.
N_leaves Number of leaf nodes.

Value

A numerical vector with efficiency scores.

EAT_DDF Directional Distance Function Programming Model for an Efficiency
Analysis Trees model

Description

Directional Distance Function for an Efficiency Analysis Trees model.

Usage

EAT_DDF(j, scores, x_k, y_k, atreeTk, ytreeTk, nX, nY, N_leaves)

EAT frontier_levels

Arguments
J
scores
x_k
y_k
atreeTk
ytreeTk
nX
nY

N_leaves

Value

Number of DMUs.

matrix. Empty matrix for scores.
data.frame. Set of input variables.
data.frame Set of output variables.
matrix Set of "a" Pareto-coordinates.
matrix Set of predictions.

Number of inputs.

Number of outputs.

Number of leaf nodes.

A numerical vector with efficiency scores.

17

EAT_frontier_levels Output Levels in an Efficiency Analysis Trees model

Description

This function returns the frontier output levels for an Efficiency Analysis Trees model.

Usage

EAT_frontier_levels(object)

Arguments

object

Value

An EAT object.

A data.frame with the frontier output levels at the leaf nodes of the Efficiency Analysis Trees

model introduced.

Examples

simulated <- Y1.sim(N = 50, nX = 3)

EAT_model <- EAT(data = simulated, x = c(1, 2, 3), y = 4, numStop = 10, fold = 5)

EAT_frontier_levels(EAT_model)

18

EAT leaf stats

EAT_leaf_stats

Descriptive Summary Statistics Table for the Leaf Nodes of an Effi-
ciency Analysis Trees model

Description

This function returns a descriptive summary statistics table for each output variable calculated from
the leaf nodes observations of an Efficiency Analysis Trees model. Specifically, it computes the
number of observations, the proportion of observations, the mean, the variance, the standard devia-
tion, the minimum, the first quartile, the median, the third quartile, the maximum and the root mean
squared error.

Usage

EAT_leaf_stats(object)

Arguments

object An EAT object.

Value

A list or a data.frame (for 1 output scenario) with the following summary statistics:

N: number of observations.

Proportion: proportion of observations.

mean: mean.

var: variance.

sd: standard deviation.
min: minimun.

Q1: first quartile.
median: median.

Q3: third quartile.

max: maximum.

RMSE: root mean squared error.

Examples

simulated <- Y1.sim(N

50, nX = 3)

EAT_model <- EAT(data = simulated, x = c(1, 2, 3), y = 4, numStop = 10, fold = 5)
EAT_leaf_stats(EAT_model)

EAT object

19

EAT_object

Create a EAT object

Description

This function saves information about the Efficiency Analysis Trees model.

Usage

EAT_object(
data,
X)

Y
rownames,

numStop,
fold,
max.depth,
max.leaves,
na.rm,

tree

Arguments
data
X

y

rownames
numStop
fold

max.depth
max.leaves

na.rm

tree

Value

An EAT object.

data.frame or matrix containing the variables in the model.
Column input indexes in data.

Column output indexes in data.

string. Data rownames.

Minimum number of observations in a node for a split to be attempted.

Set of number of folds in which the dataset to apply cross-validation during the
pruning is divided.

Maximum number of leaf nodes.
Depth of the tree.

logical. If TRUE, NA rows are omitted. If FALSE, an error occurs in case of NA
TOWS.

list containing the nodes of the Efficiency Analysis Trees pruned model.

20 EAT RSL_out

EAT_RSL_in Russell Model with Input Orientation for an Efficiency Analysis Trees
model

Description

Russell Model with input orientation for an Efficiency Analysis Trees model.

Usage

EAT_RSL_in(j, scores, x_k, y_k, atreeTk, ytreeTk, nX, nY, N_leaves)

Arguments
j Number of DMUSs.
scores matrix. Empty matrix for scores.
x_k data.frame. Set of input variables.
y_k data.frame Set of output variables.
atreeTk matrix Set of "a" Pareto-coordinates.
ytreeTk matrix Set of predictions.
nX Number of inputs.
ny Number of outputs.
N_leaves Number of leaf nodes.

Value

A numerical vector with efficiency scores.

EAT_RSL_out Russell Model with Output Orientation for an Efficiency Analysis
Trees model

Description

Russell Model with output orientation for an Efficiency Analysis Trees model.

Usage

EAT_RSL_out(j, scores, x_k, y_k, atreeTk, ytreeTk, nX, nY, N_leaves)

EAT size

Arguments
J
scores
x_k
y_k
atreeTk
ytreeTk
nX
nY

N_leaves

Value

21

Number of DMUs.

matrix. Empty matrix for scores.
data.frame. Set of input variables.
data.frame Set of output variables.
matrix Set of "a" Pareto-coordinates.
matrix Set of predictions.

Number of inputs.

Number of outputs.

Number of leaf nodes.

A numerical vector with efficiency scores.

EAT_size

Number of Leaf Nodes in an Efficiency Analysis Trees model

Description

This function returns the number of leaf nodes for an Efficiency Analysis Trees model.

Usage

EAT_size(object)

Arguments

object

Value

An EAT object.

Number of leaf nodes of the Efficiency Analysis Trees model introduced.

Examples

simulated <- Y1.sim(N = 50, nX = 3)
EAT_model <- EAT(data = simulated, x = c(1, 2, 3), y = 4, numStop = 10, fold = 5)
EAT_size(EAT_model)

22 efficiencyCEAT

EAT_WAM Weighted Additive Model for an Efficiency Analysis Trees model

Description

Weighted Additive Model for an Efficiency Analysis Trees model.

Usage

EAT_WAM(j, scores, x_k, y_k, atreeTk, ytreeTk, nX, nY, N_leaves, weights)

Arguments
j Number of DMUSs.
scores matrix. Empty matrix for scores.
x_k data.frame. Set of input variables.
y_k data. frame Set of output variables.
atreeTk matrix Set of "a" Pareto-coordinates.
ytreeTk matrix Set of predictions.
nX Number of inputs.
ny Number of outputs.
N_leaves Number of leaf nodes.
weights Character. "MIP" for Measure of Inefficiency Proportion or "RAM" for Range
Adjusted Measure of Inefficiency.
Value

A numerical vector with efficiency scores.

efficiencyCEAT Efficiency Scores computed through a Convexified Efficiency Analysis
Trees model.

Description

This function computes the efficiency scores for each DMU through a Convexified Efficiency Anal-
ysis Trees model.

efficiencyCEAT 23

Usage
efficiencyCEAT(
data,
X)
Y,
object,
scores_model,
digits = 3,
DEA = TRUE,
print.table = FALSE,
na.rm = TRUE
)
Arguments
data data.frame or matrix containing the variables in the model.
X Column input indexes in data.
y Column output indexes in data.
object An EAT object.

scores_model Mathematical programming model to calculate scores.

* BCC.OUT BCC model. Output-oriented. Efficiency level at 1.

* BCC.INP BCC model. Input-oriented. Efficiency level at 1.

» DDF Directional Distance Function. Efficiency level at 0.

* RSL.OUT Russell model. Output-oriented. Efficiency level at 1.
* RSL.INP Russell model. Input-oriented. Efficiency level at 1.

* WAM.MIP Weighted Additive Model. Measure of Inefficiency Proportions.
Efficiency level at 0.

* WAM.RAM Weighted Additive Model. Range Adjusted Measure of Ineffi-
ciency. Efficiency level at 0.

digits Decimal units for scores.
DEA logical. If TRUE, the DEA scores are also calculated with the programming
model selected in scores_model.
print.table logical. If TRUE, a summary descriptive table of the efficiency scores is dis-
played.
na.rm logical. If TRUE, NA rows are omitted.
Value

A data. frame with the efficiency scores computed through a Convexified Efficiency Analysis Trees
model. Optionally, a summary descriptive table of the efficiency scores can be displayed.

24 efficiencyDensity

Examples

simulated <- X2Y2.sim(N = 50, border = 0.2)
EAT_model <- EAT(data = simulated, x = c(1,2), y = c(3, 4))

efficiencyCEAT(data = simulated, x = c(1, 2), y = c(3, 4), object = EAT_model,
scores_model = "BCC.OUT", digits = 2, DEA = TRUE, print.table = TRUE,
na.rm = TRUE)

efficiencyDensity Efficiency Scores Density Plot

Description

Density plot for efficiency scores.

Usage

efficiencyDensity(df_scores, model = c("EAT", "FDH"))

Arguments
df_scores data. frame with efficiency scores.
model chraracter vector. Scoring models in the order of df _scores by columns. The
available models are: "EAT", "FDH", "CEAT", "DEA" and "RFEAT".
Value

Density plot for efficiency scores.

Examples

simulated <- X2Y2.sim(N = 50, border

0.2)
EAT_model <- EAT(data = simulated, x = c(1,2), y = c(3, 4))

scores <- efficiencyEAT(data = simulated, x = c(1, 2), y = c(3, 4), object = EAT_model,
scores_model = "BCC.OUT"”, digits = 2, FDH = TRUE, na.rm = TRUE)

efficiencyDensity(df_scores = scores,
model = c("EAT”, "FDH"))

efficiencyEAT 25

efficiencyEAT Efficiency Scores computed through an Efficiency Analysis Trees
model.

Description

This function computes the efficiency scores for each DMU through an Efficiency Analysis Trees
model.

Usage

efficiencyEAT(
data,
X,
Y,
object,
scores_model,
digits = 3,
FDH = TRUE,
print.table = FALSE,
na.rm = TRUE

Arguments

data data.frame or matrix containing the variables in the model.
X Column input indexes in data.
y Column output indexes in data.
object An EAT object.
scores_model Mathematical programming model to calculate scores.
* BCC.OUT BCC model. Output-oriented. Efficiency level at 1.
e BCC.INP BCC model. Input-oriented. Efficiency level at 1.
* DDF Directional Distance Function. Efficiency level at 0.
* RSL.OUT Russell model. Output-oriented. Efficiency level at 1.
* RSL.INP Russell model. Input-oriented. Efficiency level at 1.
* WAM.MIP Weighted Additive Model. Measure of Inefficiency Proportions.
Efficiency level at 0.
* WAM.RAM Weighted Additive Model. Range Adjusted Measure of Ineffi-
ciency. Efficiency level at 0.

digits Decimal units for scores.

FDH logical. If TRUE, FDH scores are also computed with the programming model
selected in scores_model.

print.table logical. If TRUE, a summary descriptive table of the efficiency scores is dis-
played.

na.rm logical. If TRUE, NA rows are omitted.

26 efficiencylitter

Value

A data.frame with the efficiency scores computed through an Efficiency Analysis Trees model.
Optionally, a summary descriptive table of the efficiency scores can be displayed.

Examples

simulated <- X2Y2.sim(N = 50, border = 0.2)
EAT_model <- EAT(data = simulated, x = c(1,2), y = c(3, 4))

efficiencyEAT(data = simulated, x = c(1, 2), y = c(3, 4), object = EAT_model,
scores_model = "BCC.OUT", digits = 2, FDH = TRUE, print.table = TRUE,
na.rm = TRUE)

efficiencyJitter Efficiency Scores Jitter Plot

Description

This function returns a jitter plot from ggplot2. This graphic shows how DMUs are grouped into
leaf nodes in a model built using the EAT function. Each leaf node groups DMUs with the same level
of resources. The dot and the black line represent, respectively, the mean value and the standard
deviation of the scores of its node. Additionally, efficient DMU labels always are displayed based
on the model entered in the scores_model argument. Finally, the user can specify an upper bound
upn and a lower bound lwb in order to show, in addition, the labels whose efficiency score lies
between them.

Usage

efficiencyJitter(object, df_scores, scores_model, upb = NULL, lwb = NULL)

Arguments
object An EAT object.
df_scores data. frame with efficiency scores (from efficiencyEAT or efficiencyCEAT).

scores_model Mathematical programming model to calculate scores.

e BCC.OUT BCC model. Output-oriented.

* BCC.INP BCC model. Input-oriented.

* DDF Directional Distance Function.

* RSL.OUT Russell model. Output-oriented.

e RSL.INP Russell model. Input-oriented.

* WAM.MIP Weighted Additive Model. Measure of Inefficiency Proportions.

efficiencyRFEAT 27

* WAM.RAM Weighted Additive Model. Range Adjusted Measure of Ineffi-

ciency.
upb Numeric. Upper bound for labeling.
lwb Numeric. Lower bound for labeling.

Value

Jitter plot with DMUs and scores.

Examples

simulated <- X2Y2.sim(N = 50, border = 0.2)
EAT_model <- EAT(data = simulated, x = c(1,2), y = c(3, 4))

EAT_scores <- efficiencyEAT(data = simulated, x = c(1, 2), y = c(3, 4), object = EAT_model,
scores_model = "BCC.OUT", digits = 2, na.rm = TRUE)

efficiencyJitter(object = EAT_model, df_scores = EAT_scores, scores_model = "BCC.OUT")

efficiencyRFEAT Efficiency Scores computed through a Random Forest + Efficiency
Analysis Trees model.

Description

This function computes the efficiency scores for each DMU through a Random Forest + Efficiency
Analysis Trees model and the Banker Charnes and Cooper mathematical programming model with
output orientation. Efficiency level at 1.

Usage
efficiencyRFEAT(
data,
X,
Y,
object,
digits = 3,
FDH = TRUE,
print.table = FALSE,
na.rm = TRUE

28 estimEAT

Arguments
data data.frame or matrix containing the variables in the model.
X Column input indexes in data.
y Column output indexes in data.
object A RFEAT object.
digits Decimal units for scores.
FDH logical. If TRUE, FDH scores are computed.
print.table logical. If TRUE, a summary descriptive table of the efficiency scores is dis-
played.
na.rm logical. If TRUE, NA rows are omitted.
Value

A data. frame with the efficiency scores computed through a Random Forest + Efficiency Analysis
Trees model. Optionally, a summary descriptive table of the efficiency scores can be displayed.

Examples

simulated <- X2Y2.sim(N = 50, border = 0.2)
RFEAT_model <- RFEAT(data = simulated, x = c(1,2), y = c(3, 4))

efficiencyRFEAT(data = simulated, x = c(1, 2), y = c(3, 4), object = RFEAT_model,
digits = 2, FDH = TRUE, na.rm = TRUE)

estimEAT Estimation of child nodes

Description

This function gets the estimation of the response variable and updates Pareto-coordinates and the
observation index for both new nodes.

Usage

estimEAT(data, leaves, t, xi, s, y)

Arguments
data Data to be used.
leaves List structure with leaf nodes or pending expansion nodes.
t Node which is being split.
xi Variable index that produces the split.

Value of xi variable that produces the split.
y Column output indexes in data.

frontier

Value

Left and right children nodes.

29

frontier

Efficiency Analysis Trees Frontier Graph

Description

This function displays a plot with the frontier estimated by Efficiency Analysis Trees in a scenario
of one input and one output.

Usage
frontier(
object,
FDH = FALSE,
observed.data = FALSE,
observed.color = "black”,
pch = 19,
size = 1,
rwn = FALSE,
max.overlaps = 10
)
Arguments
object An EAT object.
FDH Logical. If TRUE, FDH frontier is displayed.

observed.data
observed.color
pch

size

rwn

max.overlaps

Value

Logical. If TRUE, observed DMUs are displayed.

String. Color for observed DMUs.
Integer. Point shape.
Integer. Point size.

Logical. If TRUE, rownames are displayed.

Exclude text labels that overlap too many things.

Plot with estimated production frontier

30 imp_var_EAT
Examples

simulated <- Y1.sim(N = 50, nX = 1)
model <- EAT(data = simulated,
x =1

y =2

frontier <- frontier(object = model,

FDH = TRUE,
observed.data = TRUE,
rwn = TRUE)
plot(frontier)
generatelv Train and Test Sets Generation
Description

This function splits the original data in two new data sets: a train set and a test set.

Usage
generateLv(data, fold)

Arguments

data Data to be split into train and test subsets.

fold Parts in which the original set is divided, to perform Cross-Validation.
Value

A list structure with the train and the test set.

imp_var_EAT Breiman’s Variable Importance

Description
This function recalculates all the possible splits, with the exception of the one being used, and for
each node and variable gets the best split based on their degree of importance.

Usage

imp_var_EAT(data, tree, x, y, digits)

imp_var_RFEAT

Arguments
data Data from EAT object.
tree Tree from EAT object.
X Column input indexes in data.
y Column output indexes in data.
digits Decimal units.

Value

A dataframe with the best split for each node and its variable importance.

31

imp_var_RFEAT Variable Importance through Random Forest + Efficiency Analysis
Trees

Description

Variable Importance through Random Forest + Efficiency Analysis Trees.

Usage

imp_var_RFEAT(object, digits = 2)

Arguments
object A RFEAT object
digits Decimal units.
Value

Vector of input importance scores

isFinalNode Is Final Node

Description

This function evaluates a node and checks if it fulfills the conditions to be a final node.

Usage

isFinalNode(obs, data, numStop)

32 mse

Arguments

obs Observation in the evaluated node.

data Data with predictive variable.

numStop Minimum number of observations in a node to be split.
Value

True if the node is a final node and false in any other case.

layout Layout for nodes in plotEAT

Description
This function modifies the coordinates of the nodes in the plotEAT function to overcome overlap-
ping.

Usage

layout (py)

Arguments

py A party object.

Value

Dataframe with suitable modifications of the node layout.

mse Mean Squared Error

Description
This function calculates the Mean Square Error between the predicted value and the observations in
a given node.

Usage

mse(data, t, y)

Arguments
data Data to be used.
t A given node.

y Column output indexes in data.

mtry_inputSelection 33

Value

Mean Square Error at a node.

mtry_inputSelection Random Selection of Variables

Description

This function randomly selects the variables that are evaluated to divide a node and removes those
that do not present variability.

Usage

mtry_inputSelection(data, x, t, mtry)

Arguments

data data.frame containing the training set.

X Column input indexes in data.

t Node which is being split.

mtry Number of inputs selected for a node to be split.
Value

Index of the variables by which the node is divided.

M_Breiman Breiman Importance

Description

This function evaluates the importance of each predictor by the notion of surrogate splits.

Usage

M_Breiman(object, digits)

Arguments
object An EAT object.
digits Decimal units.
Value

Dataframe with one column and the importance of each variable in rows.

34 PISAindex

PISAindex PISA score and social index by country

Description

A dataset containing the PISA score in mathematics, reading and science and 13 variables related
to the social index by country for 2018.

Usage

PISAindex

Format

A data frame with 72 rows and 18 variables:

Country Country name

Continent Country continent

S_PISA PISA score in Science

R_PISA PISA score in Reading

M_PISA PISA score in Mathematics

NBMC Nutritional and Basic Medical Care

WS Water and Sanitation

S Shelter

PS Personal Safety

ABK Access to Basic Knowledge

AIC Access to Information and Communication
HW Health and Wellness

EQ Environmental Quality

PR Personal Rights

PFC Personal Freedom and Choice

I Inclusiveness

AAE Access to Advanced Education
GDP_PPP Gross Domestic Product per capita adjusted by purchasing power parity

Source

https://www.socialprogress.org/

https://www.oecd.org/pisa/Combined_Executive_Summaries_PISA_2018.pdf

https://www.socialprogress.org/
https://www.oecd.org/pisa/Combined_Executive_Summaries_PISA_2018.pdf

plIOtEAT 35

plotEAT Efficiency Analysis Trees Plot

Description

Plot a tree-structure for an Efficiency Analysis Trees model.

Usage

plotEAT (object)

Arguments

object An EAT object.

Value
Plot object with the following elements for each node:
* id: node index.
* R: error at the node.
¢ n(t): number of observations at the node.
* an input name: splitting variable.

* y: output prediction.
Examples

simulated <- X2Y2.sim(N = 50, border
EAT_model <- EAT(data = simulated, x

0.2)
c(1,2), y = c(3, 4))

plotEAT (EAT_model)

plotRFEAT Random Forest + Efficiency Analysis Trees Plot

Description

Plot a graph with the Out-of-Bag error for a forest consisting of m trees.

Usage

plotRFEAT (object)

36

Arguments

object A RFEAT object.

Value

Line plot with the OOB error and the number of trees in the forest.

Examples

simulated <- Y1.sim(N = 150, nX = 6)

RFmodel <- RFEAT(data = simulated, x = 1:6, y = 7, numStop = 10,
m = 50, s_mtry = "BRM", na.rm = TRUE)

plotRFEAT (RFmodel)

posldNode

posIdNode Position of the node

Description

This function finds the node where a register is located.

Usage

posIdNode(tree, idNode)

Arguments
tree A list containing EAT nodes.
idNode Id of a specific node.

Value

Position of the node or -1 if it is not found.

predict. EAT 37
predict.EAT Model Prediction for Efficiency Analysis Trees.
Description
This function predicts the expected output by an EAT object.
Usage
S3 method for class 'EAT'
predict(object, newdata, x, ...)
Arguments
object An EAT object.
newdata data.frame. Set of input variables to predict on.
X Inputs index.
further arguments passed to or from other methods.
Value
data. frame with the original data and the predicted values.
Examples
simulated <- X2Y2.sim(N = 50, border = 0.2)
EAT_model <- EAT(data = simulated, x = c(1,2), y = c(3, 4))
predict(object = EAT_model, newdata = simulated, x = c(1, 2))
predict.RFEAT Model prediction for Random Forest + Efficiency Analysis Trees

model.

Description

This function predicts the expected output by a RFEAT object.

Usage

S3 method for class 'RFEAT'
predict(object, newdata, x, ...)

38 predictFDH

Arguments
object A RFEAT object.
newdata data.frame. Set of input variables to predict on.
X Inputs index.
further arguments passed to or from other methods.
Value

data. frame with the original data and the predicted values.

Examples

simulated <- X2Y2.sim(N = 50, border = 0.2)
RFEAT_model <- RFEAT(data = simulated, x = c(1, 2), y = c(3, 4))

predict(object = RFEAT_model, newdata = simulated, x = c(1, 2))

predictFDH Model prediction for Free Disposal Hull

Description

This function predicts the expected output by a Free Disposal Hull model.

Usage

predictFDH(data, x, y)

Arguments
data Dataframe or matrix containing the variables in the model.
X Vector. Column input indexes in data.
y Vector. Column output indexes in data.

Value

Data frame with the original data and the predicted values through a Free Disposal Hull model.

predictor 39

predictor Efficiency Analysis Trees Predictor

Description

This function predicts the expected value based on a set of inputs.

Usage

predictor(tree, register)

Arguments
tree list with the tree nodes.
register Set of independent values.
Value

The expected value of the dependent variable based on the given register.

preProcess Data Preprocessing for Efficiency Analysis Trees

Description

This function arranges the data in the required format and displays error messages.

Usage

preProcess(
data,
X,
"
numStop = 5,
fold = 5,
max.depth = NULL,
max.leaves = NULL,
na.rm = TRUE

40 RandomEAT
Arguments
data data.frame or matrix containing the variables in the model.
X Column input indexes in data.
y Column output indexes in data.
numStop Minimum number of observations in a node for a split to be attempted.
fold Set of number of folds in which the dataset to apply cross-validation during the
pruning is divided.
max.depth Depth of the tree.
max.leaves Maximum number of leaf nodes.
na.rm logical. If TRUE, NA rows are omitted.
Value
It returns a data. frame in the required format.
RandomEAT Individual EAT for Random Forest
Description
This function builds an individual tree for Random Forest
Usage
RandomEAT (data, x, y, numStop, s_mtry)
Arguments
data data.frame containing the training set.
X Vector. Column input indexes in data.
y Vector. Column output indexes in data.
numStop Minimum number of observations in a node for a split to be attempted.
s_mtry Number of variables randomly sampled as candidates at each split. The available
options are: "BRM", "DEA1", "DEA2", "DEA3", "DEA4" or any integer.
Value

A list of m trees in forest and the error that will be used in the ranking of the importance of the

variables.

rankingEAT 41

rankingEAT Ranking of Variables by Efficiency Analysis Trees model.

Description

This function computes the variable importance through an Efficiency Analysis Trees model.

Usage

rankingEAT (object, barplot = TRUE, threshold = 70, digits = 2)

Arguments
object An EAT object.
barplot logical. If TRUE, a barplot with the importance scores is displayed.
threshold Importance score value in which a line is graphed.
digits Decimal units.
Value

data. frame with the importance scores and a barplot representing the the variable importance if
barplot = TRUE.

Examples

simulated <- X2Y2.sim(N = 50, border = 0.2)
EAT_model <- EAT(data = simulated, x = c(1,2), y = c(3, 4))

rankingEAT (object = EAT_model,
barplot = TRUE,
threshold = 70,
digits = 2)

rankingRFEAT Ranking of variables by Random Forest + Efficiency Analysis Trees
model.

Description

This function calculates variable importance through a Random Forest + Efficiency Analysis Trees
model.

42 RBranch

Usage
rankingRFEAT (object, barplot = TRUE, digits = 2)

Arguments
object A RFEAT object.
barplot logical. If TRUE, a barplot with importance scores is displayed.
digits Decimal units.

Value

data. frame with the importance scores and a barplot representing the variable importance if barplot
= TRUE.

Examples

simulated <- X2Y2.sim(N = 50, border = 0.2)
RFEAT_model <- RFEAT(data = simulated, x = c(1,2), y = c(3, 4))

rankingRFEAT (object = RFEAT_model,
barplot = TRUE,
digits = 2)

RBranch Branch Pruning

Description

This function computes the error of a branch as the sum of the errors of its child nodes.

Usage

RBranch(t, tree)

Arguments

t list. A given EAT node.

tree A list containing the EAT nodes.
Value

A list containing (1) the sum of the errors of the child nodes of the pruned node and (2) the total
number of leaf nodes that come from it.

RCV 43

RCV RCV

Description

RCV

Usage

RCV(N, Lv, y, alphalprim, fold, TAiv)

Arguments
N Number of rows in data.
Lv Test set.
y Column output indexes in data.
alphalprim Alpha obtained as the square root of the product of two consecutive alpha values
in tree_alpha list. It is used to find the best pruning tree.
fold Parts in which the original data is divided into to perform Cross-Validation.
TAiv List with each possible pruning for the deep tree generated with the train set and
its associated alpha values.
Value

Set of best pruning and the associated error calculated with test sets.

RFEAT Random Forest + Efficiency Analysis Trees

Description

This function builds m individual Efficiency Analysis Trees in a forest structure.

Usage

RFEAT (data, x, y, numStop = 5, m = 50, s_mtry = "BRM", na.rm = TRUE)

44 RFEAT

Arguments
data data.frame or matrix containing the variables in the model.
X Column input indexes in data.
y Column output indexes in data.
numStop Minimum number of observations in a node for a split to be attempted.
m Number of trees to be built.
s_mtry Number of variables randomly sampled as candidates at each split. The available
options are:
e "BRM": in / 3
e "DEA1": (t.obs / 2) - out
e "DEA2": (t.obs / 3) - out
e "DEA3": t.obs - 2 * out
e "DEA4": min(t.obs / out, (t.obs / 3) - out)
* Any integer
na.rm logical. If TRUE, NA rows are omitted.
Value

A RFEAT object containing:

* data

— df: data frame containing the variables in the model.
x: input indexes in data.
y: output indexes in data.
input_names: input variable names.
output_names: output variable names.

— row_names: rownames in data.

e control

numStop: numStop hyperparameter value.

m: m hyperparameter value.
— s_mtry: s_mtry hyperparameter value.
— na.rm: na.rm hyperparameter value.

» forest: list containing the individual EAT models.
* error: Out-of-Bag error at the forest.

* 00B: list containing Out-of-Bag set for each tree.

Examples

simulated <- X2Y2.sim(N = 50, border = 0.1)

RFmodel <- RFEAT(data = simulated, x = c¢(1,2), y = c(3, 4), numStop = 5,
m = 50, s_mtry = "BRM”, na.rm = TRUE)

RFEAT _object

45

RFEAT _object

Create a RFEAT object

Description

This function saves information about the Random Forest for Efficiency Analysis Trees model.

Usage

RFEAT _object(
data,
X,

Y,
rownames,

numStop,
m,
s_mtry,
na.rm,
forest,
error,
00B

Arguments

data

X

y
rownames
numStop
m

s_mtry

na.rm
forest
error
00B

Value

A RFEAT object.

data.frame or matrix containing the variables in the model.
Column input indexes in data.
Column output indexes in data.
string. Data rownames.
Minimun number of observations in a node for a split to be attempted.
Number of trees to be built.
Select number of inputs in each split.

e "Breiman”: in/ 3

e "DEA1": (t.obs / 2) - out

« "DEA2": (t.obs / 3) - out

* "DEA3": t.obs - 2 * out

e "DEA4": min(t.obs / out, (t.obs / 3) - out)
logical. If TRUE, NA rows are omitted.
list containing the individual Efficiency Analysis Trees.
Error in Random Forest for Efficiency Analysis Trees.

list containing the observations with which each tree has been trained.

46 scores

RF_predictor Random Forest + Efficiency Analysis Trees Predictor

Description

This function predicts the expected value based on a set of inputs.

Usage

RF_predictor(forest, xn)

Arguments
forest list containing the individual Efficiency Analysis Trees.
Xn Row indexes in data.

Value

Vector of predictions.

scores Pruning Scores

Description

This function calculates the score for each pruning of tree_alpha_list.

Usage

scores(N, Lv_notLv, x, y, fold, numStop, Tk, tree_alpha_list)

Arguments
N Number of rows in data.
Lv_notLv List with train and test sets.
X Column input indexes in data.
y Column output indexes in data.
fold Parts in which the original data set is divided to perform Cross-Validation.
numStop Minimum number of observations on a node to be split.
Tk Best pruned tree.

tree_alpha_list
List with all the possible pruning and its associated alpha.

selectTk 47

Value

List with the best pruning for each fold, the pruning with a lower score and tree_alpha_list with
scores updated.

selectTk Select Tk

Description

This function tries to find a new pruned tree with a shorter length and a score in the range generated
for SE.

Usage
selectTk(Tk, tree_alpha_list, SE)

Arguments

Tk Best pruned tree score.
tree_alpha_list
List with all the possible pruning and its associated alpha and scores.

SE Value to get a range where new prunings is found.

Value

The same best tree or a new suitable one.

select_mtry Select Possible Inputs in Split.

Description

This function selects the number of inputs for a split in Random Forest.

Usage

select_mtry(s_mtry, t, nX, nY)

Arguments
s_mtry Select number of inputs. It could be: "BRM", "DEA1", "DEA2", "DEA3" or "DEA4"
or any integer.
t Node which is being split.
nX Number of inputs in data.

ny Number of outputs in data.

48 split

Value

Number of inputs selected according to the specified rule.

SERules SERules

Description

Based on Validation tests over BestTivs, a new range of scores is obtained to find new pruned trees.

Usage

SERules(N, Lv, y, fold, Tk_score, BestTivs)

Arguments
N Number of rows in data.
Lv Test set.
y Column output indexes in data.
fold Parts in which the original data set is divided to perform Cross-Validation.
Tk_score Best pruned tree score.
BestTivs List of best pruned trees for each training set.
Value

Value to get a range where new pruning is found.

split Split node

Description

This function gets the variable and split value to be used in estimEAT, selects the best split and
updates VarInfo, node indexes and leaves list.

Usage

split(data, tree, leaves, t, x, y, numStop)

split_forest 49

Arguments

data Data to be used.

tree List structure with the tree nodes.

leaves List with leaf nodes or pending expansion nodes.

t Node which is being split.

X Column input indexes in data.

y Column output indexes in data.

numStop Minimum number of observations in a node to be split.
Value

Leaves and tree lists updated with the new child nodes.

split_forest Split Node in Random Forest EAT

Description
This function gets the variable and split value to be used in estimEAT, selects the best split, node
indexes and leaf list.

Usage

split_forest(data, tree, leaves, t, x, y, numStop, arrayK)

Arguments

data Data to be used.

tree List structure with the tree nodes.

leaves List with leaf nodes or pending expansion nodes.

t Node which is being split.

X Column input indexes in data.

y Column output indexes in data.

numStop Minimum number of observations on a node to be split.

arrayK Column input indexes in data selected by s_mtry.
Value

Leaves and tree lists updated with the new child nodes.

50 X2Y2.sim

treesForRCV Trees for RCV

Description

This function generates a deep EAT and all pruning for each train set.

Usage

treesForRCV(notLv, x, y, fold, numStop)

Arguments
notLv Train set.
X Column input indexes in data.
y Column output indexes in data.
fold Parts in which the original set is divided to perform Cross-Validation.
numStop Minimum number of observations in a node to be split.
Value

List with each possible pruning for the deep tree generated with train set and its associated alpha
values.

X2Y2.sim 2 Inputs & 2 Outputs Data Generation

Description

This function is used to simulate the data in a scenario with 2 inputs and 2 outputs.

Usage
X2Y2.sim(N, border, noise = NULL)

Arguments
N Sample size.
border Percentage of DMUs in the frontier.
noise Random noise.

Value

data. frame with simulated data.

Y1.sim

51

Y1.sim Single Output Data Generation

Description

This function is used to simulate the data in a single output scenario.

Usage
Y1.sim(N, nX)

Arguments

N Sample size.

nX Number of inputs. 1, 3, 6, 9, 12 and 15 are acceptable.
Value

data. frame with simulated data.

Index

x datasets
PISAindex, 34

alpha, 3

bagging, 4
barplot_importance, 4
bestEAT, 5
bestRFEAT, 6

CEAT_BCC_in, 7
CEAT_BCC_out, 8
CEAT_DDF, 9
CEAT_RSL_in, 9
CEAT_RSL_out, 10
CEAT_WAM, 11
checkEAT, 11
comparePareto, 12

deepEAT, 12

EAT, 13

EAT_BCC_in, 15
EAT_BCC_out, 16
EAT_DDF, 16
EAT_frontier_levels, 17
EAT_leaf_stats, 18
EAT_object, 19
EAT_RSL_in, 20
EAT_RSL_out, 20
EAT_size, 21
EAT_WAM, 22
efficiencyCEAT, 22
efficiencyDensity, 24
efficiencyEAT, 25
efficiencyJitter, 26
efficiencyRFEAT, 27
estimEAT, 28

frontier, 29

52

generatelyv, 30

imp_var_EAT, 30
imp_var_RFEAT, 31
isFinalNode, 31

layout, 32

M_Breiman, 33
mse, 32
mtry_inputSelection, 33

PISAindex, 34
plotEAT, 35
plotRFEAT, 35
posIdNode, 36
predict.EAT, 37
predict.RFEAT, 37
predictFDH, 38
predictor, 39
preProcess, 39

RandomEAT, 40
rankingEAT, 41
rankingRFEAT, 41
RBranch, 42

RCV, 43
RF_predictor, 46
RFEAT, 43

RFEAT _object, 45

scores, 46
select_mtry, 47
selectTk, 47
SERules, 48
split, 48
split_forest, 49

treesForRCV, 50
X2Y2.sim, 50

Y1.sim, 51

	alpha
	bagging
	barplot_importance
	bestEAT
	bestRFEAT
	CEAT_BCC_in
	CEAT_BCC_out
	CEAT_DDF
	CEAT_RSL_in
	CEAT_RSL_out
	CEAT_WAM
	checkEAT
	comparePareto
	deepEAT
	EAT
	EAT_BCC_in
	EAT_BCC_out
	EAT_DDF
	EAT_frontier_levels
	EAT_leaf_stats
	EAT_object
	EAT_RSL_in
	EAT_RSL_out
	EAT_size
	EAT_WAM
	efficiencyCEAT
	efficiencyDensity
	efficiencyEAT
	efficiencyJitter
	efficiencyRFEAT
	estimEAT
	frontier
	generateLv
	imp_var_EAT
	imp_var_RFEAT
	isFinalNode
	layout
	mse
	mtry_inputSelection
	M_Breiman
	PISAindex
	plotEAT
	plotRFEAT
	posIdNode
	predict.EAT
	predict.RFEAT
	predictFDH
	predictor
	preProcess
	RandomEAT
	rankingEAT
	rankingRFEAT
	RBranch
	RCV
	RFEAT
	RFEAT_object
	RF_predictor
	scores
	selectTk
	select_mtry
	SERules
	split
	split_forest
	treesForRCV
	X2Y2.sim
	Y1.sim
	Index

